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SUMMARY

Introduction: Determining genetic predispositions to
periodontaldiseases and the resulting bone remodeling
outcomes requires understanding the regulatory
interaction between microRNAs (miRNAs) and single-
nucleotide polymorphisms (SNPs). Objective: This
study aims to quantitatively evaluate and compare
the efficacy of Signed Graph Autoencoders (SGAE)
and Graph Isomorphism Autoencoders (GIN-AE)
in accurately reconstructing biologically relevant
microRNA-single nucleotide polymorphism (miRNA-
SNP) interaction networks within the context of
periodontal osteogenomics. Methods: Using a
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carefully selected dataset of miRNA—SNP interactions
linkedto bone disease from HMDD v4.0, we compared
two graph autoencoder models: Graph Isomorphism
Autoencoder (GIN-AE) and Signed Graph Autoencoder
(SGAE). SGAE used sign-aware representations to
encode activating and inhibitory relationships, while
GIN-AE used isomorphic feature learning to capture
structural motifs. Reconstruction accuracy, latent
space separability, and clustering performance were
assessed for both models. Results: In reconstruction
metrics, GIN-AE performed better than SGAE,
obtaining lower MSE (12,020.12vs.18,264.21), RMSE
(109.64 vs. 135.15), and higher Pearson correlation
(0.586 vs. 0.228), demonstrating its efficacy in
structural learning. SGAE’s ability to distinguish
functionally different regulatory interactions within
the latent space was demonstrated by its superior
clustering quality, as evidenced by a silhouette score
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of 0.806, comparedto GIN-AE’s 0.654. Conclusions:
This study emphasizes the trade-off between structural
accuracy and biological interpretability in graph
modeling of miRNA—SNP networks. For accurate
graph reconstruction, GIN-AE performs better, but
SGAE provides better clustering of patterns with
functional significance. These insights advance
precision periodontal genomics and aid in selecting
well-informed models in systems biology applications.

Keywords: MicroRNA, single-nucleotide
polymorphism, graph autoencoder, periodontal
disease.

RESUMEN

Introduccion: Determinar las predisposiciones
genéticas a las enfermedades periodontales y los
resultados de laremodelacion osearesultante requiere
comprender la interaccion regulatoria entre los
microARN (miRNAs) y los polimorfismos de un solo
nucledtido (SNPs). Objetivo: Este estudio tiene
como objetivo evaluar y comparar cuantitativamente
la eficacia de los Autocodificadores de Grafos con
Signo (SGAE) y los Autocodificadores de Grafos
Isomorfos (GIN-AE) en la reconstruccion precisa
de redes de interaccion microARN-polimorfismo de
un solo nucleotido (miRNA-SNP) biologicamente
relevantes dentro del contexto de la osteogenomica
periodontal. Métodos: Utilizando un conjunto de
datos cuidadosamente seleccionados de interacciones
miRNA-SNP vinculadas a enfermedades oseas
de HMDD v4.0, comparamos dos modelos de
autocodificadores de grafos: GIN-AE y SGAE.
Resultados: En las métricas de reconstruccion, GIN-
AE tuvo un mejor rendimiento que SGAE, obteniendo
un MSE mds bajo (12,020.12vs.18,264.21),un RMSE
mds bajo (109.64 vs. 135.15) y una correlacion de
Pearson mds alta (0.586 vs. 0.228), lo que demuestra
su eficaciaen el aprendizaje estructural. La capacidad
de SGAE para distinguir interacciones regulatorias
funcionalmente diferentes dentro del espacio latente
se demostro por su calidad de agrupamiento superior,
como lo evidencia supuntuacionde siluetade 0.806 en
comparacion conel 0.654 de GIN-AE. Conclusiones:
Este estudio enfatizala compensacion entre la precision
estructural y la interpretabilidad biologica en el
modelado de grafos de redes miRNA-SNP. Para una
reconstruccion precisa del grafo, GIN-AE funciona
mejor, pero SGAE proporciona un mejor agrupamiento
de patrones con significado funcional.

