Análisis de posibles peligros en leche materna donada. Revisión

Autores/as

DOI:

https://doi.org/10.37527/2023.73.1.005

Palabras clave:

Leche Humana, Enfermedad Transmitida por los Alimentos, Inocuidad de los Alimentos

Resumen

La leche materna donada es un recurso de alto valor que puede ser utilizado para la alimentación de neonatos hospitalizados y a término, por tanto, garantizar su inocuidad es imperativo. Esta revisión de literatura reúne los principales peligros de naturaleza física, química y microbiológica identificados en leche materna, con la intención de proveer una referencia que los consolide de tal forma que la información pueda ser utilizada por bancos de leche humana, gobiernos y agencias regulatorias para establecer mecanismos para su prevención y control. Se realizó una revisión de literatura entre agosto del 2021 y octubre del 2022, utilizando buscadores y descriptores específicos para peligros de transmisión alimentaria en leche materna. Se incluyeron estudios publicados en español o en inglés. Se identificaron 31 agentes biológicos patógenos incluyendo bacterias, virus y parásitos. Como peligros químicos se reportaron medicamentos, drogas, cafeína, infusiones herbales, micotoxinas, alérgenos, especias, suplementos nutricionales, contaminantes ambientales y desinfectantes. Se alerta sobre la presencia potencial de plástico y vidrio de tamaño menor a 7 mm proveniente del ambiente de extracción y recipientes. La presencia de peligros microbiológicos y químicos en leche materna puede darse por transmisión vertical, temperaturas inadecuadas durante el almacenamiento y contaminación en el proceso. La presencia de peligros físicos se relaciona con la manipulación de los implementos en etapas posteriores a la extracción. Se requiere prestar atención a los hábitos de la madre para prevenir peligros químicos, así como más investigación relacionada con micotoxinas en leche materna.

Donated breast milk is a highvalue resource which can be used to feed hospitalized neonates and full-term infants, therefore, ensuring its safety is imperative. This literature review presents the main hazards of physical, chemical and microbiological nature identified in human milk, with the intention of providing a reference that consolidates the reported hazards reported, so the information can be used by human milk banks, governments and regulatory agencies to establish prevention and control mechanisms. A literature review was carried out between August 2021 and October 2022, using search engines and specific descriptors for foodborne hazards in breast milk. Studies published in Spanish and English were considered. 31 pathogenic biological agents including bacteria, viruses and parasites were identified. Medications, drugs, caffeine, herbal infusions, mycotoxins, allergens, spices, nutritional supplements, contaminants of environmental origin and disinfectants were reported as chemical hazards. No physical hazards were identified, however the potential presence of plastic and glass smaller than 7 mm from the extraction environment or containers is alerted. Presence of microbiological and chemical hazards can be due to vertical transmission, inadequate temperature of storing, contamination during extraction, packaging, and infant feeding. Whereas presence of physical hazards is related to implements handling after extraction. Attention to hygiene and habits of the mother to prevent chemical hazards and further research related to mycotoxins in human milk is required.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Escuder-Vieco D, Espinosa-Martos I, Rodríguez JM, Fernández L, Pallás-Alonso CR. Effect of HTST and Holder Pasteurization on the concentration of immunoglobulins, growth factors and hormones in donor human milk. Front Immunol. 2018; 9: 2222. https://doi.org/10.3389/fimmu.2018.02222

Mantziari A, Rautava D. Factors influencing the microbial composition of human milk. Semin Perinatol. 2021;45(8): 151507. https://doi.org/10.1016/j.semperi.2021.151507

Perella S, Gridneva Z, Lai CT, Stinson L, George A, Bilston-John S, Geddes D. Human milk composition promotes optimal infant growth, development and health. Semin Perinatol. 2021;45(2). https://doi.org/10.1016/j.semperi.2020.151380

Czosnykowska-Łukacka M, Lis-Kuberka J, Królak-Olejnik B, Orczyk-Pawilowicz M. Changes in human milk immunoglobulin profile during prolonged lactation. Front Pediatr. 2020;8(428).10.3389/fped.2020.00428

Vas R, Kemey A, Dergez T, Ertl T, Reglodi D, Jungling A, Tamas A. Distribution of bioactive factors in human milk samples. Int Breastfeed J. 2019; 14:9 https://doi.org/10.1186/s13006-019-0203-3

