Aspectos Conceptuales y Didácticos del Pensamiento Algebraico
Palavras-chave:
Educación Matemática, álgebra educativa, pensamiento algebraico, Mathematics Education, educational algebra, algebraic thinkingResumo
En el campo de la Educación Matemática lo atinente al álgebra educativa ha ido ganando un espacio específico; desde finales de la década del 70, luego del Tercer Congreso Internacional de Educación Matemática (ICME 3) celebrado en Alemania, se han estado desarrollando investigaciones que consideran la didáctica del álgebra y el pensamiento algebraico como focos de interés lo cual ha quedado expresado en una diversidad de constructos, enfoques, autores de referencia, líneas de investigación, además de libros y reuniones en las que se divulgan los hallazgos en este ámbito. Teniendo esto en mente, en este artículo presentamos el análisis de algunos aspectos conceptuales y didácticos relacionados con el álgebra escolar con el propósito de mostrar, discutir y dilucidar algunos de sus rasgos más relevantes. La información se obtuvo a partir de la revisión de distintas fuentes, impresas (artículos, libros y trabajos de investigación de maestría y tesis doctorales) y electrónicas (artículos, revistas y libros en línea), de autores venezolanos y extranjeros; también se tomaron en cuenta los trabajos presentados en algunos eventos de divulgación propios de la Educación Matemática, nacionales y extranjeros, tales como, RELME, CERME, CIBEM, ICME, CIAEM y COVEM.
Downloads
Referências
Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89 (4), 369-406.
Andonegui, M. (2009). La Matemática de primer año de bachillerato. Mérida, Venezuela: XIII Escuela Venezolana para la Enseñanza de la Matemática.
Agudelo, C. (2013). La creciente brecha entre las disposiciones educativas colombianas, las proclamaciones oficiales y las realidades del aula de clase: Las concepciones de profesores y profesoras de Matemáticas sobre el Álgebra Escolar y el propósito de su enseñanza. REICE. [Revista en línea], 5(1). Disponible: http://www.rinace.net/arts/vol5num1/art3_htm.htm [Consulta: 11 Enero 2015].
Artigue, M. (2003). ¿Qué se puede aprender de la Investigación Educativa en el nivel universitario? Boletín de la Asociación Matemática Venezolana, 10 (2), 117-134.
Barrio, E.; Lalanne, L.; Petich, A. (2010). Entre y aritmética y álgebra: Un camino que atraviesa los niveles primario y secundario: Investigaciones y aportes. Buenos Aires: Novedades Educativas.
Bassanezi, R. y Biembengut, M. (1997). Modelación matemática: Una antigua forma de investigación-un nuevo método de enseñanza. Números, Revista de didáctica de las matemáticas, 32, 13-25.
Bednarz, N., Kieran, C. y Lee, L. (1996). Approaches to Algebra. Perspectives for research and teaching. Países Bajos: Kluwer Academic Publishers.
Bell, E. T. (2002). Historia de las matemáticas (R. Ortiz, Trad.) (6ª Edición). México: Fondo de Cultura Económica.
Beyer, W. (2002). Elementos de didáctica de las Matemáticas. Mérida, Venezuela: VI Escuela de Venezolana para la Enseñanza de la Matemática.
Beyer, W. (2006). El laberinto del significado: La Comunicación en el aula de Matemáticas. En D. Mora y W. Serrano (Eds.), Lenguaje, Comunicación y Significado en Educación Matemática. Algunos aspectos sobre la relación entre Matemática, lenguaje, pensamiento y realidad desde una perspectiva crítica (pp. 61- 157). La Paz, Bolivia: Campo Iris.
Britt, M. and Irwin, K. (2008). Algebraic thinking with and without algebraic representation: a three-year longitudinal study. ZDM Mathematics Education, 40, 39–53.
Butto, C. y Rojano, T. (2004). Introducción temprana al pensamiento algebraico: abordaje basado en la geometría. Educación Matemática, 16 (1), 113-148.
Cajori, F. (1993). A history of mathematical notations. New York: Dover Publications.
Cantoral, R.; Farfán, R; Cordero, F; Alanís, J; Rodríguez, R. y Garza, A. (2003). Desarrollo del Pensamiento Matemático. México: Trillas.
Charbonneau, L. (1996). From Euclid to Descartes: Algebra and its relation to geometry. En N. Bednarz, C. Kieran y L. Lee (Eds.), Approaches to Algebra: Perspectives for research and teaching, (pp. 15–37). Países Bajos: Kluwer Academic Publishers.
Chevallard, Y. (1985). Le passage de l’arithmétique á l algébre dans l’enseignement des mathématiques au college. Premiére partie. L’évolution de la transposition didactique. Petix x, 5, 51-94.
