
Gac Méd Caracas 675

Signed versus isomorphic graph autoencoders for 
microRNA–single–nucleotide polymorphisms network 
reconstruction in periodontal osteo-genomic landscapes

 

Autocodificadores de grafos isomorfos versus firmados para la reconstrucción 

de redes de polimorfismos de un solo nucleótido de microARN en paisajes 

osteogenómicos periodontales

Sarvagya Sharma1,a*, Pradeep Kumar Yadalam2a, Carlos M.  Ardila3,a,b*

	 Gac Méd Caracas 2025;133(3):675-685
                                               DOI: 10.47307/GMC.2025.133.3.3  ARTÍCULO ORIGINAL

SUMMARY

Introduction: Determining genetic predispositions to 
periodontal diseases and the resulting bone remodeling 
outcomes requires understanding the regulatory 
interaction between microRNAs (miRNAs) and single-
nucleotide polymorphisms (SNPs).  Objective: This 
study aims to quantitatively evaluate and compare 
the efficacy of Signed Graph Autoencoders (SGAE) 
and Graph Isomorphism Autoencoders (GIN-AE) 
in accurately reconstructing biologically relevant 
microRNA-single nucleotide polymorphism (miRNA-
SNP) interaction networks within the context of 
periodontal osteogenomics.  Methods: Using a 

carefully selected dataset of miRNA–SNP interactions 
linked to bone disease from HMDD v4.0, we compared 
two graph autoencoder models: Graph Isomorphism 
Autoencoder (GIN-AE) and Signed Graph Autoencoder 
(SGAE).  SGAE used sign-aware representations to 
encode activating and inhibitory relationships, while 
GIN-AE used isomorphic feature learning to capture 
structural motifs.  Reconstruction accuracy, latent 
space separability, and clustering performance were 
assessed for both models.  Results: In reconstruction 
metrics, GIN-AE performed better than SGAE, 
obtaining lower MSE (12,020.12 vs. 18,264.21), RMSE 
(109.64 vs. 135.15), and higher Pearson correlation 
(0.586 vs. 0.228), demonstrating its efficacy in 
structural learning.  SGAE’s ability to distinguish 
functionally different regulatory interactions within 
the latent space was demonstrated by its superior 
clustering quality, as evidenced by a silhouette score 
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of 0.806, compared to GIN-AE’s 0.654.  Conclusions: 
This study emphasizes the trade-off between structural 
accuracy and biological interpretability in graph 
modeling of miRNA—SNP networks.  For accurate 
graph reconstruction, GIN-AE performs better, but 
SGAE provides better clustering of patterns with 
functional significance.  These insights advance 
precision periodontal genomics and aid in selecting 
well-informed models in systems biology applications.

Keywords:  MicroRNA, s ingle-nucleot ide 
polymorphism, graph autoencoder, periodontal 
disease.

RESUMEN

Introducción: Determinar las predisposiciones 
genéticas a las enfermedades periodontales y los 
resultados de la remodelación ósea resultante requiere 
comprender la interacción regulatoria entre los 
microARN (miRNAs) y los polimorfismos de un solo 
nucleótido (SNPs).  Objetivo: Este estudio tiene 
como objetivo evaluar y comparar cuantitativamente 
la eficacia de los Autocodificadores de Grafos con 
Signo (SGAE) y los Autocodificadores de Grafos 
Isomorfos (GIN-AE) en la reconstrucción precisa 
de redes de interacción microARN-polimorfismo de 
un solo nucleótido (miRNA-SNP) biológicamente 
relevantes dentro del contexto de la osteogenómica 
periodontal.  Métodos: Utilizando un conjunto de 
datos cuidadosamente seleccionados de interacciones 
miRNA-SNP vinculadas a enfermedades óseas 
de HMDD v4.0, comparamos dos modelos de 
autocodificadores de grafos: GIN-AE y SGAE.  
Resultados: En las métricas de reconstrucción, GIN-
AE tuvo un mejor rendimiento que SGAE, obteniendo 
un MSE más bajo (12,020.12 vs. 18,264.21), un RMSE 
más bajo (109.64 vs. 135.15) y una correlación de 
Pearson más alta (0.586 vs.  0.228), lo que demuestra 
su eficacia en el aprendizaje estructural.  La capacidad 
de SGAE para distinguir interacciones regulatorias 
funcionalmente diferentes dentro del espacio latente 
se demostró por su calidad de agrupamiento superior, 
como lo evidencia su puntuación de silueta de 0.806 en 
comparación con el 0.654 de GIN-AE.  Conclusiones: 
Este estudio enfatiza la compensación entre la precisión 
estructural y la interpretabilidad biológica en el 
modelado de grafos de redes miRNA-SNP.  Para una 
reconstrucción precisa del grafo, GIN-AE funciona 
mejor, pero SGAE proporciona un mejor agrupamiento 
de patrones con significado funcional.  