Palabras clave: MicroARN, polimorfismo de un

solo nucleotido, autoencoder de grafos, enfermedad
periodontal.
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INTRODUCTION

Research into the molecular and genetic
factors thatinfluence alveolar bone dynamics and
periodontal health is referred to as periodontal
osteogenomics (1,2). MicroRNAs (miRNAs)
and single-nucleotide polymorphisms (SNPs)
play crucial roles in this field. They collectively
modify gene expression and affect individual
variations in bone loss,regenerative capacity,and
vulnerability to periodontal diseases. miRNAs
are short non-coding RNAs that attach to the 301
untranslated region (3O0UTR) of target mRNASs,
mainly via a conserved 7-nucleotide ‘“seed”
region, thereby regulating gene expression after
transcription. Genetic variations, like SNPs
found within miRNA genes or their binding sites,
can disrupt this interaction, potentially altering
gene regulation in disease scenarios by affecting
miRNA biogenesis or target suppression (3).

Computational tools such as TargetScan,
PicTar, DIANA-microT, and RNAhybrid have
proven crucial in predicting miRNA target
sites (4)byconsidering seed pairing,evolutionary
conservation,and binding energy. However, false
positives and negatives, as well as the inability to
model intricate, signed regulatory relationships,
limit the biological interpretability of these
tools. Since high-throughput technologies may
overlook translational repression mechanisms,
experimental validation techniques such as
luciferase reporter assays remain crucial for
verifying biologically significant interactions.
Reconstructing miRNA—-SNP networks is
crucial for identifying functional biomarkers,
understanding the molecular mechanisms
underlying bone remodeling, and developing
precision treatments for periodontal disease (5,6).

Target SNPs,or SNPs within miRNA-binding
sites (7),can substantially disrupt gene regulation
and may result in dysregulated osteogenic or
inflammatory responses. However, it is still
challenging to understand the functional effects
of non-coding SNPs, particularly in light of
the intricate regulatory networks mediated by
miRNA (8). Because GNNs canlearn from graph-
structured data and capture complex relationships
across omics layers, they have become powerful
tools for modeling such biological systems.
In this context, unsupervised latent biological

Vol. 133, N° 3, septiembre 2025



SHARMA S, ET AL

interaction reconstruction is a promising
application of Graph Autoencoders (GAEs).
Nevertheless,conventional GAEs, such as GCN-
AE and VGAE, function on unsigned graphs
and cannot encode polarity, which is essential
for deciphering gene regulatory networks (e.g.,
activation vs.inhibition). Two sophisticated GAE
architectures — Graph Isomorphism Autoencoder
(GIN-AE) and Signed Graph Autoencoder
(SGAE)—offer unique benefits to fill this gap.
Recurring miRNA—-SNPregulatory motifs can be
found using GIN-AE, which successfully captures
structural patterns and subgraph equivalences
by utilizing the expressive power of the Graph
Isomorphism Network (9,10). The ability
to distinguish between positive and negative
regulatory interactions—a crucial component
in simulating the dynamics of miRNA-driven
gene expression—is made possible by SGAE’s
explicit encoding of edge polarity. Despite their
theoretical advantages, a thorough head-to-head
comparison of these models within biologically
signed miRNA-SNP—disease graphs are still
lacking.

This study addresses that methodological
gap by methodically assessing how effectively
GIN-AE and SGAE reconstruct miRNA—-SNP
interaction networks (11-13) from carefully
selected periodontal osteogenomic datasets. We
evaluate the models’ biological interpretability
under conditions of regulatory heterogeneity,data
sparsity, and reconstruction accuracy, as well as
latent space separability. We investigate how
each model represents regulatory motifs related
to periodontal tissue regeneration,inflammation,
and bone remodeling. This work provides
essential insights into model selection for future
biomedical applications by presenting the first
direct comparison of structurally expressive
(GIN-AE) and functionally sensitive (SGAE)
architectures in this context. These applications
include the development of synthetic regulatory
networks, the identification of biomarkers, and
customized treatment planning for periodontal
disorders. Ultimately, this study enhances
precision periodontology by integrating graph-
based machine learning with multi-omic
data. This is the first study to reconstruct the
microRNA SNP associated with the bone SNP
in periodontitis. Therefore, this study aims
to quantitatively evaluate and compare the
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efficacy of SGAE and GIN-AE in accurately
reconstructing biologically relevant miRNA-
SNP interaction networks within the context of
periodontal osteogenomics.

