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SUMMARY

Introduction: Gingival keratinization, a vital 
process in oral health, involves the formation of a 
keratin-rich protective epithelial layer, providing 
resilience against mechanical stress, pathogens, and 
environmental factors.  Objective: This study employs 
an early fusion omics approach with Least-Squares 
Generative Adversarial Networks (LSGAN) to generate 
synthetic genomic data, incorporating insights from 
drug interactions and geneontology annotations.  
Methods: Gene expression data from the NCBI 
GEO dataset (GSE182196) were analyzed to identify 
differentially expressed genes (DEGs) across diverse 
samples.  Functional enrichment was performed using 

the Comparative Toxicogenomics Database (CTD) to 
explore chemical exposures and biological processes 
linked to DEGs.  Outputs were standardized into 
TSV formats for downstream analyses.  To ensure 
high-fidelity synthetic data generation, the LSGAN 
framework was optimized to minimize Mean Squared 
Error (MSE) and Mean Absolute Error (MAE).  Results: 
The LSGAN model demonstrated robust performance, 
with low MSE and MAE values indicating a close 
resemblance between synthetic and real genomic 
data distributions.  Additionally, reduced Wasserstein 
distances highlighted the enhanced similarity of 
synthetic data to the original dataset, confirming 
the model’s reliability in preserving biologically 
relevant features.  Conclusions: The LSGAN approach 
successfully generates high-quality synthetic genomic 
data for gingival keratinization, enabling advanced 
hypothesis testing, machine learning model training, 
and simulation of rare genomic conditions.  
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RESUMEN

Introducción: La queratinización gingival, un 
proceso vital en la salud bucal, implica la formación 
de una capa epitelial protectora rica en queratina, 
proporcionando resistencia contra el estrés mecánico, 
patógenos y factores ambientales.  Objetivo: 
Este estudio emplea un enfoque ómico de fusión 
temprana con Redes Generativas Adversarias de 
Mínimos Cuadrados (LSGAN) para generar datos 
genómicos sintéticos, incorporando perspectivas 
de interacciones farmacológicas y anotaciones de 
ontología génica.  Métodos: Se analizaron datos de 
expresión génica del conjunto de datos NCBI GEO 
(GSE182196) para identificar genes diferencialmente 
expresados (DEGs) en diversas muestras.  Se realizó 
un enriquecimiento funcional utilizando la Base 
de Datos de Toxicogenómica Comparativa (CTD) 
para explorar exposiciones químicas y procesos 
biológicos vinculados a los DEGs.  Las salidas 
se estandarizaron en formatos TSV para análisis 
posteriores.  El marco LSGAN se optimizó para 
minimizar el Error Cuadrático Medio (MSE) y el Error 
Absoluto Medio (MAE) para asegurar la generación 
de datos sintéticos de alta fidelidad.  Resultados: El 
modelo LSGAN demostró un rendimiento robusto, 
con valores bajos de MSE y MAE que indican una 
estrecha semejanza entre las distribuciones de datos 
genómicos sintéticos y reales.  Además, las distancias 
de Wasserstein reducidas resaltaron la similitud 
mejorada de los datos sintéticos con el conjunto de 
datos original, confirmando la fiabilidad del modelo 
en la preservación de características biológicamente 
relevantes.  Conclusiones: El enfoque LSGAN genera 
con éxito datos genómicos sintéticos de alta calidad 
para la queratinización gingival, permitiendo pruebas 
de hipótesis avanzadas, entrenamiento de modelos de 
aprendizaje automático y simulación de condiciones 
genómicas raras.

Palabras clave: Biología computacional, tejido 
epitelial, encía, queratina, periodonto.