Pandolfi E, Gesualdo F, Rizzo C, et al. Breastfeeding and respiratory infections in the first 6 months of life: A case control study. Front Pediatr. 2019;7: 152. https://doi.org/10.3389/fped.2019.00152

Parker MG, Stellwagen LM, Noble L, et al. Promoting human milk and breastfeeding for the very low birth weight infant. Pediatrics. 2021;148(5): e2021054272. https://doi.org/10.1542/peds.2021-054272

Sparks H, Linley L, Beaumont JL, Robinson DT. Donor milk intake and infant growth in a South African neonatal unit: a cohort study. Int Breastfeed J. 2018; 13:41. https://doi.org/10.1186/s13006-018-0183-8

Calvo J, García Lara NR, Gormaz M, et al. Recommendations for the creation and operation of maternal milk Banks in Spain. An Pediatr (Engl Ed). 2018;89(1):65. e1-65.e6. https://doi.org/10.1016/j.anpede.2018.01.007

Moro GE, Billeaud C, Rachel B, et al. Processing of Donor Human Milk: Update and recommendations from the European Milk Bank Association (EMBA). Front Pediatr. 2019; 7:49. https://doi.org/10.3389/fped.2019.00049

Weaver G, Bertino E, Gebauer C, et al. Recommendations for the establishment and operation of Human milk Banks in Europe: consensus statement from the European Milk Bank Association (EMBA). Front Pediatr. 2019; 7:53. https://doi.org/10.3389/fped.2019.00053

González de Armas A, Ochoa Marín SC, Semenic S. Identifying priorities for practice improvement related to breastfeeding support in a neonatal intensive care unit (NICU) in Medellín, Colombia. J Neonatal Nurs. 2021;27(2):94-99. http://dx.doi.org/10.1016/j.jnn.2020.07.001

Vishnu Bhat B, Adhisivam B. Human milk banking and challenges in quality control. Indian J Pediatr. 2018;85(4):255-256. https://doi.org/10.1007/s12098-018-2635-y

Human Milk Banking Association of North America (HMBANA). Best practices for expressing, storing and handling human milk in hospitals, homes and child care settings. 4th ed. Texas: Frances Jones; 2019.

Fogliano RRF, Bohomol E, Cabral Schveitzer M, Pereira Coca K, Freitas de Vilhena Abrão AC. Quality management in human milk banks: a scope review. Rev Bras Enferm. 2020;73(Suppl 6): e20190640 http://dx.doi.org/10.1590/0034-7167-2019-0640

Kontopodi E, Arslanoglu S, Bernatowicz-Lojko U, et al. Donor milk banking: Improving the future. A survey on the operation of the European donor human milk banks. PLoS One. 2021;16(8): e0256435. https://doi.org/10.1371/journal.pone.0256435

Mansen K, Nguyen TT, Nguyen NQ, et al. Strengthening newborn nutrition through establishment of the first human milk bank in Vietnam. J Hum Lact. 2021;37(1):76-86. https://doi.org/10.1177/08903344209484

Jandová M, Měřička P, Fišerová M, et al. Bacillus cereus as a Major Cause of Discarded Pasteurized Human Banked Milk: A Single Human Milk Bank Experience. Foods. 2021;10(12): 2955. https://doi.org/10.3390/foods10122955

Organización de las Naciones Unidas para la Alimentación y la Agricultura/Organización Mundial de la Salud (FAO/OMS). Principios generales de higiene de los alimentos CXC 1-1969. Roma: Comisión del Codex Alimentarius; 1969. Disponible en https://www.fao.org/fao-who-codexalimentarius/sh-proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXC%2B1-1969%252FCXC_001s.pdf

Hartmann BT, Pang WW, Keil AD, Hartmann PE, Simmer K. Best practice guidelines for the operation of a donor human milk bank in an Australian NICU. Early Hum Dev. 2007;83(10):667-673. https://doi.org/10.1016/j.earlhumdev.2007.07.012

Administración de Medicamentos y Alimentos (FDA). Juice HACCP. Juice HACCP. FDA; 2004. https://www.fda.gov/food/hazard-analysis-critical-control-point-haccp/juice-haccp

Lawrence RM. Transmission of infectious diseases through breast milk and breastfeeding. In: Lawrence RA, Lawrence RM, editors. Breastfeeding a Guide for the Medical Profession. 9th ed. Amsterdam: Elsevier; 2022.406-473.

