Cápsulas de polvo de arándano como propuesta nutracéutica para mejorar la bioaccesibilidad de compuestos fenólicos

Authors

DOI:

https://doi.org/10.37527/2022.72.1.002

Keywords:

Bioaccesibilidad, Compuestos Fenólicos, Bioactividad, Arándanos, Bioaccessibility, Phenolic Compounds, Bioactivity, Blueberry

Abstract

El arándano (Vaccinium corymbosum L.) posee un alto contenido de compuestos fenólicos los cuales han sido estudiados principalmente por su actividad antioxidante, antiobesogénica, antiinflamatoria, entre otras. Objetivo. Evaluar el efecto de la digestión gastrointestinal in vitro sobre la bioaccesibilidad de compuestos fenólicos y actividad antioxidante de una formulación nutracéutica de arándano (cápsula), comparado con arándano fresco y polvo. Materiales y métodos. Se obtuvieron extractos metanólicos de muestras de arándano fresco y liofilizado y se determinó su contenido de fenoles, flavonoides y antocianinas totales, así como también actividad antioxidante. Se llevó a cabo un ensayo de simulación de digestión gastrointestinal para evaluar la bioaccesibilidad de los compuestos fenólicos presentes en las muestras. Resultados. Los resultados mostraron que la digestión gástrica de arándano en polvo y en cápsula promovió una mayor bioaccesibilidad de fenoles (42% y 40%), flavonoides (52% y 33%) y antocianinas (45% y 40%) comparado con digestos de arándano fresco. Posterior a la digestión intestinal, la bioaccesibilidad de fenoles (63%) y flavonoides (67%) fue mayor en la cápsula de arándano comparada con su contraparte arándano en polvo. Las condiciones de digestión intestinal afectaron negativamente la bioaccesibilidad de las antocianinas independientemente del tipo de muestra evaluada. Conclusión. Las condiciones de digestión gástrica promueven una mayor estabilidad de los compuestos fenólicos en arándano en polvo y en cápsula lo que pudiera ser relevante para el mantenimiento de un ambiente antioxidante a este nivel. Las condiciones de digestión intestinal afectaron de manera particular a los compuestos fenólicos de arándano fresco y polvo, pero no a la cápsula, lo que puede sugerir que el encapsulamiento protegió de las condiciones alcalinas a los fenoles presentes. Se sugieren estudios posteriores sobre absorción in vitro de los componentes remanentes en intestino y sus posibles efectos sobre biomarcadores de estrés oxidativo en modelos in vivo.
Blueberry (Vaccinium corymbosum L.) has a high content of phenolic compounds which have been studied mainly for their antioxidant, antiobesogenic, anti-inflammatory activity, among others. Objetive. The objective of the present study was to evaluate the effect of in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds and antioxidant activity of a nutraceutical formulation of blueberry (capsule), compared to fresh and powder blueberry. Materials and methods. Methanolic extracts of fresh and lyophilized blueberry were obtained and determined its total phenols, flavonoids, anthocyanins content, as well as antioxidant activity. A gastrointestinal digestion simulation test also was carried out to assess the bioaccessibility of the phenolic compounds found in samples. Results. The results showed that gastric digestion of powder and capsule blueberry promoted greater bioaccessibility of phenols (42% and 40%), flavonoids (52% and 33%) and anthocyanins (45% and 40%), compared to fresh blueberry digests. After intestinal digestion, the bioaccessibility of phenols (63%) and flavonoids (67%) was higher in the blueberry capsule compared to its powdered blueberry counterpart. The intestinal digestion conditions negatively affected the bioaccessibility of anthocyanins regardless of the type of sample evaluated. Conclusion. Gastric digestion conditions promote greater stability of phenolic compounds in powdered and capsule blueberries, which could be relevant for the maintenance of an antioxidant environment at this level. The intestinal digestion conditions particularly affected the phenolic compounds of fresh and lyophilized blueberry, but not the capsule, which may suggest that encapsulation protected the phenols present from alkaline conditions. Further studies on in vitro absorption of the remaining components in the intestine and their possible effects on oxidative stress biomarkers in in vivo models are suggested.

Downloads

Download data is not yet available.

References

Shahidi F, Yeo J. Bioactivities of phenolics by focusing on suppression of chronic diseases: A review. Int J Mol Sci. 2018; 19:6: 1573.

Redondo-Puente M, Mateos R, Seguido MA, García-Cordero J, González S, Tarradas RM, Bravo-Clemente L, Sarriá, B. Appetite and satiety effects of the acute and regular consumption of green coffee phenols and green coffee phenol/oat β-glucan nutraceuticals in subjects with overweight and obesity. Foods. 2021; 10:11: 2511.

Ahangarpour A, Sayahi M, Sayahi M. The antidiabetic and antioxidant properties of some phenolic phytochemicals: A review study. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2019; 13:1:854-857.