INTRODUCTION

Gingival keratinization is a vital protective 
mechanism in which epithelial tissues develop 
a keratin-rich outer layer.  This specialized 
adaptation serves as a crucial barrier against 
mechanical stress, microbial invasion, and 
environmental challenges in the oral cavity (1,2).  
The keratinized epithelium, predominantly found 
in the attached gingiva and hard palate, comprises 
multiple stratified cell layers that collectively 

provide mechanical protection while supporting 
local immune responses.  The integrity of this 
barrier is clinically significant, as compromised 
keratinization increases susceptibility to 
inflammation, infection, and periodontal disease 
progression.  Multiple factors influence this 
process, including genetic predisposition, oral 
hygiene practices, hormonal fluctuations, local 
trauma, and systemic health conditions (3).

Keratin proteins form an essential cytoskeletal 
network that maintains epithelial cell structure 
and function.  These intermediate filaments, 
particularly the type I and II keratin heteropo-
lymers, participate in fundamental cellular 
processes ranging from proliferation and 
differentiation to intracellular transport and 
cell-cell signaling.  Despite their biological 
importance,  the complete architecture of 
cytokeratin networks in oral tissues remains 
inadequately characterized, especially when 
studying ex vivo specimens where native 
tissue organization may be altered (2,4).  This 
knowledge gap underscores the need for advanced 
investigative approaches.

In clinical periodontology, enhancing gingival 
keratinization represents a key therapeutic 
objective.  Various interventions, including soft 
tissue grafting, periodontal surgical techniques 
(5,6), antimicrobial therapies, and comprehensive 
patient education programs, aim to optimize 
keratinized tissue dimensions and quality.  
Successful outcomes  depend on careful case 
selection, adjunctive therapies, and consistent 
postoperative monitoring, highlighting the 
importance of individualized treatment planning 
and long-term maintenance (7).

The emergence of omics technologies has 
revolutionized our capacity to investigate complex 
biological processes like keratinization.  By 
integrating genomic, transcriptomic, proteomic, 
and metabolomic datasets, researchers can now 
examine keratinocyte differentiation through 
multidimensional lenses.  Early fusion omics 
approaches are particularly valuable, as they 
synthesize information across biological scales 
to reveal the interconnected regulatory networks 
governing epithelial specialization (8).  This 
system-level perspective provides unprecedented 
opportunities to decode the molecular basis of 
oral barrier function.
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Recent advances in computational biology 
have introduced innovative tools for keratinization 
research, including generative adversarial 
networks (GANs).  The Least-Squares GAN 
(LSGAN) framework has demonstrated particular 
promise in synthesizing high-quality omics data, 
enabling researchers to model gene expression 
patterns, predict treatment responses, and explore 
disease mechanisms with enhanced flexibility (9).  
Unlike conventional GANs, LSGAN’s modified 
loss function improves training stability while 
minimizing common artifacts, yielding more 
biologically plausible synthetic datasets.

The unique advantages of LSGAN architecture 
make it especially suitable for biomedical 
applications.  Its robust performance stems 
from the least-squares loss function, which 
effectively addresses vanishing gradient 
problems while maintaining sample diversity.  
Clinical validations of this approach, including 
successful implementations in glioblastoma 
imaging studies (10-14), confirm its potential 
for generating reliable synthetic biological data.  
When combined with gene ontology frameworks, 
LSGAN-generated datasets can systematically 
categorize genes by their functional roles in 
keratinization processes (11,15).

Despite these advancements,  applying 
LSGAN technology to keratinization research 
remains a significant challenge.  Current 
limitations include the need for larger, higher-
quality training datasets, more sophisticated 
model interpretability tools, and standardized 
validation protocols.  Addressing these hurdles 
through multidisciplinary collaboration will 
be essential for realizing the full potential of 
synthetic data approaches in oral health research 
and clinical applications.

MATERIALS AND METHODS

Data Collection and Preparation

Data Retrieval from NCBI GEO (GSE182196): 

Raw sequencing data counts from the NCBI 
GEO dataset GSE182196 were retrieved and 
analyzed (16,17).  Differential gene expression 
(DEG) analysis was conducted across all 

experimental groups to identify upregulated 
and downregulated genes.  Raw counts were 
normalized using the DESeq2 package (v1.38.3) 
with default parameters, and DEGs were 
selected based on predefined statistical cut-off 
criteria (adjusted p-value < 0.05 and log2 fold 
change| > 1).

