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SUMMARY

Introduction: Gingival keratinization, a vital
process in oral health, involves the formation of a
keratin-rich protective epithelial layer, providing
resilience against mechanical stress, pathogens, and
environmental factors. Objective: This study employs
an early fusion omics approach with Least-Squares
Generative Adversarial Networks (LSGAN) to generate
synthetic genomic data, incorporating insights from
drug interactions and geneontology annotations.
Methods: Gene expression data from the NCBI
GEO dataset (GSE182196) were analyzed to identify
differentially expressed genes (DEGs) across diverse
samples. Functional enrichment was performed using
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the Comparative Toxicogenomics Database (CTD) to
explore chemical exposures and biological processes
linked to DEGs. Outputs were standardized into
TSV formats for downstream analyses. To ensure
high-fidelity synthetic data generation, the LSGAN
Sframework was optimized to minimize Mean Squared
Error(MSE) and MeanAbsolute Error (MAE). Results:
The LSGAN model demonstrated robust performance,
with low MSE and MAE values indicating a close
resemblance between synthetic and real genomic
data distributions. Additionally, reduced Wasserstein
distances highlighted the enhanced similarity of
synthetic data to the original dataset, confirming
the model’s reliability in preserving biologically
relevant features. Conclusions: The LSGAN approach
successfully generates high-quality synthetic genomic
data for gingival keratinization, enabling advanced
hypothesis testing, machine learning model training,
and simulation of rare genomic conditions.
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RESUMEN

Introduccion: La queratinizacion gingival, un
proceso vital en la salud bucal, implica la formacion
de una capa epitelial protectora rica en queratina,
proporcionando resistencia contra el estrés mecdnico,
patogenos y factores ambientales. Objetivo:
Este estudio emplea un enfoque omico de fusion
temprana con Redes Generativas Adversarias de
Minimos Cuadrados (LSGAN) para generar datos
gendomicos sintéticos, incorporando perspectivas
de interacciones farmacologicas y anotaciones de
ontologia génica. Métodos: Se analizaron datos de
expresion génica del conjunto de datos NCBI GEO
(GSE182196) paraidentificar genes diferencialmente
expresados (DEGs) en diversas muestras. Se realizo
un enriguecimiento funcional utilizando la Base
de Datos de Toxicogenomica Comparativa (CTD)
para explorar exposiciones quimicas y procesos
biologicos vinculados a los DEGs. Las salidas
se estandarizaron en formatos TSV para andlisis
posteriores. El marco LSGAN se optimizo para
minimizar el Error Cuadrdtico Medio (MSE)Yy el Error
Absoluto Medio (MAE) para asegurar la generacion
de datos sintéticos de alta fidelidad. Resultados: El
modelo LSGAN demostréo un rendimiento robusto,
con valores bajos de MSE y MAE que indican una
estrecha semejanza entre las distribuciones de datos
genomicos sintéticos y reales. Ademds, las distancias
de Wasserstein reducidas resaltaron la similitud
mejorada de los datos sintéticos con el conjunto de
datos original, confirmando la fiabilidad del modelo
en la preservacion de caracteristicas biologicamente
relevantes. Conclusiones: El enfoque LSGAN genera
con éxito datos genomicos sintéticos de alta calidad
parala queratinizacion gingival, permitiendo pruebas
de hipotesis avanzadas, entrenamiento de modelos de
aprendizaje automdtico y simulacion de condiciones
genomicas raras.

Palabras clave: Biologia computacional, tejido
epitelial, encia, queratina, periodonto.

INTRODUCTION

Gingival keratinization is a vital protective
mechanism in which epithelial tissues develop
a keratin-rich outer layer. This specialized
adaptation serves as a crucial barrier against
mechanical stress, microbial invasion, and
environmental challenges in the oral cavity (1,2).
The keratinized epithelium, predominantly found
in the attached gingiva and hard palate,comprises
multiple stratified cell layers that collectively
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provide mechanical protection while supporting
local immune responses. The integrity of this
barrier is clinically significant, as compromised
keratinization increases susceptibility to
inflammation, infection, and periodontal disease
progression. Multiple factors influence this
process, including genetic predisposition, oral
hygiene practices, hormonal fluctuations, local
trauma, and systemic health conditions (3).