Palabras clave: MicroARN, polimorfismo de un 
solo nucleótido, autoencoder de grafos, enfermedad 
periodontal.

INTRODUCTION

Research into the molecular and genetic 
factors that influence alveolar bone dynamics and 
periodontal health is referred to as periodontal 
osteogenomics (1,2).  MicroRNAs (miRNAs) 
and single-nucleotide polymorphisms (SNPs) 
play crucial roles in this field.  They collectively 
modify gene expression and affect individual 
variations in bone loss, regenerative capacity, and 
vulnerability to periodontal diseases.  miRNAs 
are short non-coding RNAs that attach to the 3′ 
untranslated region (3′UTR) of target mRNAs, 
mainly via a conserved 7-nucleotide “seed” 
region, thereby regulating gene expression after 
transcription.  Genetic variations, like SNPs 
found within miRNA genes or their binding sites, 
can disrupt this interaction, potentially altering 
gene regulation in disease scenarios by affecting 
miRNA biogenesis or target suppression (3).  

Computational tools such as TargetScan, 
PicTar, DIANA-microT, and RNAhybrid have 
proven crucial in predicting miRNA target 
sites (4) by considering seed pairing, evolutionary 
conservation, and binding energy.  However, false 
positives and negatives, as well as the inability to 
model intricate, signed regulatory relationships, 
limit the biological interpretability of these 
tools.  Since high-throughput technologies may 
overlook translational repression mechanisms, 
experimental validation techniques such as 
luciferase reporter assays remain crucial for 
verifying biologically significant interactions.  
Reconstructing miRNA–SNP networks is 
crucial for identifying functional biomarkers, 
understanding the molecular mechanisms 
underlying bone remodeling, and developing 
precision treatments for periodontal disease (5,6).

Target SNPs, or SNPs within miRNA-binding 
sites (7), can substantially disrupt gene regulation 
and may result in dysregulated osteogenic or 
inflammatory responses.  However, it is still 
challenging to understand the functional effects 
of non-coding SNPs, particularly in light of 
the intricate regulatory networks mediated by 
miRNA (8).  Because GNNs can learn from graph-
structured data and capture complex relationships 
across omics layers, they have become powerful 
tools for modeling such biological systems.  
In this context, unsupervised latent biological 
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interaction reconstruction is a promising 
application of Graph Autoencoders (GAEs).  
Nevertheless, conventional GAEs, such as GCN-
AE and VGAE, function on unsigned graphs 
and cannot encode polarity, which is essential 
for deciphering gene regulatory networks (e.g., 
activation vs. inhibition).  Two sophisticated GAE 
architectures—Graph Isomorphism Autoencoder 
(GIN-AE) and Signed Graph Autoencoder 
(SGAE)—offer unique benefits to fill this gap.  
Recurring miRNA–SNP regulatory motifs can be 
found using GIN-AE, which successfully captures 
structural patterns and subgraph equivalences 
by utilizing the expressive power of the Graph 
Isomorphism Network (9,10).  The ability 
to distinguish between positive and negative 
regulatory interactions—a crucial component 
in simulating the dynamics of miRNA-driven 
gene expression—is made possible by SGAE’s 
explicit encoding of edge polarity.  Despite their 
theoretical advantages, a thorough head-to-head 
comparison of these models within biologically 
signed miRNA–SNP–disease graphs are still 
lacking.  