Functional Annotation Using Comparative 
Toxicogenomics Database (CTD) 

DEG data were imported into the CTD for 
functional analysis (18).  Gene ontology (GO) 
terms were assigned to identify associated 
biological processes and molecular functions.  
Additionally, gene-chemical interactions were 
extracted to explore potential chemical exposures 
linked to the DEGs.  The CTD facilitated the 
annotation of toxicological effects and pathway 
associations with relevant chemicals.  Only 
high-confidence interactions (inference score ≥ 
40) were retained to ensure biological relevance.  

File Conversion and Integration 

Results were exported as Tab-Separated 
Value (TSV) files to standardize formatting and 
enable compatibility across various analysis 
pipelines.  Standardizing data into TSV format 
involves organizing tabular data in a plain text 
file where each line represents a record and 
values within each record are separated by tab 
characters.  Data from different sources were 
integrated using cosine similarity via early fusion 
methods, combining gene expression profiles 
with GO annotations and chemical associations.  
Normalization procedures ensured consistency in 
the datasets, making them suitable for machine 
learning applications.

Data Preprocessing

Datasets were preprocessed by aligning 
gene expression data with associated statistical, 
chemical, and GO annotations based on the 
`GeneID` column.  Expression data were 
normalized to comparable scales using min-max 
scaling, enabling reliable downstream analysis.  
Cosine similarity metrics were employed 



LEVERAGING LSGAN FOR SYNTHETIC GINGIVAL KERATINIZATION GENOMIC DATA

	 Vol. 133, Nº 2, junio 2025402

to evaluate the similarity between vectors 
representing gene expression profiles, GO terms, 
and chemical associations.

Cosine Similarity

Cosine similarity was used as a metric to 
compare gene expression profiles across samples, 
providing a quantitative measure of the similarity 
in expression patterns.  This method calculates the 
cosine of the angle between two non-zero vectors, 
yielding a value between -1 and 1.  A threshold of 
≥ 0.7 was applied to define significant similarity, 
as empirically validated in prior studies (16-19).

Least Squares Generative Adversarial Network 
Architecture

Model Architecture 

The LSGAN framework was designed to 
generate synthetic gene expression data by 
transforming random noise into structured outputs 
resembling real data.  

 

Generator 

A neural network with an input dimension of 
100 (representing random noise) and an output 
dimension matching the six features in the gene 
expression data.  The architecture includes three 
fully connected layers (512, 256, and 128 units, 
respectively)  with ReLU activations for non-
linearity and a final Tanh activation to scale 
outputs within the range (−1.1)(−1.1).  The choice 
of layer sizes was based on empirical testing, 
balancing model complexity and computational 
efficiency.

Discriminator 

A neural network acting as a binary classifier 
with an input dimension corresponding to the 
six features of the expression data.  It includes 
three fully connected layers  (128, 256, and 
512 units, respectively) utilizing Leaky ReLU 
activations (slope = 0.2), outputting a single value 

indicating the likelihood of the input being real 
or generated.

Both networks were trained using a learning 
rate of 0.0002 (optimized via grid search), a 
batch size of 64, and over 200 epochs.  The 
Mean Squared Error (MSE) loss function was 
used to quantify the differences between real and 
generated data, iteratively updating the weights 
of both the generator and discriminator.  Early 
stopping was implemented if validation loss 
plateaued for 20 consecutive epochs.

Evaluation Metrics

The performance of the LSGAN model was 
evaluated using the following metrics: Mean 
Squared Error (MSE): Quantifies the average 
squared difference between real and generated 
data distributions; Mean Absolute Error (MAE): 
Measures the average magnitude of errors without 
considering their direction; Wasserstein Distance 
(Earth Mover’s Distance): Assesses the overall 
similarity between real and generated data 
distributions.  

Data Visualization 

To validate model outputs, several visualization 
techniques were employed, including: Density 
plots and correlation heatmaps to evaluate 
distributional similarities; Q-Q (quantile-
quantile) plots to assess normality and variance; 
Violin plots to illustrate the distribution and 
density of generated data in comparison with 
real data.  

