Alteraciones de algunos biomarcadores sanguíneos causadas por nanopartículas de dióxido de titanio y papel mitigador del aceite de ajo
Palabras clave:
Parámetros hematológicos, nanopartículas, aceite de ajoResumen
El empleo de nanopartículas en muchas industrias de consumo las hace cuestionables en términos de seguridad para la salud humana. El propósito de este estudio experimental fue investigar los efectos nocivos de las nanopartículas de dióxido de titanio en algunos parámetros hematológicos y luego evaluar el papel mejorado del aceite de ajo. Este estudio se realizó en 28 ratas macho, se dividieron en 4 grupos de la siguiente manera: Con, que incluía animales sanos utilizados como control. Tio2-N, que incluía ratas envenenadas con nanopartículas de dióxido de titanio. Tio2-N + Gar contenía ratas intoxicadas con un tratamiento combinado con aceite de ajo. Gar, incluidas las ratas suministradas solo con aceite de ajo. Después de recolectar sangre de los animales sacrificados, se realizaron análisis de sangre. Las ratas a las que se administró Tio2-N mostraron una clara reducción en el recuento de glóbulos rojos, la concentración de hemoglobina, el tamaño corporal medio, la hemoglobina muscular media, la concentración de hemoglobina muscular media, el valor de hematocrito y el recuento de plaquetas, frente a un aumento significativo en el recuento de glóbulos blancos en comparación con los animales testigos. Sin embargo, con la coadministración de aceite de ajo con Tio2-N, se observó una clara mejoría en los trastornos sanguíneos. Así, el aceite de ajo demostró su efecto atenuante contra los cambios hematológicos inducidos por Tio2-N en un modelo de rata.
Descargas
Citas
- He Y, Xie Y, Huang Y, Xia D, Zhang Y, Liu Y, Xiao Y, Shen F, He J, Luo L. (2022). Optimization of cyanobacteria Microcystis aeruginosa extract to improve the yield of Ag nanoparticles with antibacterial property. International Biodeterioration & Biodegradation, 171, 105407.
- Ghareeb OA. (2022). Hepato-Renal Dysfunctions Induced by Gold Nanoparticles and Preservative Efficacy of Black Seed Oil. Journal of Medicinal and Chemical Sciences, 5(1) 137-143.
- Hou, J., Wang, L., Wang, C., Zhang, S., Liu, H., Li, S., & Wang, X. (2019). Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. Journal of Environmental Sciences, 75, 40-53.
- Musial, J., Krakowiak, R., Mlynarczyk, D. T., Goslinski, T., & Stanisz, B. J. (2020). Titanium dioxide nanoparticles in food and personal care products—What do we know about their safety?. Nanomaterials, 10(6), 1110.
- Nafisi, S., & Maibach, H. I. (2017). Nanotechnology in cosmetics. Cosmetic science and technology: theoretical principles and applications, 337.
- Blosi, M., Brigliadori, A., Zanoni, I., Ortelli, S., Albonetti, S., & Costa, A. L. (2022). Chlorella vulgaris meets TiO2 NPs: Effective sorbent/photocatalytic hybrid materials for water treatment application. Journal of environmental management, 304, 114187.
- Baranowska-Wójcik, E., Szwajgier, D., Oleszczuk, P., & Winiarska-Mieczan, A. (2020). Effects of titanium dioxide nanoparticles exposure on human health-a review. Biological Trace Element Research, 193(1), 118-129.
- Ghareeb, O. A., Mahmoud, J. H., & Qader, H. S. (2021). Efficacy of Ganoderma lucidum in Reducing Liver Dysfunction Induced by Copper Oxide Nanoparticles. Journal of Research in Medical and Dental Science, 9(12), 14-17.
- Padmanabhan, N. T., Thomas, N., Louis, J., Mathew, D. T., Ganguly, P., John, H., & Pillai, S. C. (2021). Graphene coupled TiO2 photocatalysts for environmental applications: A review. Chemosphere, 271, 129506.
- Shakeel, M., Jabeen, F., Shabbir, S., Asghar, M. S., Khan, M. S., & Chaudhry, A. S. (2016). Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: a review. Biological trace element research, 172(1), 1-36.
- Hu, H., Fan, X., Yin, Y., Guo, Q., Yang, D., Wei, X., ... & Gu, N. (2019). Mechanisms of titanium dioxide nanoparticle‐induced oxidative stress and modulation of plasma glucose in mice. Environmental toxicology, 34(11), 1221-1235.
- Workinger, J. L., Doyle, R., & Bortz, J. (2018). Challenges in the diagnosis of magnesium status. Nutrients, 10(9), 1202.
- Alhazmi, H. A., Najmi, A., Javed, S. A., Sultana, S., Al Bratty, M., Makeen, H. A., ... & Khalid, A. (2021). Medicinal plants and isolated molecules demonstrating immunomodulation activity as potential alternative therapies for viral diseases including COVID-19. Frontiers in Immunology, 12, 1721.
- Al-Haidari, K. A., Faiq, T. N., & Ghareeb, O. A. (2021). Preventive Value of Black Seed in People at Risk of Infection with COVID–19. Pakistan J Med Health Sci, 15, 384-387.
- Shang, A., Cao, S. Y., Xu, X. Y., Gan, R. Y., Tang, G. Y., Corke, H., ... & Li, H. B. (2019). Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods, 8(7), 246.
- Rana, S. V., Pal, R., Vaiphei, K., Sharma, S. K., & Ola, R. P. (2011). Garlic in health and disease. Nutrition research reviews, 24(1), 60-71.