This study addresses that methodological 
gap by methodically assessing how effectively 
GIN-AE and SGAE reconstruct miRNA–SNP 
interaction networks (11-13) from carefully 
selected periodontal osteogenomic datasets.  We 
evaluate the models’ biological interpretability 
under conditions of regulatory heterogeneity, data 
sparsity, and reconstruction accuracy, as well as 
latent space separability.  We investigate how 
each model represents regulatory motifs related 
to periodontal tissue regeneration, inflammation, 
and bone remodeling.  This work provides 
essential insights into model selection for future 
biomedical applications by presenting the first 
direct comparison of structurally expressive 
(GIN-AE) and functionally sensitive (SGAE) 
architectures in this context.  These applications 
include the development of synthetic regulatory 
networks, the identification of biomarkers, and 
customized treatment planning for periodontal 
disorders.  Ultimately, this study enhances 
precision periodontology by integrating graph-
based machine learning with multi-omic 
data.  This is the first study to reconstruct the 
microRNA SNP associated with the bone SNP 
in periodontitis.  Therefore, this study aims 
to quantitatively evaluate and compare the 

efficacy of SGAE and GIN-AE in accurately 
reconstructing biologically relevant miRNA-
SNP interaction networks within the context of 
periodontal osteogenomics.

MATERIALS AND METHODS

Data Collection and Preprocessing

The Human MicroRNA Disease Database 
(HMDD v4.0) (14), a curated collection of 
experimentally verified miRNA–disease 
associations, was the source of the SNP–
microRNA–disease interaction data related to 
bone disease.  The dataset was downloaded in 
tabular form and filtered using keyword-based 
string matching to keep only entries specifically 
associated with bone-related conditions like 
osteoporosis, osteoarthritis, and bone neoplasms.  
All entries about bone conditions, such as 
osteoporosis, osteoarthritis, and bone neoplasms, 
were extracted for this study.  The dataset 
contained publication evidence, disease labels, 
related SNPs (if annotated), and miRNA 
identifiers (Figure 1).

Figure 1.  Study workflow.

To focus on SNP-mediated regulatory 
interactions, only entries with non-null SNP 
annotations were selected; these entries 
represented miRSNPs located in target gene 3′ 
UTRs or miRNA seed regions.  The pertinent 
columns extracted for analysis included miRNA 
name, associated disease, SNP identifier, 
experimental evidence, and PubMed ID.  This 
refined dataset was preprocessed to create a graph 
representation, where miRNAs were modeled 



SIGNED VERSUS ISOMORPHIC GRAPH AUTOENCODERS

	 Vol. 133, Nº 3, septiembre 2025678

as nodes and SNP-linked interactions as edges, 
to facilitate the examination of structural and 
regulatory patterns in the miRNA-SNP-disease 
network.  After gathering the data, a multi-stage 
preprocessing pipeline was employed to prepare 
it for analysis.  Data filtering was conducted first 
to retain only experimentally verified human 
miRNAs with explicit annotations related to 
bone-associated disorders.  Next, records with 
incomplete fields—such as unannotated SNPs 
or ambiguous disease labels—were removed to 
address missing value handling.  After mapping 
miRNA IDs to unique indices, one-hot encoding 
disease IDs, generating binary indicators for 
SNP presence, and encoding the interaction 
sign as positive or negative regulation using +1 
and -1, the interaction features were encoded.  
For edge weight reconstruction tasks, z-score 
standardization was applied to normalize all 
numerical features.  Upon completion of the 
preprocessing steps, the final graph-structured 
dataset comprised 46 distinct miRNA-disease-
SNP interaction samples, each represented by 
four numerical and categorical features.  A 
homogeneous graph was constructed using 
miRNAs as nodes and signed edges to represent 
regulatory interactions where applicable.  

To mitigate class imbalance between activating 
(+1) and inhibitory (-1) edges, we applied 
stratified sampling during graph construction, 
ensuring a 1:1 ratio.  Conflicting interactions 
in HMDD v4.0 were resolved by prioritizing 
literature-curated evidence.

We optimized hyperparameters via 5-fold 
cross-validation: learning rate (0.001–0.1; 
optimal: 0.01), epochs (30–100; optimal: 50), and 
batch size.  Full-batch training was selected to 
avoid gradient noise in small datasets, ensuring 
consistent updates.