Keratin proteins form an essential cytoskeletal
network that maintains epithelial cell structure
and function. These intermediate filaments,
particularly the type I and II keratin heteropo-
lymers, participate in fundamental cellular
processes ranging from proliferation and
differentiation to intracellular transport and
cell-cell signaling. Despite their biological
importance, the complete architecture of
cytokeratin networks in oral tissues remains
inadequately characterized, especially when
studying ex vivo specimens where native
tissue organization may be altered (2,4). This
knowledge gap underscores the need foradvanced
investigative approaches.

Inclinical periodontology,enhancing gingival
keratinization represents a key therapeutic
objective. Various interventions, including soft
tissue grafting, periodontal surgical techniques
(5,6),antimicrobial therapies,and comprehensive
patient education programs, aim to optimize
keratinized tissue dimensions and quality.
Successful outcomes depend on careful case
selection, adjunctive therapies, and consistent
postoperative monitoring, highlighting the
importance of individualized treatment planning
and long-term maintenance (7).

The emergence of omics technologies has
revolutionized our capacity to investigate complex
biological processes like keratinization. By
integrating genomic, transcriptomic, proteomic,
and metabolomic datasets, researchers can now
examine keratinocyte differentiation through
multidimensional lenses. Early fusion omics
approaches are particularly valuable, as they
synthesize information across biological scales
to reveal the interconnected regulatory networks
governing epithelial specialization (8). This
system-level perspective provides unprecedented
opportunities to decode the molecular basis of
oral barrier function.
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Recent advances in computational biology
have introduced innovative tools for keratinization
research, including generative adversarial
networks (GANs). The Least-Squares GAN
(LSGAN) framework has demonstrated particular
promise in synthesizing high-quality omics data,
enabling researchers to model gene expression
patterns, predict treatment responses, and explore
disease mechanisms with enhanced flexibility (9).
Unlike conventional GANs, LSGAN’s modified
loss function improves training stability while
minimizing common artifacts, yielding more
biologically plausible synthetic datasets.

The unique advantages of LSGAN architecture
make it especially suitable for biomedical
applications. Its robust performance stems
from the least-squares loss function, which
effectively addresses vanishing gradient
problems while maintaining sample diversity.
Clinical validations of this approach, including
successful implementations in glioblastoma
imaging studies (10-14), confirm its potential
for generating reliable synthetic biological data.
‘When combined with gene ontology frameworks,
LSGAN-generated datasets can systematically
categorize genes by their functional roles in
keratinization processes (11,15).

Despite these advancements, applying
LSGAN technology to keratinization research
remains a significant challenge. Current
limitations include the need for larger, higher-
quality training datasets, more sophisticated
model interpretability tools, and standardized
validation protocols. Addressing these hurdles
through multidisciplinary collaboration will
be essential for realizing the full potential of
synthetic data approaches in oral health research
and clinical applications.

MATERIALS AND METHODS

Data Collection and Preparation

Data Retrieval from NCBI GEO (GSE182196):

Raw sequencing data counts from the NCBI
GEO dataset GSE182196 were retrieved and
analyzed (16,17). Differential gene expression
(DEG) analysis was conducted across all
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experimental groups to identify upregulated
and downregulated genes. Raw counts were
normalized using the DESeq2 package (v1.38.3)
with default parameters, and DEGs were
selected based on predefined statistical cut-off
criteria (adjusted p-value < 0.05 and log2 fold
changel > 1).

Functional Annotation Using Comparative
Toxicogenomics Database (CTD)

DEG data were imported into the CTD for
functional analysis (18). Gene ontology (GO)
terms were assigned to identify associated
biological processes and molecular functions.
Additionally, gene-chemical interactions were
extracted to explore potential chemical exposures
linked to the DEGs. The CTD facilitated the
annotation of toxicological effects and pathway
associations with relevant chemicals. Only
high-confidence interactions (inference score =
40) were retained to ensure biological relevance.

