Signed versus isomorphic graph autoencoders for microRNA–single–nucleotide polymorphisms network reconstruction in periodontal osteo-genomic landscapes

Autocodificadores de grafos isomorfos versus firmados para la reconstrucción de redes de polimorfismos de un solo nucleótido de microARN en paisajes osteogenómicos periodontales

Autores/as

  • Sarvagya Sharma Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technology Sciences, SIMATS, Saveetha. University, Chennai, Tamil Nadu, India. https://orcid.org/0009-0004-8883-5041
  • Pradeep Kumar Yadalam Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technology Sciences, SIMATS, Saveetha. University, Chennai, Tamil Nadu, India https://orcid.org/0000-0003-4259-820X
  • Carlos M. Ardila Postdoctoral Researcher. Basic Sciences Department, Biomedical Stomatology Research Group, Faculty of Dentistry, Universidad de Antioquia U de A, Medellín, Colombia. https://orcid.org/0000-0002-3663-1416

Palabras clave:

MicroRNA, single-nucleotide polymorphism, graph autoencoder, periodontal disease

Resumen

Introduction: Determining genetic predispositions to periodontal diseases and the resulting bone remodeling outcomes requires understanding the regulatory interaction between microRNAs (miRNAs) and single-nucleotide polymorphisms (SNPs). Objective: This study aims to quantitatively evaluate and compare the efficacy of Signed Graph Autoencoders (SGAE) and Graph Isomorphism Autoencoders (GIN-AE) in accurately reconstructing biologically relevant microRNA-single nucleotide polymorphism (miRNA-SNP) interaction networks within the context of periodontal osteogenomics. Methods: Using a carefully selected dataset of miRNA–SNP interactions linked to bone disease from HMDD v4.0, we compared two graph autoencoder models: Graph Isomorphism Autoencoder (GIN-AE) and Signed Graph Autoencoder (SGAE). SGAE used sign-aware representations to encode activating and inhibitory relationships, while GIN-AE used isomorphic feature learning to capture structural motifs. Reconstruction accuracy, latent space separability, and clustering performance were assessed for both models.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2025-09-14

Cómo citar

Sharma, S., Kumar Yadalam, P., & Ardila, C. M. (2025). Signed versus isomorphic graph autoencoders for microRNA–single–nucleotide polymorphisms network reconstruction in periodontal osteo-genomic landscapes: Autocodificadores de grafos isomorfos versus firmados para la reconstrucción de redes de polimorfismos de un solo nucleótido de microARN en paisajes osteogenómicos periodontales. Gaceta Médica De Caracas, 133(3), 675–685. Recuperado a partir de https://saber.ucv.ve/ojs/index.php/rev_gmc/article/view/31273

Número

Sección

ARTÍCULOS ORIGINALES

Artículos similares

<< < 8 9 10 11 12 13 14 15 16 17 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.