Cormontagne D, Rigourd V, Vidic J, Rizzotto F, Bille E, Ramarao N. Bacillus cereus induces severe infections in preterm neonates: implication at the hospital and human milk bank level. Toxins (Basel) 2021;13(2):123 https://doi.org/10.3390/toxins13020123

de Almeida JB, de Carvalho SP, da Silva LSC, et al. Molecular characterization of methicillin-resistant and methicillin-sensitive Staphylococcus aureus isolates from human milk samples in Brazil. Braz J Microbiol. 2020; 51:1813-1817. https://doi.org/10.1007/s42770-020-00367-1

Novak F, Da Silva A, Hagler A, Figueiredo A. Contamination of expressed human breast milk with an epidemic multiresistant Staphylococcus aureus clone. J Med Microbiol. 2000;49(12):1109-1117. https://doi.org/10.1099/0022-1317-49-12-1109

Lewin A, Delage G, Bernier F, Germain M. Banked Human Milk and Quantitative Risk Assessment of Bacillus cereus Infection in Premature Infants: A Simulation Study. Can J Infect Dis Med Microbiol. 2019; 2019:6348281. https://doi.org/10.1155/2019/6348281

Mallardi D, Piemontese P, Liotto N, et al. New Operating Approach to Limit Bacillus Cereus Contamination of Donor Human Milk. J Hum Lact. 2021;38(1):102-107. https://doi.org/10.1177%2F08903344211002563

Keim SA, McNamara K, Kwiek JJ, Geraghty SR. Drugs of Abuse in Human Milk Purchased via the Internet. Breastfeed Med. 2015;10(9):416-418. https://doi.org/10.1089/bfm.2015.0098

Bastons-Compta A, Garcia-Algar O. Screening of Drugs of Abuse in Human Milk Banks. J Pregnancy Child Health. 2016;3(2):e130. https://doi.org/10.4172/2376-127x.1000e130

Escuder-Vieco D, Garcia-Algar Ó, Pichini S, Pacifici R, García-Lara NR, Pallás-Alonso CR. Validation of a screening questionnaire for a human milk bank to determine the presence of illegal drugs, nicotine, and caffeine. J Pediatr. 2014;164(4):811-814. https://doi.org/10.1016/j.jpeds.2013.11.043

PATH. Strengthening Human Milk Banking: A Workshop for Developing a Hazard Analysis and Critical Control Points Plan for Your Human Milk Bank – Trainer’s Guide. Washington: PATH; 2016. Disponible en: https://www.path.org/programs/maternal-newborn-child-healthand-nutrition/strengthening-human-milk-bankingresource-toolkit-2a/

BFI Strategy for Ontario. Breastfeeding protocol: expressing, collecting and storing of human milk. Ontario: Tytler K; 2019. Disponible en: https://breastfeedingresourcesontario.ca/sites/default/files/pdf/Res_BFI_ExpressingStoring_FNL2.pdf

Gad S, Sheta M, Al-khalafawi A, Abu El-Fadl H, et al. Expressed Breast Milk Contamination in Neonatal Intensive Care Unit. Pediatric Health Med Ther. 2021; 12:307-313. https://doi.org/10.2147/PHMT.S311632

Jones CA. Maternal transmission of infectious pathogens in breast milk. J Paediatr Child Health. 2001;37(6):576-582. https://doi.org/10.1046/j.1440-1754.2001.00743.x

Blackshaw K, Valtchev P, Koolaji N, et al. The risk of infectious pathogens in breast-feeding, donated human milk and breast milk substitutes. Public Health Nutr. 2021;24(7):1725-1740. https://doi.org/10.1017/S1368980020000555

Weems M, Dereddy N, Arnold S. Mother’s milk as a source of Enterobacter cloacae sepsis in a preterm infant. Breastfeed Med. 2015;10(10):503-504. https://doi.org/10.1089/bfm

Mena P. When breast milk is a way of pathogens. Rev Chil Pediatr. 2020;91(5):665-668. https://dx.doi.org/10.32641/rchped.vi91i5.3079

Kutty PK. Breastfeeding and risk of parasitic infection-a review. Asian Pac J Trop Biomed. 2014;4(11):847-858. https://doi.org/10.12980/APJTB.4.201414B355

Civardi E, Garofoli F, Tzialla C, Paolillo P, Bollani L, Stronati M. Microorganisms in human milk: lights and shadows. J Matern Fetal Neonatal Med. 2013;26(2):30-34. https://doi.org/10.3109/14767058.2013.829693

Rassin DK, Garofolo RP, Ogra PL. Human milk. In: Remington JS, Klein JO, eds. In Infectious Diseases of the Fetus and Newborn. Philadelphia: WB Saunders; 2001.169–203.