MATERIALS AND METHODS
Data Collection and Preprocessing

The Human MicroRNA Disease Database
(HMDD v4.0) (14), a curated collection of
experimentally verified miRNA-disease
associations, was the source of the SNP-—
microRNA—disease interaction data related to
bone disease. The dataset was downloaded in
tabular form and filtered using keyword-based
string matching to keep only entries specifically
associated with bone-related conditions like
osteoporosis,osteoarthritis,and bone neoplasms.
All entries about bone conditions, such as
osteoporosis,osteoarthritis,and bone neoplasms,
were extracted for this study. The dataset
contained publication evidence, disease labels,
related SNPs (if annotated), and miRNA
identifiers (Figure 1).

Data Collectiop and GIN-AE SGAE
Preprocessing

« Bone disease-associated Encoder Encoder
miRNA data —>| Two GIN layers, Two, layer ML
T RelLU tanh

. \Z%

T I

. Claltjg:g, removal of missing Decoder Decoder

« Final dataset: 46 samples, Linear Sign-aware
4 features reconstrruction reconstruction

Training Setup
« 50 epochs
« Learning rate: 0.01
« Adam optimizer

Figure 1. Study workflow.

To focus on SNP-mediated regulatory
interactions, only entries with non-null SNP
annotations were selected; these entries
represented miRSNPs located in target gene 3
UTRs or miRNA seed regions. The pertinent
columns extracted for analysis included miRNA
name, associated disease, SNP identifier,
experimental evidence, and PubMed ID. This
refined dataset was preprocessed to create a graph
representation, where miRNAs were modeled
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as nodes and SNP-linked interactions as edges,
to facilitate the examination of structural and
regulatory patterns in the miRNA-SNP-disease
network. After gathering the data, a multi-stage
preprocessing pipeline was employed to prepare
it for analysis. Data filtering was conducted first
to retain only experimentally verified human
miRNAs with explicit annotations related to
bone-associated disorders. Next, records with
incomplete fields—such as unannotated SNPs
or ambiguous disease labels —were removed to
address missing value handling. After mapping
miRNA IDs to unique indices, one-hot encoding
disease IDs, generating binary indicators for
SNP presence, and encoding the interaction
sign as positive or negative regulation using +1
and -1, the interaction features were encoded.
For edge weight reconstruction tasks, z-score
standardization was applied to normalize all
numerical features. Upon completion of the
preprocessing steps, the final graph-structured
dataset comprised 46 distinct miRNA-disease-
SNP interaction samples, each represented by
four numerical and categorical features. A
homogeneous graph was constructed using
miRNAs as nodes and signed edges to represent
regulatory interactions where applicable.

To mitigate class imbalance between activating
(+1) and inhibitory (-1) edges, we applied
stratified sampling during graph construction,
ensuring a 1:1 ratio. Conflicting interactions
in HMDD v4.0 were resolved by prioritizing
literature-curated evidence.

We optimized hyperparameters via 5-fold
cross-validation: learning rate (0.001-0.1;
optimal: 0.01),epochs (30—100; optimal: 50),and
batch size. Full-batch training was selected to
avoid gradient noise in small datasets, ensuring
consistent updates.

