Propiedades nutritivas y tecno funcionales de barras de pseudocereales adicionadas con soya, mango y granada

Autores/as

  • Jorge Eduardo Angulo López Grupo de Investigación en Bioprocesos y Bioproductos. Departamento de Investigación en Alimentos Facultad de Ciencias Químicas. Universidad Autónoma de Coahuila https://orcid.org/0000-0003-2909-0743
  • Adriana Carolina Flores Gallegos Grupo de Investigación en Bioprocesos y Bioproductos. Departamento de Investigación en Alimentos Facultad de Ciencias Químicas. Universidad Autónoma de Coahuila https://orcid.org/0000-0001-5092-1404
  • Rosa María Rodríguez Jasso Grupo de Investigación en Bioprocesos y Bioproductos. Departamento de Investigación en Alimentos Facultad de Ciencias Químicas. Universidad Autónoma de Coahuila https://orcid.org/0000-0001-8971-0639
  • Cristóbal Noe Aguilar González Grupo de Investigación en Bioprocesos y Bioproductos. Departamento de Investigación en Alimentos Facultad de Ciencias Químicas. Universidad Autónoma de Coahuila https://orcid.org/0000-0001-5867-8672
  • Liliana Serna Cock Facultad de Ingeniería y Administración; Universidad Nacional de Colombia sede Palmira https://orcid.org/0000-0003-2911-0871

DOI:

https://doi.org/10.37527/2023.73.1.003

Palabras clave:

Pseudocereal, Barras, Subproducto, Alimento Funcional, Prebiótico, Fibra

Resumen

Las barras de cereal (BC), se comercializan como un snack saludable, no obstante, su calidad nutricional es baja. Una alternativa para mejorar esto, es la incorporación de ingredientes como pseudocereales, germinados y subproductos de fruta. Objetivo. Evaluar el contenido nutricional y propiedades tecnofuncionales de una barra de cereal formulada a partir de pseudocereales, germinados de soya y subproductos del procesamiento de frutas. Materiales y Métodos. Se desarrollaron 6 formulaciones (F0-F5). Se determinó el contenido de proteína y fibra cruda, se seleccionó la formulación que presentó el mayor contenido de estos componentes. A la BC seleccionada se le determinó la digestibilidad in-vitro de la proteína, las propiedades tecnofuncionales potencial prebiótico y actividad inhibitoria de ECA-I. Resultados. La formulación seleccionada fue F1 (13,6 g/100 g p.s. proteína y 13,1 g/100 g p.s. fibra cruda). La digestibilidad de la proteína fue del 69 %, el cual es cercano a valores reportados para algunos componentes de la BC. La capacidad de hinchamiento y retención de agua fue 2,55 ml/g; 12,74 %, respectivamente. El crecimiento de L. brevis en medio MRS modificado con BC no presentó diferencias estadísticas con el medio control, indicando el potencial prebiótico presente en la BC. La barra de cereal tuvo un 39% de actividad inhibitoria de ECA-I, demostrando la acción de los compuestos bioactivos posiblemente liberados durante la digestión de la BC. Conclusión. La formulación desarrollada presenta propiedades funcionales importantes y podría generar beneficios para la salud.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Lobato LP, Iakmiu Camargo Pereira AE, Lazaretti MM et al. Snack bars with high soy protein and isoflavone content for use in diets to control dyslipidaemia. Int J Food Sci Nutr. 2012;63(1):49–58. https://doi.org/10.3109/09637486.2011.596148.

Rios F, Lobo M, Samman N. Acceptability of beehive products as ingredients in quinoa bars. J Sci Food Agric. 2018;98(1):174–182. https://doi.org/10.1002/jsfa.8452.

Rawat N, Darappa I. Effect of ingredients on rheological, nutritional and quality characteristics of fibre and protein enriched baked energy bars. J Food Sci Technol. 2015;52(5):3006–3013. https://doi.org/10.1007/s13197-014-1367-x.

Garcia MC, Lobato LP, Benassi M de T, Soares Júnior MS. Application of roasted rice bran in cereal bars. Food Sci Technol. 2012;32(4):718–724. https://doi.org/10.1590/S0101-20612012005000096.

Slavin J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients. 2013, 5 (4): 1417–1435. https://doi.org/10.3390/nu5041417.

Bchir B, Jean-François T, Rabetafika HN, Blecker C. Effect of pear apple and date fibres incorporation on the physico-chemical, sensory, nutritional characteristics and the acceptability of cereal bars. Food Sci Technol Int. 2018;24(3):198–208. https://doi.org/10.1177/1082013217742752.

