MiRNA-133a and MiRNA-25 3p and their relationship with some variables in serum of patients with Osteoporosis

Authors

Keywords:

miRNA, Osteoporosis, Osteoclastogenesis, Osteoblast, Osteoclast, BMD

Abstract

Osteoporosis is a chronic disease characterized by bone fragility that results in fractures and a variety of miRNAs are involved in osteoclast differentiation therefore, the current case control study aimed to estimate miRNA-133a and miRNA-25 3p in osteoporotic patients and evaluate relationship of these miRNAs with some variables including (calcium, vitamin D, BMD, smoking,  history of previous fracture and gender, this study conducted on fifty patients suffering from osteoporosis with age range between 50-88 years, other group  consist of 45 healthy individuals with an age range between 55-87 years included in this study as a control group. Blood samples used to extraction of miRNA-133a and miRNA-25 3p from the serum of patients and healthy control as a biomarker for osteoporosis were quantitated by using RT-PCR. Results:  miR-133a fold change was significantly upregulated   in serum of   osteoporotic patients and highest in patients group compared with control group, miR-133a highly significant difference in miR-133 among study groups (P < 0.001); while no significant difference in miR-25 among study groups (P = 0.295); although the level of patients groups was higher than that of control group. Receiver operator characteristic (ROC) curve  of  miR-133  was carried out and cutoff  value  was  >8.3  with  sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV)  and area under curve of 76%, 80%,82.6%, 72.7% and 0.815 (0.723- 906), while (ROC) curve analysis and  cutoff  value of miR-25 was >1.32  with  sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and Area under curve of 66%, 45%, 60%, 51.4% and 0.565 (0.444- 685).Conclusion: miRNA-133a is high sensitivity and Specificity in this study which was bushed to using them as a biomarker for osteoporosis diagnosis.   

Downloads

Download data is not yet available.

References

-Contreras F., Fouillioux C., Bolívar A., Jiménez S., Rodríguez S., García M., Montero E., Cabrera J., Suárez5y M Velasco N., (2001). Osteoporosis: Risk Factors, Prevention and Treatment. (AVFT) Archives of Venezuelan of Pharmacology and Therapeutics, vol. (20) – No.(1), (27-37).

-Norma Gunsha L., Joselyn Rojas and Valmore Bermúdez, (2016). Osteoporosis in a 30-yr old woman with premature ovarian insufficiency. Case report. (AVFT) Archives of Venezuelan of Pharmacology and Therapeutics, vol. (35) – No.(1). (11-15).

- María Luisa Arias Loyola, Joselyn Rojas and Valmore Bermúdez, (2019). Primary hyperparathyroidism with nephrolithiasis in a menopausal woman with regard to a case. (AVFT) Archives of Venezuelan of Pharmacology and Therapeutics, vol. (38) – No.(2). (211-214).

- María Gabriela Reyes, Robys González, Rendy Chaparro, Roberto Añez, Hedyluz Araujo and Diego Fuenmayor, (2017). Growth Hormone, IGF-1, urine Calcium/creatinine ratio and Bone mineral density in acromegalic patients. (AVFT) Archives of Venezuelan of Pharmacology and Therapeutics, vol. (36) – No.(1). (1-9).

-Khosla S. and Riggs BL., (2005). Pathophysiology of age-related bone loss and osteoporosis. Endocrinol Metab Clin N Am.; 34:1015–30.

-Kanis JA., Melton LJ. III, Christiansen C., Johnston CC. and Khaltaev N., (1994). The diagnosis of osteoporosis. Journal of Bone and Mineral Research.;9(8):1137-1141.

-Johnell O. and Kanis JA., (2006). An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis International; 17(12):1726-1733.

-Warriner A. H. and Saag K. G., (2013). “Osteoporosis diagnosis and medical treatment,” Orthopedic Clinics, vol. 44, no. 2, pp. 125–135.

-Hays J., Ockene J. K., Brunner R. L., Kotchen J. M., Manson J. E., Patterson R. E., Aragaki A. K., Shumaker S. A., Brzyski R. G., LaCroix A. Z. et al., (2003). “Effects of estrogen plus progestin on health-related quality of life,” New England Journal of Medicine, vol. 348, no. 19, pp. 1839–1854.