Model Architectures

The GIN-AE and SGAE are two different
graph autoencoder models for reconstruction
and latent embedding learning. An encoder
and a decoder make up the GIN-AE. ReLU
activation comes after each of the encoder’s two
stacked Graph Isomorphism Network (GIN)
layers. With a hidden dimensionality of 32
channels, node embeddings are updated using
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a sum aggregator to preserve expressive power
comparable to the 1-WL test. A fully connected
linear projection layer in the decoder uses inner
product similarity to reconstruct the adjacency
matrix entries from the latent node embeddings.
Entries with ambiguous miRINA-SNPinteractions
(e.g., conflicting PubMed annotations) were
excluded. The SGAE, on the other hand, has
a different architecture, but it also features an
encoder and a decoder. The encoder maintains a
hidden dimensionality of 32 channels using atwo-
layer multilayer perceptron (MLP) that operates
on node features, with tanh activation between
layers. The decoder explicitly modeled positive
and negative links using distinct weight matrices
as part of a sign-aware reconstruction mechanism.
Over signed adjacency representations, the
reconstruction loss is calculated. Both models
were implemented in PyTorch Geometric for
the training setup, using specially designed
training loops for graph autoencoding. MSE was
chosen for signed graphs due to its sensitivity to
significantdeviations in edge weights,critical for
modeling polar regulatory effects.

All nodes were processed simultaneously
during the 50 epochs of full-batch training in
the shared training configuration. The Adam
optimizer was employed, with a learning rate of
0.01 and default values of 3, =0.9 and 3, =0.999.
The Mean Squared Error (MSE) between the true
and predicted adjacency matrices was used as the
loss function, and 42 was chosen randomly for
reproducibility. Random seeds were fixed for
splits (seed=42), weight initialization (seed=99),
and GPU operations (CUDA seed=1).

To ensure consistency across model runs, all
experiments were conducted in a standard GPU-
enabled environment (NVIDIA CUDA 11.7).

RESULTS

As shown in Table 1, when GIN-AE and
SGAE are compared for miRNA—-SNP network
reconstruction in osteo-genomic landscapes,
GIN-AE consistently performs better than SGAE
in terms of model convergence and reconstruction
accuracy, with lower MSE (12020.12 vs.
18264 .21), lower MAE (22.59 vs. 30.63), and
higher Pearson correlation (0.586 vs. 0.228)
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as well as a lower RMSE (109.64 vs. 135.15).
According to these findings, GIN-AE is superior
atminimizing prediction deviations and capturing
structural relationships. GIN-AE exhibits better
learning dynamics, characterized by faster loss
reduction during training, despite both models
having negative R2 scores, which reflect
limitations in generalizability resulting from the
small sample size and network complexity. Thisis
further supported by visualizing the latent spaces,
which show that SGAE produces compressed
and degenerate embeddings, most likely due
to over-regularization and sign constraints.
In contrast, GIN-AE generates a well-spread,
structurally informative embedding space that is

Table 1. Model results comparison.

suitable for downstream tasks,such as clustering.
Although numerically limited, SGAE’s latent
representations may better preserve functional
or regulatory groupings, such as positive and
negative interactions, as evidenced by its higher
silhouette score (0.806 vs. 0.654). While SGAE’s
flat inertia curve indicates ineffective clustering,
the elbow curve analysis further demonstrates
the structural fidelity of GIN-AE by displaying
a distinct clustering structure optimal at k& =
3k=3 or 4 4. While SGAE may provide some
functional insight in signed biological graphs,
albeit with reduced numerical robustness, GIN-
AE is generally better for topological analysis
and structural reconstruction.

Model MSE
GIN-AE 12020.118
SGAE 18264.213

MAE R2 Score
22.594551 -0.407956511
30.630268 -0.219570803

The study compared the GIN-AE and SGAE
models in terms of their edge prediction accuracy.
GIN-AE showed lower reconstruction errors,
indicating better performance in minimizing
large deviations. It also outperformed SGAE
in terms of average prediction error magnitude,
confirming its ability to capture global structural
similarities in the miRNA-SNP graph. Both
models had negative R? scores, indicating poor
overall model fit. SGAE had aless damaging R2,
suggesting its predictions were less deviant from
mean variability. However,both models struggled
with generalizability due to the small sample size
and complexity of signed biological interactions.
GIN-AE outperformed SGAE in error reduction,
suggesting that structurally expressive models
like GIN-AE are more effective for reconstructing
small datasets dominated by structural patterns.
Figure 2 shows the epoch loss and training loss
of the model.