Aparecida Damasceno K, Alvarenga Gonçalves CA, Dos Santos Pereira G. et al. Development of Cereal Bars Containing Pineapple Peel Flour (Ananas comosus L. Merril). J Food Qual. 2016;39(5): 417–424. https://doi.org/10.1111/jfq.12222

Nadeem M, Rehman SU, Mahmood Qureshi T, Nadeem Riaz M, Mehmood A, Wang C. Development, characterization, and flavor profile of nutrient dense date bars. J Food Process Preserv. 2018;42(10): e13622. https://doi.org/10.1111/jfpp.13622

Arruti I, Fernández MB, Martínez R. Diseño y desarrollo de una barra energética para deportistas de Triatlón. Enfermeria (Montev). 2015; 4:27–31. https://doi.org/10.22235/ech.v4i1.528.

Sangronis E, Machado CJ. Influence of germination on the nutritional quality of Phaseolus vulgaris and Cajanus cajan. LWT Food Sci Technol. 2007;40(1):116–120. https://doi.org/10.1016/j.lwt.2005.08.003

Silva-Vega M, Bañuelos-Valenzuela R, Muro-Reyes A, Esparza-Valenzuela E, Delgadillo-Ruiz L. Evaluación de semilla de guayaba (Psidium guajava L.) como alternativa en la nutrición ruminal. 2017;7(1):26–35. http://dx.doi.org/10.21929/abavet2017.71.2

Muniz CES, Santiago ÂM, Sousa Gusmão TA, Oliveira HML, Conrado Sousa L, Pereida Gusmão R. Solid-state fermentation for single-cell protein enrichment of guava and cashew by-products and inclusion on cereal bars. Biocatal Agric Biotechnol. 2020; 25: 101576. https://doi.org/10.1016/j.bcab.2020.101576.

Papaioannou EH., Mitrouli ST, Patsios SI, Kazakli M, Karabelas AJ. Valorization of pomegranate husk – Integration of extraction with nanofiltration for concentrated polyphenols recovery. J Environ Chem Eng. 2020; 8(4), 103951. https://doi.org/10.1016/j.jece.2020.103951

Li Y, Guo C, Yang J, Wei J, Xu J, Cheng, S. Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chem. 2006; 96(2), 254–260. DOI: https://doi.org/10.1016/j.foodchem.2005.02.033

Venkitasamy C, Zhao L, Zhang R, Pan Z. Pomegranate. In Integrated Processing Technologies for Food and Agricultural By-Products. Elsevier Inc. 2019: 181-216. https://doi.org/10.1016/B978-0-12-814138-0.00008-3.

Zhai X., Zhu C., Zhang Y., Sun J., Alim A., Yang X. Chemical characteristics, antioxidant capacities and hepatoprotection of polysaccharides from pomegranate peel. Carbohydr Polym. 2018; 461–469. https://doi.org/10.1016/j.carbpol.2018.09.013

Srivastava P, Indrani D, Singh RP. Effect of dried pomegranate (Punica granatum) peel powder (DPPP) on textural, organoleptic and nutritional characteristics of biscuits. Int J Food Sci Nutr. 2014;65(7):827–833. https://doi.org/10.3109/09637486.2014.937797.

Ajila CM, Prasada Rao UJS. Mango peel dietary fibre: Composition and associated bound phenolics. J Funct Foods. 2013;5(1):444–450. https://doi.org/10.1016/j.jff.2012.11.017

García-Magaña M de L., García H.S., Bello-Pérez L.A., Sáyago-Ayerdi S.G., Mata-Montes de Oca M. Functional Properties and Dietary Fiber Characterization of Mango Processing By-products (Mangifera indica L., cv Ataulfo and Tommy Atkins). Plant Foods for Hum Nutr. 2013; 68(3):254–258. https://doi.org/10.1007/s11130-013-0364-y

Torres-León C, Rojas R, Contreras-Esquivel JC, Serna-Cock L, Belmares-Cerda RE, Aguilar CN. Mango seed: Functional and nutritional properties. Trends Food Sci Technol. 2016; 55:109–117. http://dx.doi.org/10.1016%2Fj.tifs.2016.06.009

Ajila C.M., Bhat S.G., Prasada Rao U.J.S. Valuable components of raw and ripe peels from two Indian mango varieties. Food Chem. 2007;102(4):1006–1011. http://dx.doi.org/10.1016/j.foodchem.2006.06.036

Banerjee J, Singh R, Vijayaraghavan R, MacFarlane D, Patti AF, Arora A. A hydrocolloid based biorefinery approach to the valorisation of mango peel waste. Food Hydrocolloids. 2018; 77:142–151. https://doi.org/10.1016/j.foodhyd.2017.09.029.