 
RESULTS

The results of this study provide insights 
into the performance of the LSGAN model in 
generating synthetic gene expression data that 
closely resembles real data.  Key findings include 
metrics evaluating distributional similarity, cosine 
similarity, error values and detailed visualizations 
that compare real and generated datasets.  The 
analyses demonstrate the efficacy of the LSGAN 
model in genomic data applications.
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Figure 1 displays a volcano plot showing 
the log2 fold change (log2FC) on the x-axis 
and the negative log10 of the adjusted p-value 
(-log10(Padj)) on the y-axis.  Each point 

corresponds to a gene, where red dots represent 
upregulated genes and blue dots indicate 
downregulated genes between the two conditions.

Figure 1.  Volcano Plot of Differential Gene Expression.

Cosine Similarity Analysis

Cosine similarity was used to evaluate the 
similarity of gene expression profiles across 
samples.  The results indicate a high similarity 
between the generated and real data, suggesting 
that the LSGAN model effectively captures the 
directionality of real data vectors.  The trained 
LSGAN model achieves a balance between 
generating realistic samples and distinguishing 
between real and synthetic data.  Low MSE 
and MAE values further support the close 

resemblance between generated and real data 
distributions.  Additionally, low Wasserstein 
distances, overlapping distributions, and 
correlation structures validate the model’s 
capability for bioinformatics applications.

Figure 2 shows the dynamics of training losses 
for the generator and discriminator over 200 
epochs.  The generator’s loss consistently remains 
lower than the discriminator’s, demonstrating that 
the model is effectively learning the underlying 
data distribution.  The steady decline in both loss 
curves indicates convergence and model stability.

Figure 2.  Training Loss Curves for Generator and Discriminator.
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Error Metrics and Distributional Analysis

Mean Squared Error: The average squared 
difference between estimated and actual values is 
7.02 × 10-5, indicating strong model performance.

Mean Absolute Error: The linear score 
measuring the average difference between 
predicted and actual values is 0.0021, further 
confirming the data’s resemblance.

Wasserstein Distances: With values ranging 
from 0.0014 to 0.0023, the distances reflect 
high alignment between real and generated data 
distributions.  The average Wasserstein distance 
of 0.00217 underscores the model’s effectiveness.

Figure 3 presents a box plot comparing real and 
generated data distributions across six features.  
The limited variability and tightly clustered data 
distributions demonstrate a close resemblance 
between real and synthetic data, with color 
legends provided for clarity.

Figure 3.  Box Plot Comparing Real and Generated Data Distributions.

Figure 4 contains six Q-Q plots arranged in a 
2x3 grid, each corresponding to a different feature.  
Blue points represent observed values plotted 
against theoretical quantiles, while red lines 
denote expected values.  The plots reveal tightly 
clustered data points, indicating low variability 
and limited diversity in the generated data.

Figure 5 shows six Q-Q plots arranged in 
a 2x3 grid, comparing real data distributions 
across features.  The upward curves in the plots 
suggest heavier tails than expected under a normal 
distribution, highlighting inherent skewness in 
the real data.

Figure 6 illustrates six density plots arranged 
in a 2x3 grid, showing the distribution of real 
data features.  The sharp peaks near zero indicate 
skewness and limited variability, reflecting the 
dataset’s characteristic patterns.

Evaluation of LSGAN Model Performance

The LSGAN model effectively captured real 
data distribution, as evidenced by density plots, 
high cosine similarity, and low error metrics.  The 
epoch loss curves (Figure 2) further demonstrate 
that both generator and discriminator losses 
stabilized during training, achieving a balance 
between producing realistic samples and 
distinguishing between real and synthetic data.  
These findings indicate the model’s robustness 
and potential utility in generating high-quality 
synthetic gene expression data for genomics and 
bioinformatics applications.
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Figure 4.  Q-Q Plots of Generated Data for Six Features.

