Leveraging LSGAN for synthetic gingival keratinization genomic data: Insights from drug interaction and gene ontology in an early fusion framework
Aprovechamiento de LSGAN para datos genómicos sintéticos de queratinización gingival: perspectivas de la interacción farmacológica y la ontología génica en un marco de fusión temprana
Palabras clave:
Computational biology, epithelial tissue, gingiva, keratin, periodontiumResumen
Introduction: Gingival keratinization, a vital process in oral health, involves the formation of a keratin-rich protective epithelial layer, providing resilience against mechanical stress, pathogens, and environmental factors. Objective: This study employs an early fusion omics approach with Least-Squares Generative Adversarial Networks (LSGAN) to generate synthetic genomic data, incorporating insights from drug interactions and geneontology annotations. Methods: Gene expression data from the NCBI GEO dataset (GSE182196) were analyzed to identify differentially expressed genes (DEGs) across diverse samples. Functional enrichment was performed using the Comparative Toxicogenomics Database (CTD) to explore chemical exposures and biological processes linked to DEGs. Outputs were standardized into TSV formats for downstream analyses. To ensure high-fidelity synthetic data generation, the LSGAN framework was optimized to minimize Mean Squared Error (MSE) and Mean Absolute Error (MAE).
Descargas
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Gaceta Médica de Caracas

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.