Sáyago-Ayerdi SG, Zamora-Gasga VM, Venema K. Prebiotic effect of predigested mango peel on gut microbiota assessed in a dynamic in vitro model of the human colon (TIM-2). Food Res Int. 2019; 118:89–95. https://doi.org/10.1016/j.foodres.2017.12.024

Alvarez-Jubete L, Arendt EK, Gallagher E. Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci Technol. 2010; 21(2):106–113. https://doi.org/10.1016/j.tifs.2009.10.014

Márquez Villacorta LF, Pretell Vásquez CC. Evaluación de características de calidad en barras de cereales con alto contenido de fibra y proteína. Rev Bio Agro 2018;16(2):67-78. https://doi.org/10.18684/bsaa.v16n2.1167

López DN, Galante M, Raimundo G, Spelzini D, Boeris V. Functional properties of amaranth, quinoa and chia proteins and the biological activities of their hydrolyzates. Food Res Int. 2019; 116, 419–429. https://doi.org/10.1016/j.foodres.2018.08.056

Silva-Sánchez C, Barba de la Rosa AP, León-Galván MF, de Lumen BO, de León-Rodríguez A, Gónzalez de Mejía E. Bioactive Peptides in Amaranth (Amaranthus hypochondriacus) Seed. J Agric Food Chem. 2008; 56(4):1233–1240. https://doi.org/10.1021/jf072911z

López DN, Galante M, Robson M, Boeris V, Spelzini, D. Amaranth, quinoa and chia protein isolates: Physicochemical and structural properties. Int J Biol Macromol. 2018; 109: 152–159. https://doi.org/10.1016/j.ijbiomac.2017.12.080

Carrillo Terán WI, Vilcacundo R, Carpio C. Compuestos bioactivos derivados de amaranto y quinua. Actual. Nutr 2015; 16 (1):18–22. http://www.revistasan.org.ar/pdf_files/trabajos/vol_16/num_1/RSAN_16_1_18.pdf

Serna-Cock L, Torres-León C, Ayala-Aponte A. Evaluación de polvos alimentarios obtenidos de cáscaras de mango (Mangifera indica) como fuente de ingredientes funcionales. Inf. tecnol. 2015; 26(2):41–50. http://dx.doi.org/10.4067/S0718-07642015000200006.

Olivera M, Ferreyra DV, Giacomino MS. et al. Desarrollo de barras de cereales nutritivas y efecto del procesado en la calidad proteica. Rev Chil Nutr. 2012;39(3):18–25. http://dx.doi.org/10.4067/S0717-75182012000300003.

Association of official Analytical Chemist International (AOAC). Official method 925,10. Official Methods of Analysis. 1999

Association of Official Analytical Chemists International (AOAC). Method 996.06, Fat (Total, Saturated, and Monounsaturated) in Foods. Gaithersburg, MD. 1995.

Association of Official Analytical Chemists (AOAC). 923.3. Official Methods of analysis of the Ash of Flour, Direc Method. 1990

Minekus M, Alminger M, Alvito P, et al. A standardised static in vitro digestion method suitable for food-an international consensus. Food Funct. 2014; 5 (6): 1113–1124. https://doi.org/10.1039/c3fo60702j

Valencia F, Román M. Caracterización fisicoquímica y funcional de tres concentrados comerciales de fibra dietaría. VITAE. 2006; 13 (2): 54–60.: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-40042006000200007&lng=en.

Murray PR, Rosenthal KS, Pfauer MA. Manual of Clinical Microbiology. 2017; 1: 237–259.

Gonzalez-Gonzalez CR, Machado J, Correia S, McCartney AL, Stephen Elmore J, Jauregi P. Highly proteolytic bacteria from semi-ripened Chiapas cheese elicit angiotensin-I converting enzyme inhibition and antioxidant activity. LWT. 2019; 449–456. https://doi.org/10.1016/j.lwt.2019.05.039

Cushman D. W., & Cheung H. S. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol. 1971; 20(7): 1637–1648. https://doi.org/10.1016/0006-2952(71)90292-9

Shalini R, Abinaya G, Saranya P, Antony U. Growth of selected probiotic bacterial strains with fructans from Nendran banana and garlic. LWT Food Sci Technol. 2017; 83: 68–78. https://doi.org/10.1016/j.lwt.2017.03.059

Fu YP, Li LX, Zhang BZ. et al. Characterization and prebiotic activity in vitro of inulin-type fructan from Codonopsis pilosula roots. Carbohydr Polym. 2018; 193: 212–220. https://doi.org/10.1016/j.carbpol.2018.03.065