The GIN-AE model shows faster convergence
and learning efficiency in modeling structural
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dependencies in the miRNA-SNP graph. Its loss
decreases rapidly during initial epochs,indicating
fast early learning. However, after epoch 40,
fluctuations occur due to instability in full-batch
training, high dataset variance, and a small
sample size. Despite noise, GIN-AE achieves a
lower loss than SGAE. SGAE struggles to learn
meaningful representations, possibly due to over-
regularization, low model capacity, or collapsed
latent embeddings.

Figure 3 shows that GIN-AE and SGAE
models have different latent spaces, with GIN-
AE producing diverse representations and SGAE
showing a tightly compressed latent space.
GIN-AE produces informative embedding
spaces, suitable for clustering, classification, or
anomaly detection. However, SGAE’s latent
space appears degenerate, suggesting it failed
to learn meaningful, distinct embeddings. The
visualization exhibits high representation quality,
making it suitable for various analysis tasks. In
contrast, SGAE’s latent space appears degenerate,
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Figure 2. Epoch loss and training loss of the model.

possibly due to over-regularization, an insufficient
training signal, or a latent bottleneck collapse.
GIN-AE is better suited for modeling biological
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Figure 3. The GIN-AE and SGAE models exhibit distinct latent spaces. Latent spaces annotated with inflammatory and

osteogenic clusters.

Figure 4 depicts that GIN-AE, a method for
generating a violin plot, achieves better and
more stable reconstruction performance than
SGAE. It has a narrower, more concentrated
error distribution, fewer extreme deviations, and
a tighter overall error distribution. This aligns
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with earlier quantitative metrics, such as lower
RMSE, MAE, and higher correlation for GIN-
AE, confirming its effectiveness in accurately
reconstructing graphs in the miRNA-SNP
osteogenomic network.
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Figure 4. Violin plot of reconstruction errors.

Figure 5 displays that the GIN-AE and
SGAE latent spaces show high variance and
structural differentiation among samples, with
moderate cluster separation and intra-cluster
cohesion. SGAE’s high silhouette score (0.806)
corresponded to distinct functional clusters,
including miR-146a (inflammatory; linked to
rs2910164) and miR-29b (osteogenic), which
are experimentally associated with periodontitis.

GIN-AE Latent Space Clusters
Silhouette Score: 0.654

Dimension 2

-150 -125 -100 -75 -50 -25 O 25 50
Dimension 1

Dimension 2

|
T
SGAE

Model

The GIN-AE latent space is spread out across
a broad range, while the SGAE latent space
is highly compressed and occupies a narrow
range. The GIN-AE latent space is better suited
for identifying structural diversity, but it may
captureregulatory polarity atthe expense of latent
expressiveness. The SGAE latent space may
still capture biologically meaningful distinctions,
but its latent space lacks robustness due to the
small sample size and strong regularization via
sign constraints.

SGAE Latent Space Clusters
Silhouette Score: 0.806
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-0.9970 °
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Figure 5. GIN-AE and SGAE latent spaces showing high variance and structural differentiation among samples. SGAE’s

latent space (right) shows compressed but biologically coherent clusters (e.g., miR-155/TNF-a).
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Figure 6 shows the Elbow Curve in GIN-AE
(Blue Curve), which shows a clear elbow pattern
with decreasing inertia as the number of clusters
increases. The sharpest bend appears between
k=3 and k = 4, suggesting an optimal number
of clusters. The gradual flattening beyond k
= 4 implies diminishing returns in intra-cluste

compactness. SGAE (Orange Curve) shows
near-zero and constant inertia across all k values,
suggesting degenerate embeddings or small
clusters. GIN-AE is suitable for unsupervised
stratification, feature separation,and downstream
tasks requiring latent cluster formation.