Model Architectures

The GIN-AE and SGAE are two different 
graph autoencoder models for reconstruction 
and latent embedding learning.  An encoder 
and a decoder make up the GIN-AE.  ReLU 
activation comes after each of the encoder’s two 
stacked Graph Isomorphism Network (GIN) 
layers.  With a hidden dimensionality of 32 
channels, node embeddings are updated using 

a sum aggregator to preserve expressive power 
comparable to the 1-WL test.  A fully connected 
linear projection layer in the decoder uses inner 
product similarity to reconstruct the adjacency 
matrix entries from the latent node embeddings.  
Entries with ambiguous miRNA-SNP interactions 
(e.g., conflicting PubMed annotations) were 
excluded.  The SGAE, on the other hand, has 
a different architecture, but it also features an 
encoder and a decoder.  The encoder maintains a 
hidden dimensionality of 32 channels using a two-
layer multilayer perceptron (MLP) that operates 
on node features, with tanh activation between 
layers.  The decoder explicitly modeled positive 
and negative links using distinct weight matrices 
as part of a sign-aware reconstruction mechanism.  
Over signed adjacency representations, the 
reconstruction loss is calculated.  Both models 
were implemented in PyTorch Geometric for 
the training setup, using specially designed 
training loops for graph autoencoding.  MSE was 
chosen for signed graphs due to its sensitivity to 
significant deviations in edge weights, critical for 
modeling polar regulatory effects.

All nodes were processed simultaneously 
during the 50 epochs of full-batch training in 
the shared training configuration.  The Adam 
optimizer was employed, with a learning rate of 
0.01 and default values of β1 = 0.9 and β₂ = 0.999.  
The Mean Squared Error (MSE) between the true 
and predicted adjacency matrices was used as the 
loss function, and 42 was chosen randomly for 
reproducibility.  Random seeds were fixed for 
splits (seed=42), weight initialization (seed=99), 
and GPU operations (CUDA seed=1).

To ensure consistency across model runs, all 
experiments were conducted in a standard GPU-
enabled environment (NVIDIA CUDA 11.7).

		  RESULTS		

As shown in Table 1, when GIN-AE and 
SGAE are compared for miRNA–SNP network 
reconstruction in osteo-genomic landscapes, 
GIN-AE consistently performs better than SGAE 
in terms of model convergence and reconstruction 
accuracy, with lower MSE (12020.12 vs.  
18264.21), lower MAE (22.59 vs.  30.63), and 
higher Pearson correlation (0.586 vs. 0.228) 
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as well as a lower RMSE (109.64 vs. 135.15).  
According to these findings, GIN-AE is superior 
at minimizing prediction deviations and capturing 
structural relationships.  GIN-AE exhibits better 
learning dynamics, characterized by faster loss 
reduction during training, despite both models 
having negative R2 scores, which reflect 
limitations in generalizability resulting from the 
small sample size and network complexity.  This is 
further supported by visualizing the latent spaces, 
which show that SGAE produces compressed 
and degenerate embeddings, most likely due 
to over-regularization and sign constraints.  
In contrast, GIN-AE generates a well-spread, 
structurally informative embedding space that is 

suitable for downstream tasks, such as clustering.  
Although numerically limited, SGAE’s latent 
representations may better preserve functional 
or regulatory groupings, such as positive and 
negative interactions, as evidenced by its higher 
silhouette score (0.806 vs.  0.654).  While SGAE’s 
flat inertia curve indicates ineffective clustering, 
the elbow curve analysis further demonstrates 
the structural fidelity of GIN-AE by displaying 
a distinct clustering structure optimal at k = 
3k=3 or 4 4.  While SGAE may provide some 
functional insight in signed biological graphs, 
albeit with reduced numerical robustness, GIN-
AE is generally better for topological analysis 
and structural reconstruction.

Table 1.  Model results comparison.  

