Catequinas del té verde: efectos antigenotóxicos y genotóxicos. Revisión sistemática

Autores/as

  • María del Carmen García-Rodríguez Laboratorio de Antimutagénesis, Anticarcinogénesis y Antiteratogénesis Ambiental. Facultad de Estudios Superiores “Zaragoza”, Universidad Nacional Autónoma de México https://orcid.org/0000-0001-5970-0835
  • Lourdes Montserrat Hernández-Cortés oratorio de Antimutagénesis, Anticarcinogénesis y Antiteratogénesis Ambiental. Facultad de Estudios Superiores “Zaragoza”, Universidad Nacional Autónoma de México https://orcid.org/0000-0001-9330-7869
  • Francisco Arenas-Huertero Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México https://orcid.org/0000-0002-8359-913X

DOI:

https://doi.org/10.37527/2022.72.3.006

Palabras clave:

Catequinas, Té Verde, Antioxidantes, Genotóxico, Antigenotóxico, Cathechin, Green Tea, Antioxidants, Genotoxic, Antigenotoxic

Resumen

Las catequinas del té verde (Camellia sinensis) (CTV) presentan efectos benéficos para la salud asociados a su potencial antioxidante. Por otra parte, el estrés oxidante es una de las vías de inducción de daño genotóxico. De ahí que, en la presente revisión se realizó un análisis de los efectos antigenotóxicos y genotóxicos de las CTV, haciendo énfasis en las vías implicadas en estos procesos y sus efectos en la salud. Se realizó una revisión de artículos indexados en las bases de datos de PubMed® y Science Direct® (2021) con las palabras clave “green tea” y “green tea catechins”. Se delimitaron los estudios utilizando los operadores booleanos “AND”, “OR” y “NOT” (“antigenotoxic”, “genotoxic”, “antioxidant” y “prooxidant”). En su mayoría se consideraron las publicaciones del 2016 al 2021. Se observó que los efectos benéficos en la salud de las CTV están relacionados con: a) su actividad antioxidante mediante la captura, inhibición y prevención de la formación de las especies reactivas de oxígeno; b) la regulación del sistema antioxidante endógeno; c) la activación de los mecanismos de reparación al contribuir en la eliminación del aducto 8-hidroxi-2'-desoxiguanosina; d) la inducción de apoptosis en células con daño al ADN; y e) la inhibición de la inflamación relacionada con su actividad antiapoptótica. Si bien, en algunos de los estudios se reportaron efectos genotóxicos, estos a su vez contribuyeron en la eliminación de células con daño genético, por lo que, no se puede considerar del todo a la actividad genotóxica de las CTV como perjudiciales para la salud.

The green tea catechins (Camellia sinensis) (CTV) have beneficial effects for health associated with their antioxidant potential. Moreover, oxidative stress is one of the pathways for inducing genotoxic damage. Hence, in this review, an analysis of the antigenotoxic and genotoxic effects of CTV was carried out, emphasizing the pathways involved in these processes and their effects on health. A review of articles indexed in the PubMed® and ScienceDirect® (2021) databases with the keywords “green tea” and “green tea catechins” was carried out. Studies were delimited using the Boolean operators “AND”, “OR” and “NOT” (“antigenotoxic”, “genotoxic”, “antioxidant” and “prooxidant”). For the most part, publications from 2016 to 2021 were considered. It was observed that the beneficial health effects of CTVs are related to: a) their antioxidant activity through the capture, inhibition and prevention of the formation of reactive oxygen species; b) the regulation of the endogenous antioxidant system; c) the activation of the repair mechanisms by contributing to the elimination of the 8-hydroxy-2'-deoxyguanosine adduct; d) the induction of apoptosis in cells with DNA damage; and e) the inhibition of inflammation related to its antiapoptotic activity. Although some of the studies reported genotoxic effects, these in turn contributed to the elimination of cells with genetic damage. Therefore, the genotoxic activity of CTV cannot be considered as harmful to health.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Cabrera C, Artacho R, Giménez R. Beneficial effects of green tea—A review. J Am Coll Nutr. 2006;25(2):79–99.

Hu J, Webster D, Cao J, Shao A. The safety of green tea and green tea extract consumption in adults – Results of a systematic review. Regul Toxicol Pharmacol. 2018; 95:412–433.

Lorenzo JM, Munekata PES. Phenolic compounds of green tea: Health benefits and technological application in food. Asian Pac J Trop Biomed. 2016; 6:709–719.