Chevallard, Y. (1986). Le passage de l’arithmétique á l algébre dans l’enseignement des mathématiques au college. Deuximie partie. Petix x, 19, 43-72.
Da Ponte, J., Branco, N., y Matos, A. (2008, Nov/Dez). O simbolismo e o desenvolvimento do pensamiento algébrico dos alunos. Revista da Associacao de Professores de Matemática, 100, 89-96.
Da Ponte, J. (2009). Uma agenda para investigação sobre padrões e regularidades no ensino-aprendizagem da Matemática e na formação de professores. En I. Vale y A.Barbosa (Org.), Padrões: Múltiplas Perspectivas e contextos em Educação Matemática, (pp. 169-175). Brasil: Escola Superior de Educação do Instituto Politécnico de Viana do Castelo.
D’Amore, B. (2009). Conceptualización, registros de representaciones semióticas y noética: interacciones constructivistas en el aprendizaje de los conceptos matemáticos e hipótesis sobre algunos factores que inhiben la devolución. Enseñanza de las Matemáticas. Revista Científica / enero –diciembre de 2009 / no. 11 / Bogotá, D.C. pp.150-164.
Devlin, K. (2003): Mathematics: The Science of Patterns. New York:Owl Books.
Dewey, J. (2002). Democracia y Educación. Ediciones, Madrid: Morata.
Dewey, J. (1989). Cómo pensamos: Nueva Exposición de la Relación entre Pensamiento Reflexivo y Proceso Educativo. Barcelona: Paidós.
Diccionario de la RAE. (2016). Disponible en: http://dle.rae.es/?id=1nMBfgm
Dubinsky, E. (1996). Aplicación de la perspectiva piagetiana a la educación matemática universitaria. Educación Matemática, 8 (3), 24-41.
Duval R. (1995). Sémiosis et pensée humaine. Bern: Peter Lang. Translation into Spanish (1999). Semiosis y pensamiento humano. Universidad del Valle, Cali, Colombia.
Duval, R. (2006). Un tema crucial en la educación matemática: La habilidad para cambiar el registro de representación. La Gaceta de La RSME, 9 (1), 143–168.
Duval, R. (2015). Algunas cuestiones relativas a la argumentación. [Artículo en línea]. Disponible: http://www.lettredelapreuve.org/oldpreuve/newsletter/991112theme/9911themees.html [Consulta: 2015, Abril 12].
Esquinas, A. (2009). Dificultades de aprendizaje del lenguaje algebraico: del símbolo a la formalización algebraica. Aplicación a la práctica docente (Tesis doctoral). Universidad Complutense de Madrid, España.
Filloy, E. (1999). Aspectos teóricos del álgebra educativa. México: Grupo editorial Iberoamérica.
Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht: Kluwer.
Giménez, J. (1997). Evaluación en Matemáticas. Una integración de perspectivas. Madrid: Síntesis, S.A.
Godino, J. D. (2003). Teoría de las Funciones Semióticas. Un enfoque ontológico-semiótico de la cognición e instrucción matemática (Trabajo de investigación presentado para optar a la Cátedra de Didáctica de la Matemática), Universidad de Granada, España.
Godino, J. y Font, V. (2003). Razonamiento algebraico y su didáctica para maestros. [Libro en línea]. Disponible: http://www.ugr.es/~jgodino/edumat-maestros/manual/7_Algebra.pdf. [Consulta: 2014, enero, 28]
Godino, J., Castro, W., Aké, L., y Wilhelmi, M. (2012). Naturaleza del Razonamiento Algebraico Elemental. Bolema, 26 (42B), 483-511.
Gómez-Granell, C. (1997). Hacia una epistemología del conocimiento escolar: El caso de la Educación Matemática. En M. J. Rodrigo y J. Arnay (Compiladores), La construcción del conocimiento escolar (pp. 195- 215). España: Paidos
González, A. (2016). Procesos del pensamiento algebraico en entornos de aprendizaje mediados tecnológicamente (Tesis doctoral). Universidad Central de Venezuela, Caracas, Venezuela.
González, F. (2005). Algunas cuestiones básicas acerca de la enseñanza de conceptos matemáticos. Fundamentos en humanidades, Año VI, 1 (11), 37-80.
González, A y González, F. (2014). Consideraciones históricas y didácticas relacionadas con el símbolo algebraico de igualdad. Revista UNIÓN, 37. Marzo de 2014. Disponible en: http://www.fisem.org/www/union/revistas/2014/37/archivo15.pdf
González, F. y Diez, M., (2002). Dificultades en la adquisición del significado en el uso de las letras en Álgebra. Propuesta para la interacción didáctica. Revista Complutense de Educación, 13(1), 281-302.
Halmos, P. (1980). The heart of mathematics. The American Mathematical Monthly, 87, 519-524.