Figure 5.  Q-Q Plots of Real Data for Six Features.
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DISCUSSION

Keratinization is the process by which 
keratin accumulates in epithelial cells, providing 
protective properties to various tissues in the body.  
In the oral cavity, keratinized tissues (1,7), such as 
the hard palate and gingiva, act as robust barriers 
against mechanical injury, microbial invasion, 
and dehydration.  Gingival keratinization occurs 
within the gingival epithelium, which is subdivided 
into parakeratinized and orthokeratinized layers.  
The degree of keratinization in the gingiva varies 
significantly among individuals due to factors 
such as genetics, environmental influences, and 
oral hygiene practices.  Keratinized gingival tissue 
serves multiple roles, including shielding against 
injury, preventing infections, and facilitating 
regeneration and healing.  Additionally, it impacts 
aesthetics, periodontal health, and susceptibility 
to oral diseases.  Understanding the processes 
of oral and gingival keratinization is critical for 
advancing dental care, with evidence suggesting 
that effective hygiene practices, regular check-

ups, and personalized treatment plans can enhance 
patient outcomes (4,19).

Genera t ive  Adversa r ia l  Ne tworks 
(GANs) (20)  have emerged as promising tools 
for generating transcriptomic data related to 
keratinization, offering transformative potential 
for understanding oral and gingival health.  By 
generating high-dimensional data, GANs address 
the challenges of data scarcity and facilitate 
model training.  They can uncover regulatory 
mechanisms, simulate biological variability, and 
test hypotheses related to keratinization processes.  
However, GAN-generated data may not fully 
capture the complexity of biological systems, 
such as non-linear gene-gene interactions or 
epigenetic influences (21-23).  This innovative 
application of AI in genomics underscores the 
capacity of computational tools to advance 
biological sciences (21,22).

The Least Squares Generative Adversarial 
Network (LSGAN) (9,12,15)  is a specialized 
GAN method designed to generate realistic 
data by optimizing the labeling system for 

Figure 6.  Density Plots of Real Data for Six Features.
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discriminators.  Its primary goal is to produce 
synthetic samples that the discriminator 
incorrectly classifies as real, achieving a balance 
at the decision boundary between real and fake 
data.  LSGAN employs a least-squares loss 
function, which ensures smoother gradient 
transitions and incorporates gradient penalties 
to generate high-quality data while mitigating 
issues like vanishing gradients.  This study 
employed LSGAN to generate synthetic omics 
data with enhanced realism.  Despite these 
advantages, LSGANs may struggle with rare 
gene expression patterns, potentially biasing 
downstream analyses (24,25).  Similarly, the 
Wasserstein GAN with Penalty Loss (MDWGAN-
GP) model (23-25), leveraging multiple 
discriminators and linear graph convolutional 
networks, has demonstrated superior performance 
in generating high-quality gene expression data.  
Data augmentation strategies powered by GANs 
have been shown to improve cancer phenotype 
classification accuracy, with binary classification 
reaching 94 % accuracy and tissue classification 
achieving 70 %.  Complex GAN architectures 
are associated with higher-quality outputs and 
better augmentation results.

The synthetic gene expression data generated 
in this study, analyzed using LSGAN, exhibited 
low mean squared error (MSE) and mean absolute 
error (MAE) values (7.020 × 105), closely 
resembling real data distributions.  Wasserstein 
distances (Earth Mover’s Distances) revealed 
comparable distributions between the synthetic 
and real datasets, further validating the quality 
of the generated data.  However, these metrics 
do not assess whether synthetic data preserves 
biologically meaningful gene co-expression 
networks (24).  While LSGAN demonstrates 
promise in generating data related to gingival 
keratinization, future directions should include 
enhancing model architecture and variability, 
incorporating feature-specific training, exploring 
multimodal data generation, and validating 
biological relevance.  For instance, integrating 
single-cell RNA-seq data could improve cellular 
heterogeneity modeling (25).  Longitudinal data 
simulation and improved evaluation metrics are 
also critical.  Although evaluation metrics such as 
MSE and MAE offer valuable insights, they do not 
comprehensively assess data quality.  Addressing 
GAN-specific challenges like mode collapse 

and training instability, along with improving 
interpretability and ethical considerations, 
remains essential for future research.