Botsford K, Weinstein RA, Boyer KM, Nathan C, Carman M, Paton JB. Gram-negative bacilli in human milk feedings: quantitation and clinical consequences for premature infants. J Pediatr. 1986;109(4):707-710. https://doi.org/10.1016/S0022-3476(86)80246-3

Ryder RW, Crosby-Ritchie A, McDonough B, Hall WJ. Human milk contaminated with Salmonella KOTTBUS. JAMA. 1977; 238(14): 1533-1534. https://doi.org/10.1001/jama.1977.03280150103039

American Academy of Pediatrics Committee on Drugs. Transfer of drugs and other chemicals into human milk. Pediatrics. 2001;108(3):776-789. https://doi.org/10.1542/peds.108.3.776

Arslanoglu S, Corpeleijn W, Moro G, et al. Donor human milk for preterm infants: current evidence and research directions. J. Pediatr. Gastroenterol. Nutr. 2013;57(4):535-542. https://doi.org/10.1097/MPG.0b013e3182a3af0a

Sachs HC. The transfer of drugs and therapeutics into human breast milk: an update on selected topics. Pediatrics. 2013;132(3):796-809. https://doi.org/10.1542/peds.2013-1985

Clifford V, Sulfaro C, Lee J, Pink J, Hoad V. Development and evaluation of formal guidelines for donor selection for human milk banks. J Paediatr Child Health. 2020; 56(8):1242-1248. https://doi.org/10.1111/jpc.14909

Raffo A, Nicoli S, Leclercq C. Quantification of estragole in fennel herbal teas: Implications on the assessment of dietary exposure to estragole. Food Chem Toxicol. 2011;49(2):370-375. https://doi.org/10.1016/j.fct.2010.11.011

Chaves K. Intoxicación por anís de estrella: guías y recomendaciones. Acta Pediátr Costarric. 2009;21(1):60-61. https://www.scielo.sa.cr/pdf/apc/v21n1/a10v21n1.pdf

Ize-Ludlow D, Ragone S, Bruck IS, Bernstein JN, Duchowny M, Garcia BM. Neurotoxicities in infants seen with the consumption of star anise tea. Pediatrics. 2004;114(5):653–656. https://doi.org/10.1542/peds.2004-0058

Casanova Cuenca M, Calzado Agrasot MA, Pegueroles CM, Cantó VE. Persisten las intoxicaciones por anís estrellado, ¿estamos dando la suficiente información? Neurología (Engl Ed). 2019;34(3):211-213. https;//10.1016/j.nrl.2017.05.006

Hausner H, Bredie WLP, Mølgaard C, Petersen MA, Møller P. Differential transfer of dietary flavour compounds into human breast milk. Physiol Behav. 2008;95(1-2):118–124. https://doi.org/10.1016/j.physbeh.2008.05.007

Rosti L, Nardini A, Bettinelli ME, Rosti D. Toxic effects of a herbal tea mixture in two newborns. Acta Paediatr. 1994;83(6):683. https://doi.org/10.1111/j.1651-2227.1994.tb13115.x

Budzynska K, Gardner ZE, Dugoua JJ, Low Dog T, Gardiner P. Systematic review of breastfeeding and herbs. Breastfeed Med. 2012;7(6):489-503. https://doi.org/10.1089/bfm.2011.0122

Jeurink PV, Knipping K, Wiens F, et al. Importance of maternal diet in the training of the infant’s immune system during gestation and lactation. Crit Rev Food Sci Nutr. 2019;59(8):1311–1319. https://doi.org/10.1080/10408398.2017.1405907

Kilburn SA, Pollard C, Bevin S, Hourihane JOB, Warner JO, Dean T. Allergens in mother’s milk: Tolerisation or sensitization. Nutr Res Rev.1998;18(8):1351–1361. https://doi.org/10.1016/S0271-5317(98)00114-6

Martín-Muñoz MF, Pineda F, García Parrado G, et al. Food allergy in breastfeeding babies. Hidden allergens in human milk. Eur Ann Allergy Clin Immunol. 2016;48(4):123-128. https://pubmed.ncbi.nlm.nih.gov/27425167/