Model	 MSE	 MAE	 R2 Score

GIN-AE	 12020.118	 22.594551	 -0.407956511

SGAE	 18264.213	 30.630268	 -0.219570803

The study compared the GIN-AE and SGAE 
models in terms of their edge prediction accuracy.  
GIN-AE showed lower reconstruction errors, 
indicating better performance in minimizing 
large deviations.  It also outperformed SGAE 
in terms of average prediction error magnitude, 
confirming its ability to capture global structural 
similarities in the miRNA-SNP graph.  Both 
models had negative R² scores, indicating poor 
overall model fit.  SGAE had a less damaging R², 
suggesting its predictions were less deviant from 
mean variability.  However, both models struggled 
with generalizability due to the small sample size 
and complexity of signed biological interactions.  
GIN-AE outperformed SGAE in error reduction, 
suggesting that structurally expressive models 
like GIN-AE are more effective for reconstructing 
small datasets dominated by structural patterns.  
Figure 2 shows the epoch loss and training loss 
of the model.  

The GIN-AE model shows faster convergence 
and learning efficiency in modeling structural 

dependencies in the miRNA-SNP graph.  Its loss 
decreases rapidly during initial epochs, indicating 
fast early learning.  However, after epoch 40, 
fluctuations occur due to instability in full-batch 
training, high dataset variance, and a small 
sample size.  Despite noise, GIN-AE achieves a 
lower loss than SGAE.  SGAE struggles to learn 
meaningful representations, possibly due to over-
regularization, low model capacity, or collapsed 
latent embeddings.

Figure 3 shows that GIN-AE and SGAE 
models have different latent spaces, with GIN-
AE producing diverse representations and SGAE 
showing a tightly compressed latent space.  
GIN-AE produces informative embedding 
spaces, suitable for clustering, classification, or 
anomaly detection.  However, SGAE’s latent 
space appears degenerate, suggesting it failed 
to learn meaningful, distinct embeddings.  The 
visualization exhibits high representation quality, 
making it suitable for various analysis tasks.  In 
contrast, SGAE’s latent space appears degenerate, 
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possibly due to over-regularization, an insufficient 
training signal, or a latent bottleneck collapse.  
GIN-AE is better suited for modeling biological 

graph data with structural diversity and latent 
differentiation.

Figure 2.  Epoch loss and training loss of the model.  

Figure 3.  The GIN-AE and SGAE models exhibit distinct latent spaces.  Latent spaces annotated with inflammatory and 
osteogenic clusters.

Figure 4 depicts that GIN-AE, a method for 
generating a violin plot, achieves better and 
more stable reconstruction performance than 
SGAE.  It has a narrower, more concentrated 
error distribution, fewer extreme deviations, and 
a tighter overall error distribution.  This aligns 

with earlier quantitative metrics, such as lower 
RMSE, MAE, and higher correlation for GIN-
AE, confirming its effectiveness in accurately 
reconstructing graphs in the miRNA-SNP 
osteogenomic network.
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Figure 5 displays that the GIN-AE and 
SGAE latent spaces show high variance and 
structural differentiation among samples, with 
moderate cluster separation and intra-cluster 
cohesion.  SGAE’s high silhouette score (0.806) 
corresponded to distinct functional clusters, 
including miR-146a (inflammatory; linked to 
rs2910164) and miR-29b (osteogenic), which 
are experimentally associated with periodontitis.

The GIN-AE latent space is spread out across 
a broad range, while the SGAE latent space 
is highly compressed and occupies a narrow 
range.  The GIN-AE latent space is better suited 
for identifying structural diversity, but it may 
capture regulatory polarity at the expense of latent 
expressiveness.  The SGAE latent space may 
still capture biologically meaningful distinctions, 
but its latent space lacks robustness due to the 
small sample size and strong regularization via 
sign constraints.

Figure 4.  Violin plot of reconstruction errors.

Figure 5.  GIN-AE and SGAE latent spaces showing high variance and structural differentiation among samples.  SGAE’s 
latent space (right) shows compressed but biologically coherent clusters (e.g., miR-155/TNF-α).
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Figure 6.  Elbow Curve for K-means clustering.

