Pruebas cognitivas que determinan la alteración del tiempo de conciencia útil en los pilotos expuestos a hipoxia hipobárica: una revisión exploratoria

Autores/as

  • Juan M. Castro Herrera
  • Eduardo Tuta Quintero
  • Daniel Botero Rosas

Palabras clave:

Hipoxia; Pilotos; Tiempo de Conciencia Útil; Pruebas Cognitivas.

Resumen

Introducción: El reconocimiento de la hipoxia en aviación es importante para disminuir la accidentalidad aérea por error humano, debido que los pilotos durante la exposición a hipoxia presentan deterioro cognitivo que refleja un compromiso en el tiempo de conciencia útil para la toma de decisiones en vuelo.

Objetivo: Determinar la capacidad de las pruebas cognitivas para detectar la pérdida del tiempo de conciencia útil en pilotos de la Fuerza Aérea Colombiana durante el entrenamiento de hipoxia a 25.000 pies de altura.

Metodología: Revisión sistemática exploratoria de la literatura desde el 2010, incluyendo las siguientes bases de datos: PubMed, lilacs, Google Académico, Google patents, IEEE Xplore, Digital Library y SCOPUS con textos que aplicaran pruebas cognitivas en hipoxia.

Resultados: Se encontraron 12 artículos evaluando diferentes características del deterioro cognitivo. Los países de origen de los autores y el proceso del estudio fueron Estados Unidos de América (n=5), Francia (n=2) China (n=1), Pakistán (n=1), Nueva Zelanda (n=1), Canadá (n=1) y Hungría (n=1). En los artículos evaluados se utilizó el Mini Mental State Examination, la escala Wechsler de inteligencia para adultos, la evaluación de audición en serie estimulada, pruebas neurofisiológicas automatizadas y el test de King-Devick.

Conclusiones: Las pruebas evalúan cuatro esferas al piloto durante la exposición a la hipoxia: la compresión verbal, el razonamiento perceptivo, la memoria de trabajo y la velocidad de procesamiento visual.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Kharoufah H, Murray J, Baxter G, Wild G. A review of human factors causations in commercial air transport accidents and incidents: From to 2000–2016. Progr Aerosp Sci. 2018 1;99: 1–13. https://doi.org/10.1016/j.paerosci.2018.03.002.

Morris MB, Wiedbusch MD, Gunzelmann G. Fatigue Incident Antecedents, Consequences, and Aviation Operational Risk Management Resources. Aerosp Med Hum Perform. 2018 Aug 1; 89(8):708-716. https://doi.org/10.3357/AMHP.5019.2018.

DoD HFACS. (2017). Department of Defense Human Factors Analysis and Classification System A mishap investigation and data analysis tool Executive Summary. Disponible en: https://www.public.navy.mil/NAVSAFECEN/Documents/aviation/aeromedical/DOD_HF_Anlys_Clas_Sys.pdf.

Izraeli S, Avgar D, Glikson M, Shochat I, Glovinsky Y, Ribak J. Determination of the "time of useful consciousness" (TUC) in repeated exposures to simulated altitude of 25,000 ft (7,620 m). Aviat Space Environ Med. 1988 Nov;59(11 Pt 1):1103-5.

Shaw DM, Cabre G, Gant N. Hypoxic Hypoxia and Brain Function in Military Aviation: Basic Physiology and Applied Perspectives. Front Physiol. 2021 May 17;12:665821. doi: 10.3389/fphys.2021.665821.

Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8:19-32. https://doi.org/10.1093/geront/gnz021

Levac D, Colquhoun H, O’Brien KK. Scoping studies: advancing the methodology. Implement Sci. 2010;5:69. https://doi.org/10.1186/1748-5908-5-69

Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018;169:467. https://doi.org/10.7326/M18-0850.

Ahmed, S. CHANGES IN THE COGNITIVE STATE IN HYPOBARIC HYPOXIC CONDITIONS IN PAKISTAN. PAFMJ [Internet]. 31Dec.2011 [cited 29Aug.2021];61(4):606-. Available from: https://pafmj.org/index.php/PAFMJ/article/view/1153

Zhifeng Qin, Huimin Hu, L. Ding, Huajun Xiao and Jing Li, "Hand performance changes under acute exposure to moderate and mild hypobaric hypoxia," 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, 2011, pp. 7617-7622, doi: 10.1109/RSETE.2011.5966138.

Beer JMA, Shender BS, Chauvin D, Dart TS, Fischer J. Cognitive Deterioration in Moderate and Severe Hypobaric Hypoxia Conditions. Aerosp Med Hum Perform. 2017 Jul 1;88(7):617-626. doi: 10.3357/AMHP.4709.2017.