CONCLUSION 

The Least Squares Generative Adversarial 
Network effectively generates synthetic gene 
expression data that aligns closely with real data 
distributions, demonstrating significant potential 
for applications requiring realistic synthetic 
data.  Synthetic datasets related to gingival 
keratinization provide valuable insights into 
biological processes and variability.  Advanced 
modeling techniques enable the creation of 
datasets that accurately reflect patterns observed 
in clinical studies, supported by robust statistical 
metrics such as low MSE and high correlation 
coefficients.  

This study highlights the potential of synthetic 
data to simulate variability in keratinization 
levels, offering a nuanced understanding of 
factors influencing gingival health.  Such 
datasets can be instrumental in hypothesis 
testing, machine learning model training, and 
simulating rare or underrepresented conditions.  
The findings underscore the value of innovative 
computational approaches in oral health research 
and suggest future research avenues, including 
the incorporation of longitudinal data, biological 
variability, and enhanced modeling frameworks, 
to expand the utility of synthetic data in dentistry 
and genomics further.  

Conflict of interest

No potential conflict of interest relevant to 
this article was reported

Acknowledgements 

None
REFERENCES 

	 1.	 Thoma DS, Gil A, Hämmerle CHF, Jung RE.  
Management and prevention of soft tissue complications 
in implant dentistry.  Periodontol 2000.  2022;88:116-
129.  



LEVERAGING LSGAN FOR SYNTHETIC GINGIVAL KERATINIZATION GENOMIC DATA

	 Vol. 133, Nº 2, junio 2025408

	 2.	 Barootchi S, Tavelli L, Zucchelli G, Giannobile 
W V, Wang HL.  Gingival phenotype modification 
therapies on natural teeth: A network meta-analysis.  
J Periodontol.  2020;91:1386-1399.  

	 3.	 Burra Anand D, Ramamurthy J, Kannan B, Jayaseelan 
VP, Arumugam P.  N6-methyladenosine-mediated 
overexpression of TREM-1 is associated with 
periodontal disease.  Odontology. 2025;113(2):834-
843.  

	 4.	 Thoma DS, Naenni N, Figuero E, Hämmerle CHF, 
Schwarz F, Jung RE, et al.  Effects of soft tissue 
augmentation procedures on peri-implant health or 
disease: A systematic review and meta-analysis.  Clin 
Oral Implants Res.  2018;29(Suppl 1):32-49.  

	 5.	 Ramamurthy J, Mg V.  Comparison of effect of hiora 
mouthwash versus chlorhexidine mouthwash in 
gingivitis patients: A clinical trial.  Asian J Pharmaceut 
Clin Res.  2018;11:84-88.  

	 6.	 Deepika BA.  Comparative clinical data for gingivitis 
treatment using gels from Ocimum sanctum (Tulsi) and 
chlorhexidine (CHX).  Bioinformation.  2021;17:1091-
1098.  

	 7.	 Malpartida-Carrillo V, Tinedo-Lopez PL, Guerrero 
ME, Amaya-Pajares SP, Özcan M, Rösing CK.  
Periodontal phenotype: A review of historical and 
current classifications evaluating different methods  
and characteristics.  J Esthet Restor Dent.  2021;33:432-
445.  

	 8.	 Barak O, Lovelace T, Piekos S, Chu T, Cao Z, Sadovsky 
E, et al.  Integrated unbiased multiomics defines 
disease-independent placental clusters in common 
obstetrical syndromes.  BMC Med.  2023;21:349.  

	 9.	 Touati R, Kadoury S.  A least square generative network 
based on invariant contrastive feature pair learning for 
multimodal MR image synthesis.  Int J Comput Assist 
Radiol Surg.  2023;18:971-979.  