Lagana P, Coniglio MA, Fiorino M, Delgado AM, Chammen N, Issaoui M, Gambuzza, ME, Iommi C, Soraci L, Haddad M, Delia, S. Phenolic substances in foods and anticarcinogenic properties: a public health perspective. J AOAC Int. 2020; 103:4:935-939.

Guasch-Ferré M, Merino J, Sun Q, Fitò M, Salas-Salvadò J. Dietary polyphenols, Mediterranean diet, prediabetes, and type 2 diabetes: A narrative review of the evidence. Oxid. Med. Cell. Longev. 2017.

Azzini E, Giacometti J, Russo GL. Antiobesity effects of anthocyanins in preclinical and clinical studies. Oxid Med Cell Longev. 2017. 2017:2740364.

Naseri R, Farzaei F, Haratipour P, Nabavi SF, Habtemariam S, Farzaei MH, Khodoraahmi Anthocyanins in the management of metabolic syndrome: A pharmacological and biopharmaceutical review. Front Pharmacol. 2018; 9:1310.

Olas B. Berry phenolic antioxidants–implications for human health? Front Pharmacol. 2018; 9:78.

Padmanabhan P, Correa-Betanzo J, Paliyath G. Berries and related fruits. Encyclopedia of Food and Health. 2016; 364-371.

Silva S, Costa EM, Veiga M, Morais RM, Calhau C, Pintado M. Health promoting properties of blueberries: A review. Crit Rev Food Sci. 2020; 60:2:181-200.

Liu Y, Liu Y, Tao C, Liu M, Pan Y, Lv Z. Effect of temperature and pH on stability of anthocyanin obtained from blueberry. J Food Meas Charact. 2018; 12:3:1744-1753.

Annunziata G, Maisto M, Schisano C, Ciampaglia R, Daliu P, Narciso V, Tenore G, Novellino E. Colon bioaccessibility and antioxidant activity of white, green and black tea polyphenols extract after in vitro simulated gastrointestinal digestion. Nutrients. 2018; 10:11:1711.

Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods. Food Chem. 2018; 262:242-250.

da Rosa JR, Nunes GL, Motta MH, Fortes JP, Weis GCC, Hecktheuer, LHR, Muller, EI, Ranagnin C, da Rosa CS. Microencápsulation of anthocyanin compounds extracted from blueberry (Vaccinium spp.) by spray drying: Characterization, stability and simulated gastrointestinal conditions. Food Hydrocolloid. 2019; 89:742-748.

Huang Y, Zhou W. Microencapsulation of anthocyanins through two-step emulsification and release characteristics during in vitro digestion. Food Chem. 2019; 278:357-363.

He B, Ge J, Yue P, Yue X, Fu R, Liang J, Gao X. Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage. Food Chem. 2017; 221:1671-1677.

Koh J, Xu Z, Wicker L. Blueberry pectin and increased anthocyanins stability under in vitro digestion. Food Chem. 2020; 302:125343.

Lang Y, Li B, Gong E, Shu C, Si X, Gao N, Zhang W, Cui H, Meng, X. Effects of α-casein and β-casein on the stability, antioxidant activity and bioaccessibility of blueberry anthocyanins with an in vitro simulated digestion. Food Chem. 2021; 334:127526.

Daliu P, Santini A, Novellino E. A decade of nutraceutical patents: where are we now in 2018? Expert Opin Ther Pat. 2018; 28:12:875-882.

Durazzo A, Lucarini M, Santini A. Nutraceuticals in human health. Foods. 2020; 9:3:370.

Tagliazucchi D, Verzelloni E, Bertolini D, Conte A. in vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem. 2010; 120:2:599-606.

Salazar-López NJ, González-Aguilar GA, Rouzaud-Sández O, Robles-Sánchez M. Bioaccessibility of hydroxycinnamic acids and antioxidant capacity from sorghum bran thermally processed during simulated in vitro gastrointestinal digestion. J Food Sci Tech. 2018; 55:6:2021-2030.

Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Viticult. 1965; 16:3:144-158.

Robles-Sánchez RM, Rojas-Graü MA, Odriozola-Serrano I, González-Aguilar GA, Martín-Belloso O. Effect of minimal processing on bioactive compounds and antioxidant activity of fresh-cut ‘Kent’mango (Mangifera indica L.). Postharvest Biol Tech. 2009; 51:3:384-390.

Giusti MM, Wrolstad RE. Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Curr Prot Food Anal Chem. 2001; 1:F1-2.

Montiel-Sánchez M, García-Cayuela T, Gómez-Maqueo A, García HS, Cano MP. in vitro gastrointestinal stability, bioaccessibility and potential biological activities of betalains and phenolic compounds in cactus berry fruits (Myrtillocactus geometrizans). Food Chem. 2021; 342:128087.

Liović N, Bratanić A, Zorić Z, Pedisić S, Režek Jambrak A, Krešić G, Bilušić T. The effect of freeze‐drying, pasteurization and high‐intensity ultrasound on gastrointestinal stability and antioxidant activity of blueberry phenolics. Int J Food Sci Tec. 2021; 56:4:1996-2008.