Nation DA, Bondi MW, Gayles E, Delis DC. Mechanisms of Memory Dysfunction during High Altitude Hypoxia Training in Military Aircrew. J Int Neuropsychol Soc. 2017 Jan;23(1):1-10. doi: 10.1017/S1355617716000965.

Asmaro D, Mayall J, Ferguson S. Cognition at altitude: impairment in executive and memory processes under hypoxic conditions. Aviat Space Environ Med. 2013 Nov; 84(11):1159-65. doi: 10.3357/asem.3661.2013.

Bouak F, Vartanian O, Hofer K, Cheung B. Acute Mild Hypoxic Hypoxia Effects on Cognitive and Simulated Aircraft Pilot Performance. Aerosp Med Hum Perform. 2018 Jun 1;89(6):526-535. doi: 10.3357/AMHP.5022.2018.

Malle C, Quinette P, Laisney M, Bourrilhon C, Boissin J, Desgranges B, et al. Working memory impairment in pilots exposed to acute hypobaric hypoxia. Aviat Space Environ Med. 2013 Aug;84(8):773-9. doi: 10.3357/asem.3482.2013.

Malle C, Bourrilhon C, Quinette P, Laisney M, Eustache F, Piérard C. Physiological and Cognitive Effects of Acute Normobaric Hypoxia and Modulations from Oxygen Breathing. Aerosp Med Hum Perform. 2016 Jan;87(1):3-12. doi: 10.3357/AMHP.4335.2016.

Takács E, Czigler I, Pató LG, Balázs L. Dissociated Components of Executive Control in Acute Hypobaric Hypoxia. Aerosp Med Hum Perform. 2017 Dec 1;88(12):1081-1087. doi: 10.3357/AMHP.4771.2017.

Legg SJ, Gilbey A, Hill S, Raman A, Dubray A, Iremonger G, et al. Effects of mild hypoxia in aviation on mood and complex cognition. Appl Ergon. 2016 Mar;53 Pt B:357-63. doi: 10.1016/j.apergo.2015.10.002.

Peacock CA, Weber R, Sanders GJ, Seo Y, Kean D, Pollock BS, et al. Pilot physiology, cognition and flight performance during flight simulation exposed to a 3810-m hypoxic condition. Int J Occup Saf Ergon. 2017 Mar;23(1):44-49. doi: 10.1080/10803548.2016.1234685.

Stepanek J, Cocco D, Pradhan GN, Smith BE, Bartlett J, Studer M, Kuhn F, Cevette MJ. Early detection of hypoxia-lnduced cognitive impairment using the King-Devick test. Aviat Space Environ Med. 2013 Oct; 84(10):1017-22. doi: 10.3357/asem.3616.2013.

Benson N, Hulac DM, Kranzler JH. Independent examination of the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV): what does the WAIS-IV measure? Psychol Assess. 2010 Mar;22(1):121-30. doi: 10.1037/a0017767.

Loureiro C, García C. Uso de la evaluación cognitiva de Montreal (MoCA) en América Latina: una revisión sistemática. Rev Neurol 2018; 66 (12): 397-408. DOI: https://doi.org/10.33588/rn.6612.2017508

Llamas-Velasco S, Llorente-Ayuso L, Contador I, Bermejo-Pareja F. Versiones en español del Minimental State Examination (MMSE). Cuestiones para su uso en la práctica clínica. Rev Neurol 2015;61 (08):363-371. doi: 10.33588/rn.6108.2015107.

Norris JN, Carr W, Herzig T, Labrie DW, Sams R. ANAM4 TBI reaction time-based tests have prognostic utility for acute concussion. Mil Med. 2013 Jul;178(7):767-74. doi: 10.7205/MILMED-D-12-00493.

Holden J, Francisco E, Tommerdahl A, Lensch R, Kirsch B, Zai L, et al. Methodological Problems with Online Concussion Testing. Front Hum Neurosci. 2020 Oct 1;14:509091. doi: 10.3389/fnhum.2020.509091.

Torcal Cano, M. G. Relación entre los movimientos sacádicos y la comprensión y velocidad lectora. Unir. Madrid. 2012. Disponible en: http://reunir.

Tombaugh TN. A comprehensive review of the Paced Auditory Serial Addition Test (PASAT). Arch Clin Neuropsychol. 2006 Jan;21(1):53-76. doi: 10.1016/j.acn.2005.07.006.

Descargas

Publicado

2023-04-14

Cómo citar

Juan M. Castro Herrera, Eduardo Tuta Quintero, & Daniel Botero Rosas. (2023). Pruebas cognitivas que determinan la alteración del tiempo de conciencia útil en los pilotos expuestos a hipoxia hipobárica: una revisión exploratoria . AVFT – Archivos Venezolanos De Farmacología Y Terapéutica, 40(8). Recuperado a partir de http://saber.ucv.ve/ojs/index.php/rev_aavft/article/view/26163