Disturbances of some blood biomarkers caused by titanium dioxide nanoparticles and mitigating role of garlic oil

Authors

Keywords:

Hematological parameters, nanoparticles, garlic oil

Abstract

Employing nanoparticles in many consumer industries makes them questionable in terms of safety for human health. The purpose of this experimental study was to investigate the harmful effects of titanium dioxide nanoparticles on some hematological parameters, and then evaluate the ameliorated role of garlic oil. This study was conducted on 28 male rats, they were divided into 4 groups as follows: Con, which included healthy animals used as control. Tio2-N, which included rats poisoned with titanium dioxide nanoparticles. Tio2-N + Gar contained intoxicated rats with a combined treatment with garlic oil. Gar, included rats supplied with garlic oil only. After collecting blood from the sacrificed animals, blood tests were performed. Rats dosed with Tio2-N showed a clear reduce in red blood cell count, hemoglobin concentration, mean body size, mean muscle hemoglobin, mean muscle hemoglobin concentration, hematocrit value, and platelet count, versus a significant increase in white blood cell count compared to the control animals. However, with the co-administration of garlic oil with Tio2-N, a clear improvement in blood disorders was observed. Thus, garlic oil demonstrated its attenuating effect against Tio2-N -induced hematological changes in a rat model.

Downloads

Download data is not yet available.

References

- He Y, Xie Y, Huang Y, Xia D, Zhang Y, Liu Y, Xiao Y, Shen F, He J, Luo L. (2022). Optimization of cyanobacteria Microcystis aeruginosa extract to improve the yield of Ag nanoparticles with antibacterial property. International Biodeterioration & Biodegradation, 171, 105407.

- Ghareeb OA. (2022). Hepato-Renal Dysfunctions Induced by Gold Nanoparticles and Preservative Efficacy of Black Seed Oil. Journal of Medicinal and Chemical Sciences, 5(1) 137-143.

- Hou, J., Wang, L., Wang, C., Zhang, S., Liu, H., Li, S., & Wang, X. (2019). Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. Journal of Environmental Sciences, 75, 40-53.

- Musial, J., Krakowiak, R., Mlynarczyk, D. T., Goslinski, T., & Stanisz, B. J. (2020). Titanium dioxide nanoparticles in food and personal care products—What do we know about their safety?. Nanomaterials, 10(6), 1110.

- Nafisi, S., & Maibach, H. I. (2017). Nanotechnology in cosmetics. Cosmetic science and technology: theoretical principles and applications, 337.

- Blosi, M., Brigliadori, A., Zanoni, I., Ortelli, S., Albonetti, S., & Costa, A. L. (2022). Chlorella vulgaris meets TiO2 NPs: Effective sorbent/photocatalytic hybrid materials for water treatment application. Journal of environmental management, 304, 114187.

- Baranowska-Wójcik, E., Szwajgier, D., Oleszczuk, P., & Winiarska-Mieczan, A. (2020). Effects of titanium dioxide nanoparticles exposure on human health-a review. Biological Trace Element Research, 193(1), 118-129.

- Ghareeb, O. A., Mahmoud, J. H., & Qader, H. S. (2021). Efficacy of Ganoderma lucidum in Reducing Liver Dysfunction Induced by Copper Oxide Nanoparticles. Journal of Research in Medical and Dental Science, 9(12), 14-17.

- Padmanabhan, N. T., Thomas, N., Louis, J., Mathew, D. T., Ganguly, P., John, H., & Pillai, S. C. (2021). Graphene coupled TiO2 photocatalysts for environmental applications: A review. Chemosphere, 271, 129506.

- Shakeel, M., Jabeen, F., Shabbir, S., Asghar, M. S., Khan, M. S., & Chaudhry, A. S. (2016). Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: a review. Biological trace element research, 172(1), 1-36.

- Hu, H., Fan, X., Yin, Y., Guo, Q., Yang, D., Wei, X., ... & Gu, N. (2019). Mechanisms of titanium dioxide nanoparticle‐induced oxidative stress and modulation of plasma glucose in mice. Environmental toxicology, 34(11), 1221-1235.

- Workinger, J. L., Doyle, R., & Bortz, J. (2018). Challenges in the diagnosis of magnesium status. Nutrients, 10(9), 1202.

- Alhazmi, H. A., Najmi, A., Javed, S. A., Sultana, S., Al Bratty, M., Makeen, H. A., ... & Khalid, A. (2021). Medicinal plants and isolated molecules demonstrating immunomodulation activity as potential alternative therapies for viral diseases including COVID-19. Frontiers in Immunology, 12, 1721.

- Al-Haidari, K. A., Faiq, T. N., & Ghareeb, O. A. (2021). Preventive Value of Black Seed in People at Risk of Infection with COVID–19. Pakistan J Med Health Sci, 15, 384-387.

- Shang, A., Cao, S. Y., Xu, X. Y., Gan, R. Y., Tang, G. Y., Corke, H., ... & Li, H. B. (2019). Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods, 8(7), 246.

- Rana, S. V., Pal, R., Vaiphei, K., Sharma, S. K., & Ola, R. P. (2011). Garlic in health and disease. Nutrition research reviews, 24(1), 60-71.

- Moradi, A., Ziamajidi, N., Ghafourikhosroshahi, A., & Abbasalipourkabir, R. (2019). Effects of vitamin A and vitamin E on attenuation of titanium dioxide nanoparticles-induced toxicity in the liver of male Wistar rats. Molecular biology reports, 46(3), 2919-2932.