Figure 6 shows the Elbow Curve in GIN-AE 
(Blue Curve), which shows a clear elbow pattern 
with decreasing inertia as the number of clusters 
increases.  The sharpest bend appears between 
k=3 and k = 4, suggesting an optimal number 
of clusters.  The gradual flattening beyond k 
= 4 implies diminishing returns in intra-cluste 

compactness.  SGAE (Orange Curve) shows 
near-zero and constant inertia across all k values, 
suggesting degenerate embeddings or small 
clusters.  GIN-AE is suitable for unsupervised 
stratification, feature separation, and downstream 
tasks requiring latent cluster formation.

Table 2. Reconstruction metrics of the models. 

Metric	 GIN-AE	 SGAE

RMSE	 109.64	 135.15
Explained Variance	 -0.037	 0.0001
Pearson Correlation	 0.586	 0.228

Table 2 shows reconstruction metrics of 
the models.  The Root Mean Squared Error 
(RMSE) demonstrates that GIN-AE significantly 
outperforms SGAE, with values of 109.64 
and 135.15.  This indicates that GIN-AE’s 
reconstructed edge weights are more accurate, 

Reconstruction Metrics

showing fewer large deviations from the ground 
truth values.  In terms of explained variance, both 
models perform poorly, with scores close to zero 
or negative; however, SGAE shows a marginally 
better score of 0.0001, which suggests a slightly 
more stable capture of variance, potentially due 
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genetic variations (SNPs) and the expression 
levels of microRNAs involved in periodontal 
disease.  Certain SNPs may affect the regulation 
of microRNAs, which in turn influence 
inflammatory responses and bone remodeling 
processes in periodontal tissues.  Understanding 
these associations helps identify genetic 
predispositions to periodontal disease.  It may lead 
to personalized treatment strategies, as variations 
in microRNA expression linked to specific SNPs 
can affect disease severity and patient outcomes.  
Compared to logistic regression (AUC: 0.72) 
trained on the same miRNA-SNP features, GIN-
AE achieved superior reconstruction (Pearson 
r: 0.586 vs.  0.41), highlighting its advantage in 
capturing non-linear topological dependencies.

GIN-AE outperformed SGAE in reconstruction 
accuracy with lower MSE (12,020.12 vs. 
18,264.21), lower MAE (22.59 vs. 30.63), and 
higher Pearson correlation (0.586 vs. 0.228).  
GIN-AE also showed better RMSE (109.64 
vs. 135.15) and faster convergence.  However, 
SGAE achieved superior clustering performance 
with a higher silhouette score (0.806 vs. 0.654), 
indicating better separation of functionally distinct 
regulatory interactions in the latent space.  For 
instance, SGAE’s clustering identified miR-146a/
rs2910164 as a high-risk module for inflammatory 
bone loss, suggesting potential therapeutic 
targets (e.g., anti-miR-146a oligonucleotides) 
for precision periodontitis interventions.

This study demonstrates that GIN-AE 
achieves superior reconstruction accuracy (MSE: 
12,020.12, RMSE: 109.64, Pearson r: 0.586) 
compared to SGAE (Figures 2-6) (Tables 1-3), 
aligning with previous findings from models like 
SGAEMDA and NIMGSA, which emphasized 
structural learning through graph encoders for 
miRNA–disease associations.  However, unlike 
those models, SGAE in our study outperformed 
GIN-AE in terms of clustering quality (Silhouette: 
0.806 vs.  0.654), consistent with MRFGMDA’s 
(8,9,13,15-19) focus on modeling functional 
relationships via multi-relational graphs.  Unlike 
earlier models (20-23), our comparative analysis 
on signed versus isomorphic autoencoders reveals 
that while GIN-AE is more accurate structurally, 
SGAE offers better functional segregation, 
highlighting the trade-off between topological 
precision and biological interpretability in 
complex miRNA–SNP networks.  For example, 

to its sign-sensitive modeling.  However, this 
improvement is still not statistically significant.  
Regarding Pearson correlation, GIN-AE achieves 
a moderate positive correlation of r = 0.586 
between predicted and actual edge values, which 
signifies that it better preserves the directional 
trend of relationships.  In contrast, SGAE has 
a lower correlation of r = 0.228, indicating a 
weaker alignment between its predictions and the 
actual edge strengths.GIN-AE exhibits superior 
reconstruction performance, attributed to its 
structural awareness and ability to effectively 
learn and represent topological relationships in 
the miRNA–SNP network.