File Conversion and Integration

Results were exported as Tab-Separated
Value (TSV) files to standardize formatting and
enable compatibility across various analysis
pipelines. Standardizing data into TSV format
involves organizing tabular data in a plain text
file where each line represents a record and
values within each record are separated by tab
characters. Data from different sources were
integrated using cosine similarity viaearly fusion
methods, combining gene expression profiles
with GO annotations and chemical associations.
Normalization procedures ensured consistency in
the datasets, making them suitable for machine
learning applications.

Data Preprocessing

Datasets were preprocessed by aligning
gene expression data with associated statistical,
chemical, and GO annotations based on the
“GenelD™ column. Expression data were
normalized to comparable scales using min-max
scaling, enabling reliable downstream analysis.
Cosine similarity metrics were employed
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to evaluate the similarity between vectors
representing gene expression profiles, GO terms,
and chemical associations.

Cosine Similarity

Cosine similarity was used as a metric to
compare gene expression profiles across samples,
providing aquantitative measure of the similarity
inexpression patterns. This method calculates the
cosine of the angle between two non-zero vectors,
yielding a value between -1 and 1. A threshold of
= 0.7 was applied to define significant similarity,
as empirically validated in prior studies (16-19).

Least Squares Generative Adversarial Network
Architecture

Model Architecture

The LSGAN framework was designed to
generate synthetic gene expression data by
transforming random noise into structured outputs
resembling real data.

Generator

A neural network with an input dimension of
100 (representing random noise) and an output
dimension matching the six features in the gene
expression data. The architecture includes three
fully connected layers (512,256, and 128 units,
respectively) with ReLLU activations for non-
linearity and a final Tanh activation to scale
outputs withintherange (—1.1)(—1.1). The choice
of layer sizes was based on empirical testing,
balancing model complexity and computational
efficiency.

Discriminator

A neural network acting as a binary classifier
with an input dimension corresponding to the
six features of the expression data. It includes
three fully connected layers (128, 256, and
512 units, respectively) utilizing Leaky ReL.U
activations (slope =0.2),outputting asingle value
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indicating the likelihood of the input being real
or generated.

Both networks were trained using a learning
rate of 0.0002 (optimized via grid search), a
batch size of 64, and over 200 epochs. The
Mean Squared Error (MSE) loss function was
used to quantify the differences between real and
generated data, iteratively updating the weights
of both the generator and discriminator. Early
stopping was implemented if validation loss
plateaued for 20 consecutive epochs.

Evaluation Metrics

The performance of the LSGAN model was
evaluated using the following metrics: Mean
Squared Error (MSE): Quantifies the average
squared difference between real and generated
data distributions; Mean Absolute Error (MAE):
Measures the average magnitude of errors without
considering their direction; Wasserstein Distance
(Earth Mover’s Distance): Assesses the overall
similarity between real and generated data
distributions.

Data Visualization

Tovalidate model outputs,several visualization
techniques were employed, including: Density
plots and correlation heatmaps to evaluate
distributional similarities; Q-Q (quantile-
quantile) plots to assess normality and variance;
Violin plots to illustrate the distribution and
density of generated data in comparison with
real data.

RESULTS

The results of this study provide insights
into the performance of the LSGAN model in
generating synthetic gene expression data that
closely resemblesreal data. Key findings include
metrics evaluating distributional similarity,cosine
similarity,error values and detailed visualizations
that compare real and generated datasets. The
analyses demonstrate the efficacy of the LSGAN
model in genomic data applications.
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Figure 1 displays a volcano plot showing
the log2 fold change (log2FC) on the x-axis
and the negative log10 of the adjusted p-value
(-log10(Padj)) on the y-axis. Each point

160 -

<og10(Pvalue)

corresponds to a gene, where red dots represent
upregulated genes and blue dots indicate
downregulated genes between the two conditions.

Figure 1. Volcano Plot of Differential Gene Expression.

Cosine Similarity Analysis

Cosine similarity was used to evaluate the
similarity of gene expression profiles across
samples. The results indicate a high similarity
between the generated and real data, suggesting
that the LSGAN model effectively captures the
directionality of real data vectors. The trained
LSGAN model achieves a balance between
generating realistic samples and distinguishing
between real and synthetic data. Low MSE
and MAE values further support the close

T
s

T T
10 S 20 25

log2(fold change)

resemblance between generated and real data
distributions. Additionally, low Wasserstein
distances, overlapping distributions, and
correlation structures validate the model’s
capability for bioinformatics applications.