Sellappan S, Akoh CC, Krewer G. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J Agric Food Chem. 2002; 50:8:2432-2438.

Giovanelli G, Buratti S. Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem. 2009; 112:4:903-908.

Rodrigues E, Poerner N, Rockenbach II, Gonzaga LV, Mendes CR, Fett R. Phenolic compounds and antioxidant activity of blueberry cultivars grown in Brazil. Food Sci Tech-Brazil. 2011; 31:4:911-917.

Olivas‐Aguirre FJ, Gaytán‐Martínez M, Mendoza‐Díaz SO, González‐Aguilar GA, Rodrigo‐García J, Martínez‐Ruiz NDR, Wall‐Medrano A. in vitro digestibility of phenolic compounds from edible fruits: could it be explained by chemometrics?. Int J Food Sci Tech. 2017; 52:9: 2040-2048.

Bunea A, Rugina OD, Pintea AM, Sconţa Z, Bunea CI, Socaciu C. Comparative polyphenolic content and antioxidant activities of some wild and cultivated blueberries from Romania. Not Bot Horti Agrobo. 2011; 39:2:70-76.

Vuthijumnok J, Molan AL, Heyes JA. Effect of freeze-drying and extraction solvents on the total phenolic contents, total flavonoids and antioxidant activity of different Rabbiteye blueberry genotypes grown in New Zealand. IOSR-JPBS. 2013; 8:42-48.

Saral Ö, Ölmez Z, Şahin H. Comparison of antioxidant properties of wild blueberries (Vaccinium arctostaphylos L. and Vaccinium myrtillus L.) with cultivated blueberry varieties (Vaccinium corymbosum L.) in Artvin region of Turkey. Turkish J. Agric. Sci. Technol. 2015; 3:1:40-44.

Chung SW, Yu DJ, Lee HJ. Changes in anthocyanidin and anthocyanin pigments in highbush blueberry (Vaccinium corymbosum cv. Bluecrop) fruits during ripening. Hortic Environ. Biotechnol. 2016; 57:5:424-430.

Kalt W, Lawand C, Ryan DA, McDonald JE, Donner H, Forney CF. Oxygen radical absorbing capacity, anthocyanin and phenolic content of highbush blueberries (Vaccinium corymbosum L.) during ripening and storage. J Am Soc Hortic Sci. 2003; 128:6:917-923.

Liu Y, Liu Y, Tao C, Liu M, Pan Y, Lv Z. Effect of temperature and pH on stability of anthocyanin obtained from blueberry. J Food Meas Charact. 2018; 12:3:1744-1753.

Baenas N, Ruales J, Moreno DA, Barrio DA, Stinco CM, Martínez-Cifuentes G. et al. Characterization of Andean blueberry in bioactive biompounds, evaluation of biological properties, and in vitro bioaccessibility. Foods. 2020; 9:10. 1483.

Parada J, Aguilera JM. (2007). Food microstructure affects the bioavailability of several Nutrients. Food Sci. 2007; 72:R21-32.

McDougall GJ, Dobson P, Smith P, Blake A, Stewart D. Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system. J Agric Food Chem. 2005; 53:15:5896-5904.

Bermúdez-Soto M J, Tomás-Barberán FA, García-Conesa MT. Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chem. 2007; 102:3:865-874.

Castañeda-Ovando A, Pacheco-Hernández ML, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA. Chemical studies of anthocyanins: A review. Food Chem. 2009; 113:4: 859-871.

Fernandes I, Faria A, Calhau C, de Freitas V, Mateus N. Bioavailability of anthocyanins and derivatives. J Funct Foods. 2014; 7:54-66.

Pina F, Oliveira J, de Freitas V. Anthocyanins and derivatives are more than flavylium cations. Tetrahedron. 2015; 71:20:3107-3114.

Suzuki H, Nishizawa T, Tsugawa H, Mogami S, Hibi, T. Roles of oxidative stress in stomach disorders. J Clin Biochem Nutr. 2012; 50(1): 35–39.

Butkevičiūtė A, Liaudanskas M, Ramanauskienė K, Janulis V. Biopharmaceutical evaluation of capsules with lyophilized apple powder. Molecules. 2021; 26:4:1095.

Bouayed J, Hoffmann L, Bohn T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem. 2011; 28:1:14-21.

Published

2022-05-02

How to Cite

Tánori-Encinas, D., Wall-Medrano, A., Cárdenas-López, J. L., Ledesma-Osuna, A. I., & Robles-Sánchez, M. (2022). Cápsulas de polvo de arándano como propuesta nutracéutica para mejorar la bioaccesibilidad de compuestos fenólicos. Archivos Latinoamericanos De Nutrición (ALAN), 72(1), 11–22. https://doi.org/10.37527/2022.72.1.002

Issue

Section

Artículo Original

Most read articles by the same author(s)