Elbow Curves for K-means Clustering

400000 Py —e— GIN-AE |
—o— SGAE
350000
300000
250000 -
o
£ 200000
£
150000 A
100000 - \\
50000 : :
0 o < o o
2 3 4 5 6 7

Number of Clusters (k)

Figure 6. Elbow Curve for K-means clustering.

Reconstruction Metrics

Table 2. Reconstruction metrics of the models.

Metric GIN-AE SGAE
RMSE 109.64 135.15
Explained Variance -0.037 0.0001-
Pearson Correlation 0.586 0.228

Table 2 shows reconstruction metrics of
the models. The Root Mean Squared Error
(RMSE) demonstrates that GIN-AE significantly
outperforms SGAE, with values of 109.64
and 135.15. This indicates that GIN-AE’s
reconstructed edge weights are more accurate,
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showing fewer large deviations from the ground
truth values. Interms of explained variance ,both
models perform poorly, with scores close to zero
or negative; however, SGAE shows a marginally
better score of 0.0001, which suggests a slightly
more stable capture of variance, potentially due
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to its sign-sensitive modeling. However, this
improvement is still not statistically significant.
Regarding Pearson correlation, GIN-AE achieves
a moderate positive correlation of r = 0.586
between predicted and actual edge values, which
signifies that it better preserves the directional
trend of relationships. In contrast, SGAE has
a lower correlation of r = 0.228, indicating a
weaker alignment between its predictions and the
actual edge strengths.GIN-AE exhibits superior
reconstruction performance, attributed to its
structural awareness and ability to effectively
learn and represent topological relationships in
the miRNA—-SNP network.

Table 3. Silhouette score of the models.

Model Silhouette Score
GIN-AE 0.654
SGAE 0.806

Table 3 presents the silhouette score of the
models. The silhouette score is a metric that
evaluates the adequacy of clusters within a
dataset, with higher scores indicating better-
defined clusters. In this analysis, SGAE achieved
a silhouette score of 0.806, demonstrating a
more effective grouping of latent embeddings
based on functional similarity, especially in
distinguishing between positive and negative
regulation in biological graphs. Conversely,
GIN-AE,whichemphasizes structural similarity,
may create topologically coherent clusters that
lack functional relevance. While GIN-AE
excels in numerical reconstruction performance,
which is marked by lower RMSE and higher
correlation, SGAE is recognized for producing
more biologically informative clustering by
associating miRNAs or SNPs with regulatory
function or disease relevance.

DISCUSSION

Periodontal SNP-microRNA associations
refer to the connections between specific
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genetic variations (SNPs) and the expression
levels of microRNAs involved in periodontal
disease. Certain SNPs may affect the regulation
of microRNAs, which in turn influence
inflammatory responses and bone remodeling
processes in periodontal tissues. Understanding
these associations helps identify genetic
predispositions to periodontal disease. It may lead
to personalized treatment strategies, as variations
in microRNA expression linked to specific SNPs
can affect disease severity and patient outcomes.
Compared to logistic regression (AUC: 0.72)
trained on the same miRINA-SNP features, GIN-
AE achieved superior reconstruction (Pearson
r: 0.586 vs. 0.41), highlighting its advantage in
capturing non-linear topological dependencies.

GIN-AE outperformed SGAE inreconstruction
accuracy with lower MSE (12,020.12 vs.
18,264.21), lower MAE (22.59 vs. 30.63), and
higher Pearson correlation (0.586 vs. 0.228).
GIN-AE also showed better RMSE (109.64
vs. 135.15) and faster convergence. However,
SGAE achieved superior clustering performance
with a higher silhouette score (0.806 vs. 0.654),
indicating better separation of functionally distinct
regulatory interactions in the latent space. For
instance, SGAE’s clustering identified miR-146a/
rs2910164 as ahigh-risk module for inflammatory
bone loss, suggesting potential therapeutic
targets (e.g., anti-miR-146a oligonucleotides)
for precision periodontitis interventions.