Deepa, N., Sreenivasa, MY. Fumonisins: A review on its global occurrence, epidemiology, toxicity and detection. J Vet Med Res. 2017;4(6). https://doi.org/10.47739/2378-931X/1093

Shirima CP, Kimanya ME, Kinabo JL et al. Dietary exposure to aflatoxin and fumonisin among Tanzanian children as determined using biomarkers of exposure. Mol Nutr Food Res. 2013;57(10):1875-1881. https://doi.org/10.1002%2Fmnfr.201300116

Smith MC, Madec S, Coton E, Hymery N. Natural co-ocurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins (Basel). 2016;8(4). https://doi.org/10.3390%2Ftoxins8040094

Sobrova P, Adam V, Vasatkova A, Beklova M, Zeman L, Kizek R. Deoxynivalenol and its toxicity. Interdiscip toxicol. 2010;3(3):94-99. https://doi.org/10.2478/v10102-010-0019-x

Wild CP, Gong YY. Mycotoxins and human disease: a large ignored global health issue. Carcinogenesis. 2010;31:71-82. https://doi.org/10.1093/carcin/bgp264

Warth B, Braun D, Ezekiel CN, Turner PC, Degen GH, Marko D. Biomonitoring of mycotoxins in human breast milk: current state and future perspectives. Chem Res Toxicol. 2016;29(7):1087-1097. https://doi.org/10.1021/acs.chemrestox.6b00125

Mehta RV, Wenndt AJ, Webb Girard A, Taneja S, Ranjan S, Ramakrishnan U, Martorell R, Ryan PB, Rangiah K, Young MF. Risk of dietary and breastmilk exposure to mycotoxins among lactating women and infants 2–4 months in northern India. Matern Child Nutr. 2020;17(2). https://doi.org/10.1111/mcn.13100

Degen GH, Muñoz K, Hengstler JG. Ocurrence of mycotoxins in breast milk. In: Zibadi S, Watson RR, Preedy VR, eds. In Handbook of dietary and nutritional aspects of human breast milk. Wageningen Academic Publishers; 2013. 813-831. https://doi.org/10.3920/978-90-8686-764-6

LaKind JS, Wilkins, AA, Berlin CM. Environmental chemicals in human milk: A review of levels, infant exposures and health, and guidance for future research. Toxicol Appl Pharmacol. 2004;198(2):184-208. https://doi.org/10.1016/j.taap.2003.08.021

Eglash A, Simon L. ABM clinical protocol #8: Human milk storage information for home use for full-term Infants, Revised 2017. Breastfeed Med. 2017;12(7):390-395. https://doi.org/10.1089/bfm.2017.29047.aje

Gilks J, Price E, Hateley P, Gould D, Weaver G. Pros, cons and potential risks of on-site decontamination methods used on neonatal units for articles indirectly associated with infant feeding, including breast pump collection kits and neonatal dummies. J Infect Prev. 2011;13(1):16-23. https://doi.org/10.1177/1757177411415448

Blouin M, Coulombe M, Rhainds M. Specimen plastic containers used to store expressed breast milk in neonatal care units: A case of precautionary principle. Can J Public Health. 2014;105(3):218-220. https://doi.org/10.17269/cjph.105.4369

Mead MN. Contaminants in human milk: weighing the risks against the benefits of breastfeeding. Environ Health Perspect. 2008;116(10):426-434. http://www.ncbi.nlm.nih.gov/pubmed/18941560

FDA. CPG Sec. 555.425 Foods, Adulteration Involving hard or Sharp Foreign Objects. 2005. Available from: https://www.fda.gov/media/71953/download

Martínez EB, Maldonado JA, Grupo de RCP Neonatal de la Sociedad Española de Neonatología. Reanimación del recién nacido. An Pediatr (Engl Ed). 2006;65(5):470-477. https://doi.org/10.1016/S1695-4033(06)70229-6

Nemenqani D, Yaqoob N, Khoja H. Breast brucellosis in Taif, Saudi Arabia: cluster of six cases with emphasis on FNA evaluation. J Infect Dev Ctries. 2009;3(4):255-259. https://doi.org/10.3855/jidc.121