Liu Z, Liu D, Cheng J, et al. Lipid-soluble green tea extract: Genotoxicity and subchronic toxicity studies. Regul Toxicol Pharmacol. 2017; 86:366–373.

Li Y, Cao Z, Zhu H. Upregulation of endogenous antioxidants and phase 2 enzymes by the red wine polyphenol, resveratrol in cultured aortic smooth muscle cells leads to cytoprotection against oxidative and electrophilic stress. Pharmacol Res. 2006;53(1):6–15.

Lewandowska H, Kalinowska M, Lewandowski W, Stępkowski TM, Brzóska K. The role of natural polyphenols in cell signaling and cytoprotection against cancer development. J Nutr Biochem. 2016; 32:1–19.

Olson KR, Briggs A, Devireddy M, et al. Green tea polyphenolic antioxidants oxidize hydrogen sulfide to thiosulfate and polysulfides: A possible new mechanism underpinning their biological action. Redox Biol. 2020;37: 101731. https://doi.org/10.1016/j.redox.2020.101731

Kaushal S, Ahsan AU, Sharma VL, Chopra M. Epigallocatechin gallate attenuates arsenic induced genotoxicity via regulation of oxidative stress in balb/C mice. Mol Biol Rep. 2019;46(5):5355–69.

Eastmond DA, Hartwig A, Anderson D, et al. Mutagenicity testing for chemical risk assessment: update of the WHO/IPCS harmonized scheme. Mutagenesis. 2009;24(4):341–9.

García-Rodríguez MC, Carvente-Juárez MM, Altamirano-Lozano MA. Antigenotoxic and apoptotic activity of green tea polyphenol extracts on hexavalent chromium-induced DNA damage in peripheral blood of CD-1 mice: Analysis with differential acridine orange/ethidium bromide staining. Oxid Med Cell Longev. 2013;2013: 486419.

Bedrood Z, Rameshrad M, Hosseinzadeh H. Toxicological effects of Camellia sinensis (green tea): A review. Phyther Res. 2018;32(7):1163–80.

Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta‐analyses: The PRISMA statement. Int J Surg. 2010;8(5):336–41.

Al-Basher GI. Green tea activity and iron overload induced molecular fibrogenesis of rat liver. Saudi J Biol Sci. 2019;26(3):531–40.

Ladeira LCM, dos Santos EC, Santos TA, et al. Green tea infusion prevents diabetic nephropathy aggravation in recent-onset type 1 diabetes regardless of glycemic control. J Ethnopharmacol. 2021;274: 114032.

García-Rodríguez MC, Serrano-Reyes G, Hernández-Cortés LM, Altamirano-Lozano M. Antigenotoxic effects of (-)-epigallocatechin-3-gallate (EGCG) and its relationship with the endogenous antioxidant system, 8-hydroxydeoxyguanosine adduct repair (8-OHdG), and apoptosis in mice exposed to chromium (VI). J Toxicol Environ Heal. 2021;84(8):331–44.

Xie LW, Cai S, Zhao TS, Li M, Tian Y. Green tea derivative (−)-epigallocatechin-3-gallate (EGCG) confers protection against ionizing radiation-induced intestinal epithelial cell death both in vitro and in vivo. Free Radic Biol Med. 2020; 161:175–186.

Wang D, Gao Q, Wang T, et al. Green tea polyphenols and epigallocatechin-3-gallate protect against perfluorodecanoic acid induced liver damage and inflammation in mice by inhibiting NLRP3 inflammasome activation. Food Res Int. 2020;127: 108628.

Wongmekiat O, Peerapanyasut W, Kobroob A. Catechin supplementation prevents kidney damage in rats repeatedly exposed to cadmium through mitochondrial protection. Naunyn Schmiedebergs Arch Pharmacol. 2018;391(4):385–94.

Gu M, Liu C, Wan X, et al. Epigallocatechin gallate attenuates bladder dysfunction via suppression of oxidative stress in a rat model of partial bladder outlet obstruction. Oxid Med Cell Longev. 2018;2018: 1393641.

Chen K, Chen W, Liu SL, et al. Epigallocatechin gallate attenuates myocardial injury in a mouse model of heart failure through TGF-β1/Smad3 signaling pathway. Mol Med Rep. 2018;17(6):7652–60.

Shanmugam T, Selvaraj M, Poomalai S. Epigallocatechin gallate potentially abrogates fluoride induced lung oxidative stress, inflammation via Nrf2/Keap1 signaling pathway in rats: An in-vivo and in-silico study. Int Immunopharmacol. 2016; 39:128–139.