	10.	 Dong J, Fu T, Lin Y, Deng Q, Fan J, Song H, et 
al.  Hole-filling based on content loss indexed 3D 
partial convolution network for freehand ultrasound 
reconstruction.  Comput Methods Programs Biomed.  
2021;211:106421.  

	11.	 Veiner J, Alajaji F, Gharesifard B.  A Unifying 
Generator Loss Function for Generative Adversarial 
Networks.  Entropy (Basel).  2024;26:290. 

	12.	 Aguirre N, Cymberknop LJ, Grall-Maës E, Ipar E, 
Armentano RL.  Central Arterial Dynamic Evaluation 
from Peripheral Blood Pressure Waveforms  Using 
CycleGAN: An In Silico Approach.  Sensors (Basel).  
2023;23:1559. 

	13.	 Mao X, Li Q, Xie H, Lau RYK, Wang Z, Smolley SP.  
On the Effectiveness of Least Squares Generative 
Adversarial Networks.  IEEE Trans Pattern Anal Mach 

Intell.  2019;41:2947-2960.  
	14.	 Qu N, Chen D, Ma B, Zhang L, Wang Q, 

Wang Y, et al.  Integrated proteogenomic and 
metabolomic characterization of papillary thyroid 
cancer with different recurrence risks.  Nat Commun.  
2024;15:3175.  

	15.	 Bhatia H, Paul W, Alajaji F, Gharesifard B, Burlina 
P.  Least kth-Order and Rényi Generative Adversarial 
Networks.  Neural Comput.  2021;33:2473-2510.  

	16.	 Clough E, Barrett T, Wilhite SE, Ledoux P, Evangelista 
C, Kim IF, et al.  NCBI GEO: archive for gene 
expression and epigenomics data sets: 23-year update.  
Nucleic Acids Res.  2024;52:D138-44.  

	17.	 Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim 
IF, Tomashevsky M, et al.  NCBI GEO: Archive for 
functional genomics data sets--update.  Nucleic Acids 
Res.  2013;41(Database issue):D991-5.  

	18.	 Davis AP, Wiegers TC, Johnson RJ, Sciaky D, Wiegers 
J, Mattingly CJ.  Comparative Toxicogenomics 
Database (CTD): update 2023.  Nucleic Acids Res.  
2023;51:D1257-262.  

	19.	 Ren S, Li J, Dorado J, Sierra A, González-Díaz H, 
Duardo A, et al.  From molecular mechanisms of 
prostate cancer to translational applications: Based on 
multi-omics fusion analysis and intelligent medicine.  
Health Inf Sci Syst.  2024;12:6.  

	20.	 Mohsen F, Ali H, El Hajj N, Shah Z.  Artificial 
intelligence-based methods for fusion of electronic 
health records and imaging data.  Sci Rep.  
2022;12:17981.  

	21.	 Lacan A, Sebag M, Hanczar B.  GAN-based data 
augmentation for transcriptomics: Survey and 
comparative assessment.  Bioinformatics.  2023;39(39 
Suppl 1):i111-i120.  

	22.	 Li R, Wu J, Li G, Liu J, Xuan J, Zhu Q.  Mdwgan-
gp: Data augmentation for gene expression data 
based on multiple discriminator WGAN-GP.  BMC 
Bioinformatics.  2023;24:427.  

	23.	 Wang TH, Lee CY, Lee TY, Huang HD, Hsu JBK, Chang 
TH.  Biomarker Identification through Multiomics data 
analysis of prostate cancer prognostication using a 
deep learning model and similarity network fusion.  
Cancers (Basel).  2021;13:2528. 

	24.	 Waters MR, Inkman M, Jayachandran K, Kowalchuk 
RM, Robinson C, Schwarz JK, et al.  GAiN: An 
integrative tool utilizing generative adversarial neural 
networks for augmented gene expression analysis.  
Patterns (N Y).  2024;5:100910.  

	25.	 Ding DY, Li S, Narasimhan B, Tibshirani R.  
Cooperative learning for multiview analysis.  Proc 
Natl Acad Sci U S A.  2022;119:e2202113119. 