Tikare NV, Mantur BG, Bidari LH. Brucellar meningitis in an infant-Evidence for human breast milk transmission. J Trop Pediatr. 2008;54(4):272–274. https://doi.org/10.1093/tropej/fmn017

Guven GS, Cakir B, Oz G, et al. Could remembering the prozone phenomenon shorten our diagnostic journet in brucellosis? A case of Brucella spondylodiscitis. Rheumatol Int. 2006;26:933-935. https://doi.org/10.1007/s00296-006-0118-3

Palanduz A, Palanduz S, Guler K, Guler N. Brucellosis in a mother and her young infant: Probable transmission by breast milk. Int J Infect Dis. 2000;4(1):55-56. https://doi.org/10.1016/s1201-9712(00)90068-7

Nguyen DM, Bancroft E, Mascola L, Guevara R, Yasuda L. Risk factors for neonatal methicillin-resistant Staphylococcus aureus infection in a well-infant nursery. Infect Control Hosp Epidemiol. 2007;28(4):406-411. https://doi.org/10.1086/513122

Parks YA, Noy MF, Auket MA, Webb CA. Methicillin resistant Staphylococcus aureus in milk. Arch Dis Child. 1987;62:82-84. https://doi.org/10.1136/adc.62.1.82

Lemoine L. Possible transmission of methicillin-resistant Staphylococcus aureus by expressed human breast milk. J Hosp Infect. 1987;9:93-94. https://doi.org/10.1016/0195-6701(87)90105-8

Nakamura K, Kaneko M, Abe Y, et al. Outbreak of extended-spectrum β-lactamase-producing Escherichia coli transmitted through breast milk sharing in a neonatal intensive care unit. J Hosp Infect. 2016;92(1):42-46. https://doi.org/10.1016/j.jhin.2015.05.002

Youssef RF, Darcy E, Barone A, Borja MT, Leggiadro RJ. Expressed breast milk as a source of neonatal sepsis. Pediatr Infect Dis J. 2002;21(9):888-889. https://doi.org/10.1097/00006454-200209000-00026

Gransden WR, Webster M, French GL, Phillips.I.. An outbreak of Serratia marcescens transmitted by contaminated breast pumps in a special care baby unit. J Hosp Infect. 1986;7(2):194-154. https://doi.org/10.1016/0195-6701(86)90057-5

Stiver HG, Albritton WL, Clark J, Friesen P, White FM. Nosocomial Colonization and Infection Due to E. coli O125:K70 Epidemiologically Linked to Expressed Breast-Milk Feedings. Can J Public Health. 1977;68(6):479-482. PMID: 342078.

Donowitz LG, Marsik FJ, Fisher KA, Wenzel RP. Contaminated breast milk: A source of Klebsiella bacteremia in a newborn intensive care unit. Rev Infect Dis. 1981;3(4):716-720. https://doi.org/10.1093/clinids/3.4.716

Qutaishat SS, Stemper ME, Spencer SK, et al. Transmission of Salmonella enterica serotype typhimurium DT104 to infants through mother's breast milk. Pediatrics. 2003;111(6):1442-1446. https://doi.org/10.1542/peds.111.6.1442

Anil M, Helvaci M, Ozkalay N, et al. Salmonella typhimurium outbreak in a neonatal unit in Turkey. Indian J Pediatr. 2009;76(6):629-633. https://doi.org/10.1007/s12098-009-0083-4

Revathi G, Mahajan R, Faridi MM, Kumar A, Talwar V. Transmission of lethal Salmonella senftenberg from mother's breast-milk to her baby. Ann Trop Paediatr. 1995;15(2):159-61. https://doi.org/10.1080/02724936.1995.11747765

Cooke FJ, Ginwalla S, Hampton MD, Wain J, Ross-Russel R, Lever A, Farrington M. Report of neonatal meningitis due to Salmonella enterica serotype Agona and review if breast milk associated neonatal Samonella infrections. J Clin Microbiol. 2009;47(9):3045-0. 10.1128/JCM.01064-09

Chen TL, Thien PF, Liaw SC, Fung CP, Siu LK. First report of Salmonella enterica serotype Panama meningitis associated with consumption of contaminated breast milk by a neonate. J Clin Microbiol. 2005;43(10):5400-5402. 10.1128/JCM.43.10.5400-5402.2005

Gibb AP, Welsby PD. Infantile salmonella gastroenteritis in association with maternal mastitis. J Infect. 1983;6(2):193-194. 10.1016/s0163-4453(83)93004-9

