Leveraging LSGAN for synthetic gingival keratinization genomic data: Insights from drug interaction and gene ontology in an early fusion framework

Aprovechamiento de LSGAN para datos genómicos sintéticos de queratinización gingival: perspectivas de la interacción farmacológica y la ontología génica en un marco de fusión temprana

Autores/as

  • Pradeep Kumar Yadalam Ph.D. Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technology Sciences, SIMATS, Saveetha. University, Chennai, Tamil Nadu, India https://orcid.org/0000-0003-4259-820X
  • Raghavendra Vamsi Anegundi MDS. Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technology Sciences, SIMATS, Saveetha. University, Chennai, Tamil Nadu, India https://orcid.org/0000-0002-8269-088X
  • Carlos M. Ardila Ph.D. Postdoctoral Researcher. Basic Sciences Department, Biomedical Stomatology Research Group, Universidad de Antioquia U de A, Medellín, Colombia. https://orcid.org/0000-0002-3663-1416

Palabras clave:

Computational biology, epithelial tissue, gingiva, keratin, periodontium

Resumen

Introduction: Gingival keratinization, a vital process in oral health, involves the formation of a keratin-rich protective epithelial layer, providing resilience against mechanical stress, pathogens, and environmental factors. Objective: This study employs an early fusion omics approach with Least-Squares Generative Adversarial Networks (LSGAN) to generate synthetic genomic data, incorporating insights from drug interactions and geneontology annotations. Methods: Gene expression data from the NCBI GEO dataset (GSE182196) were analyzed to identify differentially expressed genes (DEGs) across diverse samples. Functional enrichment was performed using the Comparative Toxicogenomics Database (CTD) to explore chemical exposures and biological processes linked to DEGs. Outputs were standardized into TSV formats for downstream analyses. To ensure high-fidelity synthetic data generation, the LSGAN framework was optimized to minimize Mean Squared Error (MSE) and Mean Absolute Error (MAE).

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2025-08-26

Cómo citar

Kumar Yadalam, P. ., Vamsi Anegundi, R. ., & Ardila, C. M. . (2025). Leveraging LSGAN for synthetic gingival keratinization genomic data: Insights from drug interaction and gene ontology in an early fusion framework: Aprovechamiento de LSGAN para datos genómicos sintéticos de queratinización gingival: perspectivas de la interacción farmacológica y la ontología génica en un marco de fusión temprana. Gaceta Médica De Caracas, 133(2), 399–408. Recuperado a partir de https://saber.ucv.ve/ojs/index.php/rev_gmc/article/view/30976

Número

Sección

ARTÍCULOS ORIGINALES

Artículos similares

<< < 1 2 3 4 5 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.