Programación computacional y análisis de datos en educación estadística
Keywords:
educación estadística, programación computacional, análisis exploratorio de datosAbstract
Se presentan los resultados de un estudio cuyo propósito fue conocer y comparar la opinión de un grupo de estudiantes de Ingeniería respecto de las características más representativas de los lenguajes de programación R y Python a la luz de su uso en el análisis estadístico de un caso de estudio real. A los 61 estudiantes participantes, quienes cursaban asignaturas de probabilidad y estadística; se les presentó un caso de estudio real y contextual para su examen. El 98,3% realizó el análisis y documentó sus resultados de acuerdo con los lineamientos establecidos; en el caso de R, el 81,97% optó por usar paquetes externos al núcleo básico para elaborar el informe reproducible, el 52,45% indicó usar R Markdown en detrimento de otra tecnología. En el caso de Python, el 88,52% usó las librerías Scipy, Matplotlib, Numpy y Pandas para el análisis; el 67,21% utilizó Markdown-Python para la redacción del informe. De Python destacaron la facilidad para escribir código; de R distinguieron su potencia para organizar, visualizar y efectuar cálculo estadístico. Se recomienda efectuar un estudio experimental que permita probar métodos pedagógicos que integren prácticas distintas a las predominantes durante las últimas tres décadas en la educación estadística.Downloads
References
Ben-Zvi, D., y Garfield, J. (2004) Statistical Literacy, Reasoning, and Thinking: Goals, Definitions, and Challenges. En: Ben-Zvi D., Garfield J. (eds.) The Challenge of Developing Statistical Literacy, Reasoning and Thinking. Springer, Dordrecht.
Boxuan, C. (2018). Package DataExplorer (software). Tomado de https://CRAN.R-project.org/package=DataExplorer.
Chambers, J. (2008). Software for data analysis: programming with R. Springer Science & Business Media.
Gal, I. (2004). Statistical literacy. In The challenge of developing statistical literacy, reasoning and thinking (pp. 47-78). Springer, Dordrecht.
Ihaka, R. (1998). R: Past and future history. Computing Science and Statistics, 392396.
Ihaka, R. & Gentleman, R. (1996). R: a language for data analysis and graphics. Journal of computational and graphical statistics. 5(3), 299-314.
Johansson, R. (2015). Numerical Python. A Practical Techiques Approach for Industrial. Uruyasu, Japan: Apress.
Kabacoff, R. (2018). Data Visualization with R. EEUU: Wesleyan University.
Kassambara, A. (2017). R Graphics Essentials for Great data Visualization. México: IPP.
López, C. C., & Ramírez, M. M. O. (2018). La opinión de los estudiantes sobre el uso de las metas de aprendizaje de la estadística en cursos introductorios en la universidad veracruzana. Investigación Operacional, 39(2), 181-191.
McKinney, W. (2012). Python for data analysis: Data wrangling with Pandas, NumPy, and IPython. O’Reilly Media, Inc.
R Core Team, F. (2018). Writing R Extensions. Viena, Austria: R Foundation Project. Tomado de https://cran.r-project.org/doc/manuals/r-release/R-exts.html
Rüde, U., Willcox, K., McInnes, L., & Sterck, H. (2018). Research and Education in Computational Science and Engineering. SIAM Review, 60 (3), 707-754. Tomado de https://doi.org/10.1137/16M1096840
Solano, J. (2011). Introducción a la programación en Python. Costa Rica: Editorial Tecnológica del ITCR.
Toomey, D. (2018). Jupyter Cookbook. Birmingham, UK: Packt Publishing.
Tukey J. (1977). Exploratory Data Analysis. UK: Pearson
Van Dijke-Droogers, M., Drijvers, P., & Tolboom, J. (2017). Enhancing statistical literacy. In CERME 10
Watson, J. (2013). Statistical literacy at school: Growth and goals. Routledge.
Wickham, H. & Grolemund, G. (2016). R for data science: import, tidy, transform, visualize, and model data. O’ Reilly Media, Inc.
Zetterqvist, L. (2017). Applied problems and use of technology in an aligned way in basic courses in probability and statistics for engineering students-a way to enhance understanding and increase motivation. Teaching Mathematics and its Applications: An International Journal of the IMA. 36 (2), 108-122. Tomado de https://doi.org/10.1093/teamat/hrx004
Zimek, A., & Filzmoser, P. (2018). There and back again: Outlier detection between statistical reasoning and data mining algorithms. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(6), 1280.
Downloads
How to Cite
Issue
Section
License
This journal provides free, immediate access to its content under the principle of making research freely available to the public, which fosters a greater exchange of global knowledge.
Authors who publish in Areté, Revista Digital del Doctorado en Educación, agree to the following terms:
- Authors retain copyright and grant the journal the right to be the first publication of the work, as well as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of authorship of the work and initial publication in this journal.
- Authors may separately establish additional agreements for the non-exclusive distribution of the version of the work published in the journal (for example, placing it in an institutional repository or publishing it in a book), with an acknowledgement of its initial publication in this journal and not to be used for commercial purposes.
- The contents and images included in the articles are the responsibility of the author(s). Areté, Revista Digital del Doctorado en Educación, is not responsible for the information included in them.
- Authors agree with the license of use used by the journal, with the self-archiving conditions and with the open access policy.
- Authors are allowed to disseminate electronically (e.g., in institutional repositories or on their own website) the published version of their work, as it favors its earlier circulation and dissemination and thus a possible increase in its citation and reach among the academic community.
- In case of reuse of published works, the existence and specifications of the license of use must be mentioned, as well as the authorship and original source of publication.