Decousser JW, Ramarao N, Claudine D, et al. Bacillus cereus and severe intestinal infections in preterm neonates: Putative role of pooled breast milk. Am J Infect Control. 2013;41(10):918-921. https://doi.org/10.1016/j.ajic.2013.01.043

Sarr M, Tidjani M, Delerce J, et al. A Listeria monocytogenes clone in human breast milk associated with severe acute malnutrition in West Africa: A multicentric case-controlled study. PLoS Negl Trop Dis. 2021;16(6). https://doi.org/10.1371/journal.pntd.0009555

Svabic-Vlahovic M, Pantic D, Pavicic M, Bryner JH. Trans- mission of Listeria monocytogenes from mother’s milk to her baby and to puppies. Lancet. 1988;2(8621):1201. https://doi.org/10.1016/S0140-6736(88)90276-0

Olver WJ., Bond DW., Boswell TC., Watkin SL. Neonatal group B streptococcal disease associated with infected breast milk. Arch Dis Child Fetal Neonatal Ed. 2000;83(1):F48-9.10.1136/fn.83.1.f48

Gagneur A, Héry-Arnaud G, Croly-Labourdette S, et al. Infected breast milk associated with late-onset and recurrent group B streptococcal infection in neonatal twins: a genetic analysis. Eur J Pediatr. 2009;168(9):1155-8. https://doi.org/10.1007/s00431-008-0903-y

Filleron A, Lombard F, Jacquot A, Jumas-Bilak E, Rodiere M, Cambonie G. Group B streptococci in milk and late neonatal infections: an analysis of cases in the literature. Arch Dis Child Fetal Neonatal Ed. 2014;99(1):41-47. http://dx.doi.org/10.1136/archdischild-2013-304362

Bowen A, Wiesenfeld HC, Kloesz JL, et al. Notes from the Field: Cronobacter sakazakii Infection Associated with Feeding Extrinsically Contaminated Expressed Human Milk to a Premature Infant - Pennsylvania, 2016. MMWR Surveill Sum. 2017;66(28):761-762. Available from: https://www.cdc.gov/mmwr/volumes/66/wr/mm6628a5.htm

Kumar A, Yadav MP, Kakkar S. Human milk as a source of Q-fever infection in breast-fed babies. Indian J Med Res. 1981;73:510-512. PMID: 7262921.

Mediannikov O, Fenollar F, Socolovschi C, et al. Coxiella burnetii in humans and ticks in rural Senegal. PLoS Negl Trop Dis. 2010;4(4). https://doi.org/10.1371/journal.pntd.0000654

Boden K, Brueckmann A, Wagner-Wiening C, et al. Maternofetal consequences of Coxiella burnetii infection in pregnancy: a case series of two outbreaks. BMC Infect Dis. 2012;12(359). https://doi.org/10.1186/1471-2334-12-359

Prasad BN CNWA. Isolation of Coxiella burnetii from human sources. Int J Zoonoses. 1986;13(2):112-7. PMID: 3793389.

Mammina C, Di Carlo P, Cipolla D, et al. Nosocomial colonization due to imipenemresistant Pseudomonas aeruginosa epidemiologically linked to breast milk feeding in a neonatal intensive care unit. Acta Pharmacol Sin. 2008;29(12):1486-1492. https://doi.org/10.1111/j.1745-7254.2008.00892.x

Watson JC, Fleming DW, Borella AJ, Olcott ES, Conrad RE, Baron RC. Vertical transmission of hepatitis A resulting in an outbreak in a neonatal intensive care unit. J Infect Dis. 1993;167(3):567-571. https://doi.org/10.1093/infdis/167.3.567

Daudi N, Shouval D, Stein-Zamir C, Ackerman Z. Breastmilk hepatitis A virus RNA in nursing mothers with acute hepatitis A virus infection. Breastfeed Med. 2012; 7:313-315. https://doi.org/10.1089/bfm.2011.0084

Chen X, Chen J, Wen J, et al. Breastfeeding is not a risk factor for mother-to-child transmission of hepatitis B virus. PLoS One. 2013;8(1). https://doi.org/10.1371/journal.pone.0055303

Donalisio M, Rittà M, Tonetto P, et al. Anticytomegalovirus activity in human milk and calostrum from mothers of preterm infants. J Pediatr Gastroenterol Nutr. 2018;67(5):654-659. https://doi.org/10.1097/MPG.0000000000002071