- Abdel-Daim, M. M., Abdel-Rahman, H. G., Dessouki, A. A., Ali, H., Khodeer, D. M., Bin-Jumah, M., ... & Aleya, L. (2020). Impact of garlic (Allium sativum) oil on cisplatin-induced hepatorenal biochemical and histopathological alterations in rats. Science of the Total Environment, 710, 136338.

- Zhang, S., Jiang, X., Cheng, S., Fan, J., Qin, X., Wang, T., ... & Chen, C. (2020). Titanium dioxide nanoparticles via oral exposure leads to adverse disturbance of gut microecology and locomotor activity in adult mice. Archives of toxicology, 94(4), 1173-1190.

- Madni, A., Rehman, S., Sultan, H., Khan, M. M., Ahmad, F., Raza, M. R., ... & Parveen, F. (2021). Mechanistic approaches of internalization, subcellular trafficking, and cytotoxicity of nanoparticles for targeting the small intestine. AAPS PharmSciTech, 22(1), 1-17.

- Qiu, Y., Myers, D. R., & Lam, W. A. (2019). The biophysics and mechanics of blood from a materials perspective. Nature Reviews Materials, 4(5), 294-311.

- Mendonça, M. C. P., Radaic, A., Garcia-Fossa, F., da Cruz-Höfling, M. A., Vinolo, M. A. R., & de Jesus, M. B. (2020). The in vivo toxicological profile of cationic solid lipid nanoparticles. Drug delivery and translational research, 10(1), 34-42.

- Wang, B., He, X., Zhang, Z., Zhao, Y., & Feng, W. (2013). Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Accounts of chemical research, 46(3), 761-769.

- Mortensen, M., Ferguson, D. J. P., Edelmann, M., Kessler, B., Morten, K. J., Komatsu, M., & Simon, A. K. (2010). Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proceedings of the National Academy of Sciences, 107(2), 832-837.

- Ramadhan, S. A., & Ghareeb, O. A. (2021). Clinicohematological Study of Gold Nanoparticles Toxicity and Ameliorative Effect of Allium Sativum. Annals of the Romanian Society for Cell Biology, 597-602.

- Heydrnejad, M. S., Samani, R. J., & Aghaeivanda, S. (2015). Toxic effects of silver nanoparticles on liver and some hematological parameters in male and female mice (Mus musculus). Biological trace element research, 165(2), 153-158.

- Bissinger, R., Bhuyan, A. A. M., Qadri, S. M., & Lang, F. (2019). Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. The FEBS journal, 286(5), 826-854.

- Chen, Z., Zheng, P., Han, S., Zhang, J., Li, Z., Zhou, S., & Jia, G. (2020). Tissue-specific oxidative stress and element distribution after oral exposure to titanium dioxide nanoparticles in rats. Nanoscale, 12(38), 20033-20046.

- Bouchnita, A., Rocca, A., Fanchon, E., Koury, M. J., Moulis, J. M., & Volpert, V. (2016). Multi-scale modelling of erythropoiesis and hemoglobin production. Journal of Inorganic and Organometallic Polymers and Materials, 26(6), 1362-1379.

- Nasirian, F., Mesbahzadeh, B., Maleki, S. A., Mogharnasi, M., & Kor, N. M. (2017). The effects of oral supplementation of spirulina platensis microalgae on hematological parameters in streptozotocin-induced diabetic rats. American Journal of Translational Research, 9(12), 5238.

- Cantadori, L. O., Gaiolla, R. D., Niero-Melo, L., & Oliveira, C. C. (2019). Bone marrow aspirate clot: a useful technique in diagnosis and follow-up of hematological disorders. Case reports in hematology, 2019.

- Vinholt, P. J. (2019). The role of platelets in bleeding in patients with thrombocytopenia and hematological disease. Clinical Chemistry and Laboratory Medicine (CCLM), 57(12), 1808-1817.

- Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., ... & Zhao, L. (2018). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6), 7204.

- Dorrigiv, M., Zareiyan, A., & Hosseinzadeh, H. (2020). Garlic (Allium sativum) as an antidote or a protective agent against natural or chemical toxicities: a comprehensive update review. Phytotherapy Research, 34(8), 1770-1797.

- Ekeleme-Egedigwe, C. A., Famurewa, A. C., David, E. E., Eleazu, C. O., & Egedigwe, U. O. (2019). Antioxidant potential of garlic oil supplementation prevents cyclophosphamide-induced oxidative testicular damage and endocrine depletion in rats. Journal of Nutrition & Intermediary Metabolism, 18, 100109.

- Akter, R., Neelotpol, S., & Kabir, M. T. (2022). Effect of Allium sativum methanol extract in amelioration of arsenic-induced toxicity in Swiss albino mice. Phytomedicine Plus, 2(1), 100192.

- Mahmoud JH, Ghareeb OA, Mahmood YH. The Role of Garlic Oil in Improving Disturbances in Blood Parameters Caused by Zinc Oxide Nanoparticles. Journal of Medicinal and Chemical Sciences. 2022: 5(1) 76-81.

Downloads

Published

2023-04-06

How to Cite

Asaad , N. K. ., & Abass , K. S. . (2023). Disturbances of some blood biomarkers caused by titanium dioxide nanoparticles and mitigating role of garlic oil. AVFT – Archivos Venezolanos De Farmacología Y Terapéutica, 41(6). Retrieved from http://saber.ucv.ve/ojs/index.php/rev_aavft/article/view/25953