Figure 2 shows the dynamics of training losses
for the generator and discriminator over 200
epochs. The generator’s loss consistently remains
lower than the discriminator’s,demonstrating that
the model is effectively learning the underlying
data distribution. The steady decline in both loss
curves indicates convergence and model stability.

Training Losses Over Epochs

Loss

—— Generator Loss
—— Discriminator Loss

°

25 50 75

100
Epoch

125 150 175 200

Figure 2. Training Loss Curves for Generator and Discriminator.
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Error Metrics and Distributional Analysis

Mean Squared Error: The average squared
difference between estimated and actual values is
7.02 % 107, indicating strong model performance.

Mean Absolute Error: The linear score
measuring the average difference between
predicted and actual values is 0.0021, further
confirming the data’s resemblance.

Wasserstein Distances: With values ranging
from 0.0014 to 0.0023, the distances reflect
high alignment between real and generated data
distributions. The average Wasserstein distance
0f0.00217 underscores the model’s effectiveness.

Figure 3 presents abox plotcomparing real and
generated data distributions across six features.
The limited variability and tightly clustered data
distributions demonstrate a close resemblance
between real and synthetic data, with color
legends provided for clarity.

Distribution Comparison: Real vs Generated Data

Type
. Real
I Generated

» o ©

@’ @’

o & s
& $ $

Figure 3. Box Plot Comparing Real and Generated Data Distributions.

Figure 4 contains six Q-Q plots arranged in a
2x3 grid,each corresponding to adifferent feature.
Blue points represent observed values plotted
against theoretical quantiles, while red lines
denote expected values. The plots reveal tightly
clustered data points, indicating low variability
and limited diversity in the generated data.

Figure 5 shows six Q-Q plots arranged in
a 2x3 grid, comparing real data distributions
across features. The upward curves in the plots
suggestheavier tails than expected under anormal
distribution, highlighting inherent skewness in
the real data.

Figure 6 illustrates six density plots arranged
in a 2x3 grid, showing the distribution of real
data features. The sharp peaks near zero indicate
skewness and limited variability, reflecting the
dataset’s characteristic patterns.
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Evaluation of LSGAN Model Performance

The LSGAN model effectively captured real
data distribution, as evidenced by density plots,
high cosine similarity,and low error metrics. The
epoch loss curves (Figure 2) further demonstrate
that both generator and discriminator losses
stabilized during training, achieving a balance
between producing realistic samples and
distinguishing between real and synthetic data.
These findings indicate the model’s robustness
and potential utility in generating high-quality
synthetic gene expression data for genomics and
bioinformatics applications.
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Q-Q Plot for Feature 1 (Generated Data)

Q-Q Plot for Feature 2 (Generated Data)

Figure 5. Q-Q Plots of Real Data for Six Features.
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Density Plot for Feature 1 (GSM5520337)

Density Plot for Feature 2 (GSM5520338)

00 o1 02 03 0a
Density Plot for Feature 3 (GSM5520339)

010 015 020 025 030

Density Plot for Feature 4 (GSM55203310)

010 015 020

Density Plot for Feature 5 (GSM55203311)

010 015 020

Density Plot for Feature 6 (GSM55203312)

Figure 6. Density Plots of Real Data for Six Features.

DISCUSSION

Keratinization is the process by which
keratin accumulates in epithelial cells, providing
protective properties to various tissues in the body.
In the oral cavity, keratinized tissues (1,7),such as
the hard palate and gingiva, act as robust barriers
against mechanical injury, microbial invasion,
and dehydration. Gingival keratinization occurs
withinthe gingival epithelium,whichissubdivided
into parakeratinized and orthokeratinized layers.
The degree of keratinization in the gingiva varies
significantly among individuals due to factors
such as genetics, environmental influences, and
oralhygiene practices. Keratinized gingival tissue
serves multiple roles, including shielding against
injury, preventing infections, and facilitating
regeneration and healing. Additionally,itimpacts
aesthetics, periodontal health, and susceptibility
to oral diseases. Understanding the processes
of oral and gingival keratinization is critical for
advancing dental care, with evidence suggesting
that effective hygiene practices, regular check-
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ups,and personalized treatment plans can enhance
patient outcomes (4,19).