Dworsky M, Yow M, Stagno S, Pass RF, Alford C. Cytomegalovirus infection of breast milk and transmission in infancy. Pediatrics. 1983;72(3):295-299. https://pubmed.ncbi.nlm.nih.gov/6310479/

Hinckley AF, O’Leary DR, Hayes EB. Transmission of West Nile virus through human breast milk seems to be rare. Pediatrics. 2007;119(3):666-671. https://doi.org/10.1542/peds.2006-2107

Kalu SO, Reynolds F, Petra GB, et al. Infant feeding choices practiced among HIV positive mothers attending a Prevention of Mother to Child Transmission (PMTCT) of HIV program in Nnewi, Nigeria. J AIDS Clin Res. 2014;5(5). https://doi.org/10.4172/2155-6113.1000300

Yoshida M, Yamagami N, Tezuka T, Hondo R. Case report: detection of varicella-zoster virus DNA in maternal breast milk. J Med Virol. 1992;38(2):108-110. https://doi.org/10.1002/jmv.1890380207

Chang ML, Tsao KC, Huang CC, Yen MH, Huang CG, Lin TY. Coxsackievirus B3 in human milk. Pediatr Infect Dis J. 2006;25(10):955-957.10.1097/01.inf.0000235686.50060.2b

Sanosyan A, Rutagwera DG, Molès JP, et al. Increased Epstein-Barr virus in breast milk occurs with subclinical mastitis and HIV shedding. Medicine (Baltimore).2016;95(27). 10.1097/MD.0000000000004005

Daud II, Coleman CB, Smith NA, et al. Breast Milk as a Potential Source of Epstein-Barr Virus Transmission Among Infants Living in a Malaria-Endemic Region of Kenya. J Infect Dis. 2015;212(11):1735-1742. https://doi.org/10.1093/infdis/jiv290

Norman FF, López-Vélez R. Chagas disease and breastfeeding. Emerg Infect Dis. 2013;19(10):1561–1566. https://doi.org/10.3201/eid1910.130203

Bansa DK, Awua AK, Boatin R, et al. Cross-sectional assessment of infants’ exposure to toxic metals through breast milk in a prospective cohort study of mining communities in Ghana. BMC Public Health. 2017;17(1):505 https://doi.org/10.1186/s12889-017-4403-8

Lehmann GM, Lakind JS, Davis MH, et al. Environmental chemicals in breast milk and formula: Exposure and risk assessment implications. Environ Health Perspect. 2018;126(9). https://doi.org/10.1289/EHP1953

Memis EY, Yalçın SS. Human milk mycotoxin contamination: smoking exposure and breastfeeding problems. J Matern Fetal Neonatal Med. 2021: 34 (1): 31-40. https://doi.org/10.1080/14767058.2019.1586879

Hernández M, Juan-García A, Moltó JC, Mañes J, Juan C. Evaluation of Mycotoxins in Infant Breast Milk and Infant Food, Reviewing the Literature Data. Toxins. 2021;13(8): 535. https://doi.org/10.3390/toxins13080535

Navas SA, Sabino M, Rodríguez-Amaya BD. Aflatoxin M1 and ochratoxin A in a human milk bank in the city of São Pablo, Brazil. Food Addit Contam. 2005;22(5):457-462. https://doi.org/10.1080/02652030500110550

Ferrufino-Guardia E, Chavez-Rico V, Larondella, Y. Ochratoxin a in human breast milk, maternal and placental blood from Cochabamba-Bolivia. Revista de Toxicología. 2019;36(2):116-140. https://www.redalyc.org/articulo.oa?id=91967023005

Price E, Awadel-Kariem FM, Hateley P, Harvey J, Gilks J, Kempley S. Possible hazards of hypochlorite disinfection for feeding equipment for premature infants. J Hosp Infect. 2006;64(1):90-92. https://doi.org/doi:10.1016/j.jhin.2006.05.001

Descargas

Publicado

2023-05-03

Cómo citar

Víquez Barrantes, D., Incer González, . A. I., Acosta, O., & Usaga, J. (2023). Análisis de posibles peligros en leche materna donada. Revisión. Archivos Latinoamericanos De Nutrición (ALAN), 73(1), 42–59. https://doi.org/10.37527/2023.73.1.005

Número

Sección

Artículo de Revisión