Kaput, J. (1996). ¿Una línea de investigación que sustente la reforma del álgebra? UNO Revista de Didáctica de las Matemáticas, 9, 85-97.
Kieran, C. (1989). A perspective on algebraic thinking. En G. Vergnaud, J. Rogalski y M. Artigue (eds.), Proceedings of the 13th Annual Conference of the International Group for the Psychology of Mathematics Education (pp. 163–171). July 9–13, Paris, France.
Kieran, C. y Filloy, E. (1989). El aprendizaje del álgebra escolar desde una perspectiva psicológica. Enseñanza de las Ciencias, 7 (3).
Küchemann, D. (1981). Algebra. En K. Hart (Coord), Children’s understanding of mathematics (pp. 11-16). London: John Murray.
Lakoff, G. y Núñez, R. (2000). Where Mathematics comes from? EE.UU.: Basic Books.
Lovell, K. (1986). Desarrollo de los conceptos básicos matemáticos y científicos en los niños. Madrid: Morata
Martí, E. (1997). Constructivismo y Pensamiento Matemático. En M. J. Rodrigo y J. Arnay (Compiladores), La construcción del conocimiento escolar (pp. 217- 242). España: Paidos.
Mason, J. (1996). El futuro de la aritmética y del álgebra: utilizar el sentido de generalidad. (Monográfico: El futuro del álgebra y la aritmética), UNO Revista de Didáctica de las Matemáticas, 9, 7-21.
Miranda, E. (2012).Generación de modelos de enseñanza–aprendizaje en el álgebra lineal. Primera Fase: Transformaciones Lineales. Recuperado de http://www.iberomat.uji.es/carpeta/comunicaciones/30_eduardo_miranda_montoya.doc
Mora D. (2003). Estrategias para el aprendizaje y la enseñanza de las matemáticas. Revista de Pedagogía, 24 (70), 181-272.
Mora, D. (2006). Relación entre lenguaje, pensamiento, matemáticas y realidad. En D. Mora y W. Serrano (Eds.), Lenguaje, Comunicación y Significado en Educación Matemática. Algunos aspectos sobre la relación entre Matemática, lenguaje, pensamiento y realidad desde una perspectiva crítica (pp. 61-157). La Paz, Bolivia: Campo Iris.
Morín, E. (2007). Introducción al pensamiento complejo. España: Gedisa
Ortiz, J. (2000). Modelización y calculadora grafica en la formación inicial de los Profesores de Matemáticas. Granada, España: Universidad de Granada.
Palarea, M. (1998). La adquisición del lenguaje algebraico y la detección de errores comunes cometidos en álgebra por alumnos de 12 a 14 años (Tesis doctoral). Universidad de La Laguna, España.
Panizza, M. (2009). Generalization and Control in Algebra. Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (CERME 6), January 28th-February 1st 2009, Lyon (France) [Versión electrónica] obtenido el 22 de enero de 2014 en http://ife.ens-lyon.fr/editions/editions-electroniques/cerme6/working-group-4
Papini, M. (2003) Algunas explicaciones vigotskianas para los primeros aprendizajes del álgebra. Relime, 6,41-71.
Parraguez, G. (2009). Evolución cognitiva del concepto espacio vectorial (Tesis doctoral). Instituto Politécnico Nacional (Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria), México.
Piaget, J. (1952). The child´s conception of number. London: Routledge and Kegan Paul.
Pimm, D. (2002). El lenguaje matemático en el aula. Madrid: Morata.
Pozo, J. (1994). Teorías cognitivas del aprendizaje. España: Ediciones Morata, S. L.
Puig, L. (1997). Análisis fenomenológico. En L. Rico, (Coord.) La educación matemática en la enseñanza secundaria (pp. 61-94). Barcelona: Horsori/ICE
Puig, L. (1998). Componentes de una historia del álgebra. El texto de Al-Khwârizmî restaurado. En F. Hitt (Ed.), Investigaciones en Matemática Educativa II (pp. 109-131). México: Grupo Editorial Iberoamérica.
Puig, L. (2003). Signos, textos y sistemas matemáticos de signos. En E. Filloy (Coord.), Matemática educativa. Aspectos de la investigación actual (pp. 174-186). México: Fondo de Cultura Económica
Radford, L. (1995): Before the Other Unknowns were Invented: Didactic Inquiries on the Methods and Problems of Mediaeval Italian Algebra. For the Learning of Mathematics, 15 (3), 28-37.
Radford, L. (2010). Layers of generality and types of generalization in pattern activities. PNA, 4(2), 37-62.
Radford, L. (2012). On the development of early algebraic thinking. PNA, 6 (4), 117-133.