Generative Adversarial Networks
(GANSs) (20) have emerged as promising tools
for generating transcriptomic data related to
keratinization, offering transformative potential
for understanding oral and gingival health. By
generating high-dimensional data, GANs address
the challenges of data scarcity and facilitate
model training. They can uncover regulatory
mechanisms, simulate biological variability, and
testhypothesesrelated to keratinization processes.
However, GAN-generated data may not fully
capture the complexity of biological systems,
such as non-linear gene-gene interactions or
epigenetic influences (21-23). This innovative
application of Al in genomics underscores the
capacity of computational tools to advance
biological sciences (21,22).

The Least Squares Generative Adversarial
Network (LSGAN) (9,12,15) is a specialized
GAN method designed to generate realistic
data by optimizing the labeling system for
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discriminators. Its primary goal is to produce
synthetic samples that the discriminator
incorrectly classifies as real, achieving a balance
at the decision boundary between real and fake
data. LSGAN employs a least-squares loss
function, which ensures smoother gradient
transitions and incorporates gradient penalties
to generate high-quality data while mitigating
issues like vanishing gradients. This study
employed LSGAN to generate synthetic omics
data with enhanced realism. Despite these
advantages, LSGANs may struggle with rare
gene expression patterns, potentially biasing
downstream analyses (24,25). Similarly, the
Wasserstein GAN with Penalty Loss  MDWGAN-
GP) model (23-25), leveraging multiple
discriminators and linear graph convolutional
networks,has demonstrated superior performance
in generating high-quality gene expression data.
Data augmentation strategies powered by GANs
have been shown to improve cancer phenotype
classification accuracy, with binary classification
reaching 94 % accuracy and tissue classification
achieving 70 %. Complex GAN architectures
are associated with higher-quality outputs and
better augmentation results.

The synthetic gene expression data generated
in this study, analyzed using LSGAN, exhibited
low mean squared error (MSE) and mean absolute
error (MAE) values (7.020 x 10°), closely
resembling real data distributions. Wasserstein
distances (Earth Mover’s Distances) revealed
comparable distributions between the synthetic
and real datasets, further validating the quality
of the generated data. However, these metrics
do not assess whether synthetic data preserves
biologically meaningful gene co-expression
networks (24). While LSGAN demonstrates
promise in generating data related to gingival
keratinization, future directions should include
enhancing model architecture and variability,
incorporating feature-specific training,exploring
multimodal data generation, and validating
biological relevance. For instance, integrating
single-cell RN A-seq data could improve cellular
heterogeneity modeling (25). Longitudinal data
simulation and improved evaluation metrics are
alsocritical. Although evaluation metrics such as
MSE and M AE offer valuable insights,they donot
comprehensively assess data quality. Addressing
GAN-specific challenges like mode collapse
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and training instability, along with improving
interpretability and ethical considerations,
remains essential for future research.

CONCLUSION

The Least Squares Generative Adversarial
Network effectively generates synthetic gene
expression data that aligns closely with real data
distributions,demonstrating significant potential
for applications requiring realistic synthetic
data. Synthetic datasets related to gingival
keratinization provide valuable insights into
biological processes and variability. Advanced
modeling techniques enable the creation of
datasets that accurately reflect patterns observed
in clinical studies, supported by robust statistical
metrics such as low MSE and high correlation
coefficients.

This study highlights the potential of synthetic
data to simulate variability in keratinization
levels, offering a nuanced understanding of
factors influencing gingival health. Such
datasets can be instrumental in hypothesis
testing, machine learning model training, and
simulating rare or underrepresented conditions.
The findings underscore the value of innovative
computational approaches in oral health research
and suggest future research avenues, including
the incorporation of longitudinal data, biological
variability, and enhanced modeling frameworks,
to expand the utility of synthetic data in dentistry
and genomics further.
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