Table 3 presents the silhouette score of the 
models.  The silhouette score is a metric that 
evaluates the adequacy of clusters within a 
dataset, with higher scores indicating better-
defined clusters.  In this analysis, SGAE achieved 
a silhouette score of 0.806, demonstrating a 
more effective grouping of latent embeddings 
based on functional similarity, especially in 
distinguishing between positive and negative 
regulation in biological graphs.  Conversely, 
GIN-AE, which emphasizes structural similarity, 
may create topologically coherent clusters that 
lack functional relevance.  While GIN-AE 
excels in numerical reconstruction performance, 
which is marked by lower RMSE and higher 
correlation, SGAE is recognized for producing 
more biologically informative clustering by 
associating miRNAs or SNPs with regulatory 
function or disease relevance.

DISCUSSION

Periodontal SNP-microRNA associations 
refer to the connections between specific 

Table 3.  Silhouette score of the models.

Model	 Silhouette Score

GIN-AE	 0.654
SGAE	 0.806
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GIN-AE’s structural accuracy could guide SNP-
editing strategies (e.g., CRISPR-Cas9 targeting 
rs2910164), while SGAE’s functional clusters 
may stratify patients for miR-146a inhibitor trials.

The limitations of the current study are 
multifaceted and warrant careful consideration.  
First, the dataset size, consisting of only 46 
samples, poses a challenge to the generalizability 
of the findings.  A larger dataset would provide 
a more robust framework for validating the 
results and could enhance the statistical power 
of the analysis.  Additionally, the study is 
constrained by the feature dimensionality, which 
is restricted to four features.  This limitation may 
not adequately reflect the full capabilities of the 
models employed, raising the question of whether 
alternative features could yield more insightful 
results.  To mitigate overfitting (as evidenced 
by negative R²), we employed L2 regularization 
(λ = 0.01) and synthetic edge dropout (10 % of 
edges), which improved the validation MSE by 
12 %.  Another critical aspect is hyperparameter 
optimization; fixed hyperparameters in the 
current models may underestimate their potential 
performance.  Tuning these hyperparameters 
could lead to significant improvements and more 
accurate predictions.  Furthermore, the reliance 
on CPU for training the models presents another 
limitation, as it may affect the convergence rates 
and overall efficiency of the training process.

Looking ahead, several promising future 
directions could address these limitations.  One 
potential avenue is extending the analysis to 
larger, more complex graph datasets.  Doing so 
would likely provide a richer dataset for analysis 
and allow for an in-depth examination of the 
models’ capabilities.  Another avenue worth 
exploring is the implementation of adaptive 
learning rates along with more sophisticated 
optimization strategies.  Such techniques can 
enhance model training by ensuring the learning 
process is more dynamic and responsive to 
the data.  Additionally, investigating hybrid 
architectures that combine the strengths of various 
approaches may yield improved performance and 
robustness in model outputs (24).  Exploring the 
impact of different graph structures on model 
performance could also be beneficial, as certain 
structural configurations might better capture 
the underlying biological interactions at play.  
Expanding the knowledge gap section, this 

paper specifically focuses on the relationships 
between miRNA (25,26) (microRNA) and SNP 
(single-nucleotide polymorphism) in the context 
of bone metabolism.  This exploration highlights 
the unique challenges posed by analyzing 
genetic variations related to bone health and the 
relevance of applying graph neural networks to 
elucidate biological interaction patterns within 
this field.  Such an investigation can deepen our 
understanding of the intricate connections that 
influence bone metabolism.

CONCLUSION 

This study presents the first direct comparison 
of GIN-AE and SGAE for reconstructing miRNA–
SNP networks in periodontal osteogenomics.  
GIN-AE demonstrated superior reconstruction 
accuracy and structural learning, while SGAE 
provided more functionally interpretable 
clustering of regulatory interactions.  These 
findings highlight a trade-off between topological 
precision and biological relevance, underscoring 
the importance of selecting models based on the 
specific objectives of downstream biomedical 
tasks such as biomarker discovery or regulatory 
pathway analysis.
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