- Moradi, A., Ziamajidi, N., Ghafourikhosroshahi, A., & Abbasalipourkabir, R. (2019). Effects of vitamin A and vitamin E on attenuation of titanium dioxide nanoparticles-induced toxicity in the liver of male Wistar rats. Molecular biology reports, 46(3), 2919-2932.
- Abdel-Daim, M. M., Abdel-Rahman, H. G., Dessouki, A. A., Ali, H., Khodeer, D. M., Bin-Jumah, M., ... & Aleya, L. (2020). Impact of garlic (Allium sativum) oil on cisplatin-induced hepatorenal biochemical and histopathological alterations in rats. Science of the Total Environment, 710, 136338.
- Zhang, S., Jiang, X., Cheng, S., Fan, J., Qin, X., Wang, T., ... & Chen, C. (2020). Titanium dioxide nanoparticles via oral exposure leads to adverse disturbance of gut microecology and locomotor activity in adult mice. Archives of toxicology, 94(4), 1173-1190.
- Madni, A., Rehman, S., Sultan, H., Khan, M. M., Ahmad, F., Raza, M. R., ... & Parveen, F. (2021). Mechanistic approaches of internalization, subcellular trafficking, and cytotoxicity of nanoparticles for targeting the small intestine. AAPS PharmSciTech, 22(1), 1-17.
- Qiu, Y., Myers, D. R., & Lam, W. A. (2019). The biophysics and mechanics of blood from a materials perspective. Nature Reviews Materials, 4(5), 294-311.
- Mendonça, M. C. P., Radaic, A., Garcia-Fossa, F., da Cruz-Höfling, M. A., Vinolo, M. A. R., & de Jesus, M. B. (2020). The in vivo toxicological profile of cationic solid lipid nanoparticles. Drug delivery and translational research, 10(1), 34-42.
- Wang, B., He, X., Zhang, Z., Zhao, Y., & Feng, W. (2013). Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Accounts of chemical research, 46(3), 761-769.
- Mortensen, M., Ferguson, D. J. P., Edelmann, M., Kessler, B., Morten, K. J., Komatsu, M., & Simon, A. K. (2010). Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proceedings of the National Academy of Sciences, 107(2), 832-837.
- Ramadhan, S. A., & Ghareeb, O. A. (2021). Clinicohematological Study of Gold Nanoparticles Toxicity and Ameliorative Effect of Allium Sativum. Annals of the Romanian Society for Cell Biology, 597-602.
- Heydrnejad, M. S., Samani, R. J., & Aghaeivanda, S. (2015). Toxic effects of silver nanoparticles on liver and some hematological parameters in male and female mice (Mus musculus). Biological trace element research, 165(2), 153-158.
- Bissinger, R., Bhuyan, A. A. M., Qadri, S. M., & Lang, F. (2019). Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. The FEBS journal, 286(5), 826-854.
- Chen, Z., Zheng, P., Han, S., Zhang, J., Li, Z., Zhou, S., & Jia, G. (2020). Tissue-specific oxidative stress and element distribution after oral exposure to titanium dioxide nanoparticles in rats. Nanoscale, 12(38), 20033-20046.
- Bouchnita, A., Rocca, A., Fanchon, E., Koury, M. J., Moulis, J. M., & Volpert, V. (2016). Multi-scale modelling of erythropoiesis and hemoglobin production. Journal of Inorganic and Organometallic Polymers and Materials, 26(6), 1362-1379.
- Nasirian, F., Mesbahzadeh, B., Maleki, S. A., Mogharnasi, M., & Kor, N. M. (2017). The effects of oral supplementation of spirulina platensis microalgae on hematological parameters in streptozotocin-induced diabetic rats. American Journal of Translational Research, 9(12), 5238.
- Cantadori, L. O., Gaiolla, R. D., Niero-Melo, L., & Oliveira, C. C. (2019). Bone marrow aspirate clot: a useful technique in diagnosis and follow-up of hematological disorders. Case reports in hematology, 2019.
- Vinholt, P. J. (2019). The role of platelets in bleeding in patients with thrombocytopenia and hematological disease. Clinical Chemistry and Laboratory Medicine (CCLM), 57(12), 1808-1817.
- Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., ... & Zhao, L. (2018). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6), 7204.
- Dorrigiv, M., Zareiyan, A., & Hosseinzadeh, H. (2020). Garlic (Allium sativum) as an antidote or a protective agent against natural or chemical toxicities: a comprehensive update review. Phytotherapy Research, 34(8), 1770-1797.
- Ekeleme-Egedigwe, C. A., Famurewa, A. C., David, E. E., Eleazu, C. O., & Egedigwe, U. O. (2019). Antioxidant potential of garlic oil supplementation prevents cyclophosphamide-induced oxidative testicular damage and endocrine depletion in rats. Journal of Nutrition & Intermediary Metabolism, 18, 100109.
- Akter, R., Neelotpol, S., & Kabir, M. T. (2022). Effect of Allium sativum methanol extract in amelioration of arsenic-induced toxicity in Swiss albino mice. Phytomedicine Plus, 2(1), 100192.
- Mahmoud JH, Ghareeb OA, Mahmood YH. The Role of Garlic Oil in Improving Disturbances in Blood Parameters Caused by Zinc Oxide Nanoparticles. Journal of Medicinal and Chemical Sciences. 2022: 5(1) 76-81.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 AVFT – Archivos Venezolanos de Farmacología y Terapéutica

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.