Koutrotsios G, Patsou M, Mitsou EK. et al. Valorization of Olive By-Products as Substrates for the Cultivation of Ganoderma lucidum and Pleurotus ostreatus Mushrooms with Enhanced Functional and Prebiotic Properties. Catalysts. 2019; 9(6): 537. https://doi.org/10.3390/catal9060537

Strahsburger E, Retamales P, Estrada J, Seeger M. Microdot method: used with chromogenic agar is a useful procedure for sanitary monitoring in aquaculture. Lat. Am. J. Aquat. Res. 2016; 44(4): 742–749. http://dx.doi.org/10.3856/vol44-issue4-fulltext-9.

Donangelo CM, Trugo LC, Trugo NMF, Eggum BO. Effect of germination of legume seeds on chemical composition and on protein and energy utilization in rats. Food Chem. 1995; 53(1): 23–27. https://doi.org/10.1016/0308-8146(95)95781-Z

Chaparro Rojas D, Pismag Portilla R, Elizalde Correa A, Vivas Quila NJ, Erazo Caicedo CA. Efecto de la germinación sobre el contenido y digestibilidad de proteína en semillas de amaranto, quinua, soya y guandul. Facultad de Ciencias Agropecuarias. Rev. Bio Agro 2010; 8 (1): 35-42. http://www.scielo.org.co/pdf/bsaa/v8n1/v8n1a05.pdf

Ruiz-Garza AE, Nuñez-González MA, Amaya-Guerreo CA, Baez-González JG, Aguilera-González CJ, Montemayor-Leal J. Caracterización funcional de fibras comerciales modificadas por medios físicos. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos. 2017; 2: 422–427.

Lucas-González R, Fernández-López J, PérezÁlvarez JA, Viuda-Martos M. Effect of drying processes in the chemical, physico-chemical, techno-functional and antioxidant properties of flours obtained from house cricket (Acheta domesticus). Eur Food Res Technol. 2019; 245(7):1451–1458. https://doi.org/10.1007/s00217-019-03301-4

García-Salcedo ÁJ, Torres-Vargas OL, del Real A, Contreras-Jiménez B, Rodríguez-Garcia ME. Pasting, viscoelastic, and physicochemical properties of chia (Salvia hispanica L.) flour and mucilage. Food structure. 2018; 16: 59–66. https://doi.org/10.1016/j.foostr.2018.03.004

Ospina Meneses SM, Restrepo Molina DA, López Vargas JH. Caracterización fisicoquímica y funcionalidad tecnológica de la fibra de banano íntegro verde (Cavendish valery) (Musa AAA cv. Musaceae). Rev Lasallista Investig. 2016; 13(1): 23–30. https://doi.org/10.22507/rli.v13n1a2

Asao M, Watanabe K. Functional and bioactive properties of quinoa and amaranth. Food Sci Technol Res. 2010; 16(2): 163–168. https://doi.org/10.3136/fstr.16.163

Ingrassia R, Busti PA, Boeris V. Physicochemical and mechanical properties of a new cold-set emulsion gel system and the effect of quinoa protein fortification. LWT Food Sci Technol. 2022; 156: 113048. https://doi.org/10.1016/j.lwt.2021.113048

Freitas DGC, Moretti RH. Caracterização e avaliação sensorial de barra de cereais funcional de alto teor protéico e vitamínico. Ciênc. Tecnol. Aliment. 2006; 26(2): 318–324. https://doi.org/10.1590/S0101-20612006000200014

Melo PF, Kalschne D, Silva‐Buzanello RA et al. Cereal bars functionalised with tempeh: nutritional composition, isoflavone content and consumer acceptance. Int J Food Sci Technol. 2020; 55(1): 397–405. https://doi.org/10.1111/ijfs.14384

Dutcosky SD, Grossmann MVE, Silva RSSF, Welsch AK. Combined sensory optimization of a prebiotic cereal product using multicomponent mixture experiments. Food Chem. 2006; 98(4): 630–638. https://doi.org/10.1016/j.foodchem.2005.06.029

Gutkoski LC, Bonamigo JM de A., Teixeira DM. de F, Pedó I. Desenvolvimento de barras de cereais à base de aveia com alto teor de fibra alimentar. Cienc Technol Aliment 2007; 27(2): 355–363. https://doi.org/10.1590/S0101-20612007000200025

Estévez AM, Escobar B, Vásquez M, Castillo E, Araya E, Zacarías I. Cereal and nut bars, nutritional quality and storage stability. Plant Foods Hum Nutr. 1995; 47(4), 309–317. https://doi.org/10.1007/bf01088268