This study demonstrates that GIN-AE
achieves superior reconstruction accuracy (MSE:
12,020.12, RMSE: 109.64, Pearson r: 0.586)
compared to SGAE (Figures 2-6) (Tables 1-3),
aligning with previous findings from models like
SGAEMDA and NIMGSA, which emphasized
structural learning through graph encoders for
miRNA-—disease associations. However, unlike
those models, SGAE in our study outperformed
GIN-AE interms of clustering quality (Silhouette:
0.806 vs. 0.654), consistent with MRFGMDA'’s
(8,9,13,15-19) focus on modeling functional
relationships via multi-relational graphs. Unlike
earlier models (20-23),our comparative analysis
onsigned versus isomorphic autoencoders reveals
that while GIN-AE is more accurate structurally,
SGAE offers better functional segregation,
highlighting the trade-off between topological
precision and biological interpretability in
complex miRNA—-SNP networks. For example,
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GIN-AE’s structural accuracy could guide SNP-
editing strategies (e.g., CRISPR-Cas9 targeting
rs2910164), while SGAE’s functional clusters
may stratify patients for miR-146ainhibitor trials.

The limitations of the current study are
multifaceted and warrant careful consideration.
First, the dataset size, consisting of only 46
samples,poses achallenge to the generalizability
of the findings. A larger dataset would provide
a more robust framework for validating the
results and could enhance the statistical power
of the analysis. Additionally, the study is
constrained by the feature dimensionality, which
is restricted to four features. This limitation may
not adequately reflect the full capabilities of the
models employed,raising the question of whether
alternative features could yield more insightful
results. To mitigate overfitting (as evidenced
by negative R?), we employed L2 regularization
(A =0.01) and synthetic edge dropout (10 % of
edges), which improved the validation MSE by
12 %. Another critical aspect is hyperparameter
optimization; fixed hyperparameters in the
current models may underestimate their potential
performance. Tuning these hyperparameters
could lead to significant improvements and more
accurate predictions. Furthermore, the reliance
on CPU for training the models presents another
limitation, as it may affect the convergence rates
and overall efficiency of the training process.

Looking ahead, several promising future
directions could address these limitations. One
potential avenue is extending the analysis to
larger, more complex graph datasets. Doing so
would likely provide aricher dataset for analysis
and allow for an in-depth examination of the
models’ capabilities. Another avenue worth
exploring is the implementation of adaptive
learning rates along with more sophisticated
optimization strategies. Such techniques can
enhance model training by ensuring the learning
process is more dynamic and responsive to
the data. Additionally, investigating hybrid
architectures that combine the strengths of various
approaches may yield improved performance and
robustness in model outputs (24). Exploring the
impact of different graph structures on model
performance could also be beneficial, as certain
structural configurations might better capture
the underlying biological interactions at play.
Expanding the knowledge gap section, this
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paper specifically focuses on the relationships
between miRNA (25.,26) (microRNA) and SNP
(single-nucleotide polymorphism) in the context
of bone metabolism. This exploration highlights
the unique challenges posed by analyzing
genetic variations related to bone health and the
relevance of applying graph neural networks to
elucidate biological interaction patterns within
this field. Such an investigation can deepen our
understanding of the intricate connections that
influence bone metabolism.

CONCLUSION

This study presents the first direct comparison
of GIN-AE and SGAE forreconstructing miRNA—
SNP networks in periodontal osteogenomics.
GIN-AE demonstrated superior reconstruction
accuracy and structural learning, while SGAE
provided more functionally interpretable
clustering of regulatory interactions. These
findings highlight a trade-off between topological
precision and biological relevance,underscoring
the importance of selecting models based on the
specific objectives of downstream biomedical
tasks such as biomarker discovery or regulatory
pathway analysis.
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