Radford, L. (2014).Semiótica y Educación Matemática. Relime (Número especial), 7-21.
Roa-Fuentes, S. y Oktaç, A. (2012). Validación de una descomposición genética de transformación lineal: un análisis refinado por la aplicación del ciclo de investigación de la teoría APOE. Relime, 15 (2), 199–232.
Rojano, T. (1994). La matemática escolar como lenguaje. Nuevas perspectivas de investigación y enseñanza. Enseñanza de las Ciencias, 12 (l), 45-56.
Rumelhart, D. y Norman, D. (1978). Accretion, tuning, restructuring: three modes of learnig. En J. Cotton y R. Klatzky (Eds.), Semanctis factors in cognition. Hillsdale, N.J: Erlbaum.
Schlieman, A.; Carraer, D. y Brizuela, B. (2011). El carácter algebraico de la aritmética. De las ideas de los niños a las actividades en el aula. Buenos Aires: Paidos.
Serres, Y. (2007). El rol de las prácticas en la formación de docentes de Matemática (Tesis doctoral). Instituto Politécnico Nacional (Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada), México.
Sessa, C. (2005). Iniciación al estudio didáctico del álgebra. Orígenes y perspectivas. Buenos Aires: Libros del Zorzal.
Sierpinska, A. (1996). Whither mathematics education? Plenary address. En C. Alsina, J. Alvarez, M. Niss, A. Pérez y A. Sfard (Eds.), Proceedings of the 8th International Congress on Mathematics Education (pp. 21–46).
Sierpinska, A., Dreyfus, T. y Hillel, J. (1999). Evaluación de un diseño de la enseñanza del álgebra lineal: El caso de transformaciones lineales. Recuperado de: http://cat.inist.fr/?aModele=afficheN&cpsidt=2011497.
Socas, M. (1999). Perspectivas de investigación en pensamiento algebraico. En T. Ortega (Ed.), Actas del III SEIEM (pp. 261-282). Valladolid, España: Sociedad Española de Investigación en Educación Matemática.
Socas M. (2011). La enseñanza del Álgebra en la Educación Obligatoria. Aportaciones de la investigación. (Universidad de La Laguna), 77, 5–34.
Steen, L. (1998). Enseñanza agradable de las matemáticas. México: Limusa
Ursini, S. (1996). Una perspectiva social para la educación matemática. La influencia de la teoría de L. S. Vygotsky, Educación Matemática, 8 (3), 42-49.
Ursini, S., Escareño, F., Montes, D. y Trigueros, M. (2005). Enseñanza del Álgebra elemental. Una propuesta alternativa. México: Trillas, S.A.
Villa, J. (2007). La modelación como proceso en el aula de matemáticas. Un marco de referencia y un ejemplo. TecnoLógicas, 63-85.
Vygotsky, L. (1979). El desarrollo de los procesos psicológicos superiores. Barcelona: Crítica.
Zazkis, R. y Liljedahl, P. (2002). Generalization of patterns: the tension between algebraic thinking and algebraic notation. Educational Studies in Mathematics, 49, 379–402.
Downloads
Como Citar
Edição
Secção
Licença
Esta revista oferece acesso livre e imediato ao seu conteúdo, sob o princípio de tornar a investigação livremente disponível ao público, o que promove um maior intercâmbio de conhecimento global.
Os autores que publicam na Areté, Revista Digital del Doctorado en Educación, aceitam as seguintes condições:
- Os autores mantêm os direitos de autor e concedem à revista o direito de ser a primeira publicação do trabalho, bem como de o licenciar ao abrigo de uma Licença de Atribuição Creative Commons que permite a outros partilhar o trabalho com um reconhecimento da autoria do trabalho e da publicação inicial nesta revista.
Os autores podem celebrar separadamente acordos adicionais para a distribuição não exclusiva da versão do trabalho publicada na revista (por exemplo, colocando-a num repositório institucional ou publicando-a num livro), com um reconhecimento da sua publicação inicial nesta revista e não utilizada para fins comerciais. - Os conteúdos e imagens incluídos nos artigos são da responsabilidade do(s) autor(es). Areté, Revista Digital del Doctorado en Educación, não é responsável pela informação incluída nos mesmos.
Os autores concordam com a licença de uso utilizada pela revista, com as condições de auto-arquivo e com a política de acesso aberto. - É permitido aos autores divulgar eletronicamente (por exemplo, em repositórios institucionais ou no seu próprio sítio Web) a versão publicada dos seus trabalhos, uma vez que tal favorece a sua circulação e divulgação mais precoce e, consequentemente, um possível aumento da sua citação e alcance entre a comunidade académica.
Em caso de reutilização de trabalhos publicados, deve ser mencionada a existência e as especificações da licença de utilização, bem como a autoria e a fonte original da publicação.