Kim HW, Setyabrata D, Lee Y, Jones OG, Kim YHB. Effect of House Cricket (Acheta domesticus) Flour Addition on Physicochemical and Textural Properties of Meat Emulsion Under Various Formulations. J Food Sci. 2017; 82(12): 2787–2793. https://doi.org/10.1111/1750-3841.13960

Vilcanqui F, Villanueva ME, Vílchez C. Propiedades funcionales in-vitro y efectos fisiológicos in-vivo sobre ratas Holtzman de dietas con nuevas fuentes de fibra. Rev Chil Nutr. 2018; 45(3): 223–231. http://dx.doi.org/10.4067/s0717-75182018000400223.

Vioque J, Sánchez-Vioque R, Clemente A, Pedroche J, Millán F. Partially hydrolyzed rapeseed protein isolates with improved functional properties. J Am Oil Chem Soc. 2000; 77(4): 447–450. https://doi.org/10.1007/s11746-000-0072-y

López DN, Ingrassia R, Busti PA, Wagner JR, Boeris V, Spelzini D. Acid‐induced aggregation and gelation of heat‐treated chia proteins. Int J Food Sci Technol. 2021; 56(4):1641–1648. DOI: https://doi.org/10.1111/ijfs.14784

Orona-Tamayo D, Paredes-López O. Amaranth Part 1— Sustainable Crop for the 21st Century: Food Properties and Nutraceuticals for Improving Human Health. In Sustainable Protein Sources. 2017: 239–256. https://doi.org/10.1016/B978-0-12-802778-3.00015-9

Fritz M, Vecchi B, Rinaldi G, Añón MC. Amaranth seed protein hydrolysates have in vivo and in vitro antihypertensive activity. Food Chem. 2011; 126(3): 878–884. https://doi.org/10.1016/j.foodchem.2010.11.065

Błaszczak W, Jeż M, Szwengiel A. Polyphenols and inhibitory effects of crude and purified extracts from tomato varieties on the formation of advanced glycation end products and the activity of angiotensin-converting and acetylcholinesterase enzymes. Food Chem. 2020; 314. 126181. https://doi.org/10.1016/j.foodchem.2020.126181

Vieira ADS, Bedani R, Albuquerque MAC., Biscola V, Saad SMI. The impact of fruit and soybean by-products and amaranth on the growth of probiotic and starter microorganisms. Food Res Int. 2017; 97: 356–363. https://doi.org/10.1016/j.foodres.2017.04.026

Ciudad-Mulero M, Fernández-Ruiz V, Matallana-González MC, Morales P. Dietary fiber sources and human benefits: The case study of cereal and pseudocereals. Adv Food Nutr Res. 2019; 90:83-134. https://doi.org/10.1016/bs.afnr.2019.02.002

Zhu F. Dietary fiber polysaccharides of amaranth, buckwheat and quinoa grains: A review of chemical structure, biological functions and food uses. Carbohydr Polym. 2020; 248: 116819. https://doi.org/10.1016/j.carbpol.2020.116819

González-Montemayor ÁM., Flores-Gallegos AC, Serrato-Villegas LE, López-Pérez MG, Montañez-Sáenz JC, Rodríguez-Herrera R. Honey and Syrups: Healthy and Natural Sweeteners with Functional Properties. In Natural Beverages. 2019: 143–177. Elsevier. https://doi.org/10.1016/B978-0-12-816689-5.00006-7

Bultosa G. Functional Foods: Dietary Fibers, Prebiotics, Probiotics, and Synbiotics. In Encyclopedia of Food Grains (2nd ed., Vols. 2–4, pp. 11–16). Elsevier. http://dx.doi.org/10.1016/B978-0-12-394437-5.00245-X

Maccaferri S, Klinder A, Cacciatore S et al. In vitro fermentation of potential prebiotic flours from natural sources: Impact on the human colonic microbiota and metabolome. Mol Nutr Food Res 2012; 56(8): 1342–1352. https://doi.org/10.1002/mnfr.201200046

Descargas

Publicado

2023-05-03

Cómo citar

Angulo López, J. E., Flores Gallegos, A. C., Rodríguez Jasso, R. M., Aguilar González, C. N., & Serna Cock, L. (2023). Propiedades nutritivas y tecno funcionales de barras de pseudocereales adicionadas con soya, mango y granada. Archivos Latinoamericanos De Nutrición (ALAN), 73(1), 19–31. https://doi.org/10.37527/2023.73.1.003

Número

Sección

Artículo Original