Tak E, Park GC, Kim SH, et al. Epigallocatechin-3-gallate protects against hepatic ischaemia–reperfusion injury by reducing oxidative stress and apoptotic cell death. J Int Med Res. 2016;44(6):1248–1262.

Zhao L, Zhang N, Yang D, et al. Protective effects of five structurally diverse flavonoid subgroups against chronic alcohol-induced hepatic damage in a mouse model. Nutrients. 2018;10 (11): 1754.

Tseng HC, Wang MH, Chang KC, et al. Protective effect of (−) epigallocatechin-3-gallate on rotenone-induced parkinsonismlike symptoms in rats. Neurotox Res. 2020;37(3):669–82.

Liang Y, Ip MSM, Mak JCW. (-)-Epigallocatechin-3-gallate suppresses cigarette smoke-induced inflammation in human cardiomyocytes via ROS-mediated MAPK and NF-κB pathways. Phytomedicine. 2019;58: 152768.

Pereyra-Vergara F, Olivares-Corichi IM, Perez-Ruiz AG, Luna-Arias JP, García-Sánchez JR. Apoptosis induced by (−)-epicatechin in human breast cancer cells is mediated by reactive oxygen species. Molecules. 2020;25(5):1020.

Farhan M, Oves M, Chibber S, Hadi SM, Ahmad A. Mobilization of nuclear copper by green tea polyphenol epicatechin-3-gallate and subsequent prooxidant breakage of cellular DNA: implications for cancer chemotherapy. Int J Mol Sci. 2017;18(1): 34.

Udroiu I, Marinaccio J, Sgura A. Epigallocatechin-3-gallate induces telomere shortening and clastogenic damage in glioblastoma cells. Environ Mol Mutagen. 2019; 60:683–92.

Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.

Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem. 2015; 97:55–74.

Surh YJ, Ferguson LR. Dietary and medicinal antimutagens and anticarcinogens: Molecular mechanisms and chemopreventive potential - Highlights of a symposium. Mutat Res - Fundam Mol Mech Mutagen. 2003;523–524:1–8.

Shi X, Ye J, Leonard SS, et al. Antioxidant properties of (-)-epicatechin-3-gallate and its inhibition of Cr (VI)-induced DNA damage and Cr(IV)- or TPA-stimulated NF-κB activation. Mol Cell Biochem. 2000;206(1–2):125–32.

Hakim IA, Chow HHS, Harris RB. Green tea consumption is associated with decreased DNA damage among GSTM1-positive smokers regardless of their hOGG1 genotype. J Nutr. 2008;138(8):1567–71.

Valavanidis A, Vlachogianni T, Fiotakis C. 8-hydroxy-2′-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Heal Part C. 2009;27(2):120–39.

García-Rodríguez MC. Polifenoles y vitaminas en la protección del daño genético inducido por metales con potencial cancerígeno. Nutr Clin Med. 2019; XIII (3):129–39.

Mikuła-Pietrasik J, Kuczmarska A, Rubiś B, et al. Resveratrol delays replicative senescence of human mesothelial cells via mobilization of antioxidative and DNA repair mechanisms. Free Radic Biol Med. 2012;52(11–12):2234–45.

Ho CK, Choi SW, Siu PM, Benzie IFF. Effects of single dose and regular intake of green tea (Camellia sinensis) on DNA damage, DNA repair, and heme oxygenase-1 expression in a randomized controlled human supplementation study. Mol Nutr Food Res. 2014;58(6):1379–83.

Calabrese EJ, Tsatsakis A, Agathokleous E, Giordano J, Calabrese V. Does green tea induce hormesis? Dose-Response. 2020;18(3):1–13.

Kim H-S, Quon MJ, Kim JA. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol. 2014;2:187–195.

Ouyang J, Zhu K, Liu Z, Huang J. Prooxidant effects of epigallocatechin-3-gallate in health benefits and potential adverse effect. Oxid Med Cell Longev. 2020;2020: 9723686.

Janciauskiene S. The beneficial effects of antioxidants in health and diseases. Chronic Obstr Pulm Dis J COPD Found. 2020;7(3):182–202.

Descargas

Publicado

2022-11-14

Cómo citar

García-Rodríguez, M. del C., Hernández-Cortés, L. M., & Arenas-Huertero, F. (2022). Catequinas del té verde: efectos antigenotóxicos y genotóxicos. Revisión sistemática. Archivos Latinoamericanos De Nutrición (ALAN), 72(3), 205–217. https://doi.org/10.37527/2022.72.3.006

Número

Sección

Revisión de la Literatura