-Blake G. M. and Fogelman I., (2010). “An update on dual-energy x-ray absorptiometry,” in Seminars in nuclear medicine, vol. 40, no. 1. Elsevier, pp. 62–73.

-Cummings S. R. and Black D., (1995). “Bone mass measurements and risk of fracturein caucasian women: A review of findings from prospective studies,” The American journal of medicine, vol. 98, no. 2, pp. 24S– 28S.

-Schuit S., Klift M. V.d, Weel A., De Laet C., Burger H., Seeman E., Hofman A., Uitterlinden A., Van Leeuwen J. and Pols H., (2004). “Fracture incidence and association with bone mineral density in elderly men and women: the rotterdam study,” Bone, vol. 34, no. 1, pp. 195–202.

-Bellavia D., De Luca A., Carina V. et al., (2019). Deregulated miRNAs in bone health: epigenetic roles in osteoporosis. Bone 122, 52–75.

-Taipaleenmaki H., (2018). Regulation of bone metabolism by microRNAs. Curr Osteoporos Rep.; 16(1):1–12.

-Bayraktar, R., Van Roosbroeck, K., and Calin, G. A. (2017). Cell-to-cell communication: microRNAs as hormones. Mol. Oncol. 11 (12),1673–1686. doi: 10.1002/1878-0261.12144.

-Rao PK., Kumar RM., Farkhondeh M., Baskerville S. and Lodish HF., (2006). Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Nat Acad Sci USA; 103:8721-6.

-Zhang Y., Xie RL., Croce CM., Stein JL., Lian JB., van Wijnen AJ. and Stein GS., (2011). A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Nat Acad Sci U S A; 108:9863-8; PMID:21628588.

-Liao XB., Zhang ZY., Yuan K., et al., (2013). MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells. Endocrinology.;154(9):3344–52.

-Fan J.-B., Liu W., Zhu X.-H.,Yi H., Cui S.-Y., Zhao J.-N. and Cui Z.-M., (2017), microRNA-25 targets PKCζ and protects osteoblastic cells from dexamethasone via activating AMPK signaling, Oncotarget, Vol.8,(No.2),pp:3226-3236. doi: 10.18632/oncotarget.13698.

-Hackl M., Heilmeier U., Weilner S. and Grillari J., (2016). Circulating microRNAs as novel biomarkers for bone diseases-Complex signatures for multifactorial diseases? Mol. Cell. Endocrinol., 432, 83-95.

-Morrow D.A. and de Lemos J.A., (2007). Benchmarks for the Assessment of Novel Cardiovascular Biomarkers. Circulation, 115, 949–952.

-Livak, K.J. and Schmittgen T.D., (2001)."Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCTmethod" method 25(4):402-408.

-World Health Organization. (2007). WHO scientific group on the assessment of osteoporosis at primary health care level. Summary Meeting report. Brussels, Belgium. 2:5–7 http:// www.who. int/chp/ topics/.

-Sozen T., Ozışık L. and Başaran NC. (2017). An overview and management of osteoporosis. European Journal of Rheumatology.; 4(1):46.

-Johnell O. and Kanis JA., (2006). An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis International.; 17(12):1726-1733.

-Ji X., Chen X. and Yu X., (2016). MicroRNAs in Osteoclastogenesis and Function: Potential Therapeutic Targets for Osteoporosis, Int. J. Mol. Sci. 17, 349; doi:10.3390/ijms17030349.

-Kocijan R., Muschitz C., Geiger E., Skalicky S., Baierl A., Dormann R. et al., (2016). Circulating microRNA signatures in patients with idiopathic and postmenopausal osteoporosis and fragility fractures. J. Clin. Endocrinol. Metab. 101, 4125–4134, https://doi.org/10.1210/jc.2016-2365.

-Lane N.E. (2006). Epidemiology, etiology, and diagnosis of osteoporosis. Am. J. Obstet. Gynecol. 194, S3–S11, https:// doi.org/ 10.1016/ j.ajog. 2005.08.047.

-Yasui T., Hirose J., Aburatani H. and Tanaka S., (2011). Epigenetic regulation of osteoclast differentiation. Ann. N. Y. Acad. Sci. 1240, 7–13, https://doi.org/10.1111/j.1749-6632. 2011. 06245.x.

-Ghayor C. and Weber F.E., (2016). Epigenetic regulation of bone remodeling and its impacts in osteoporosis. Int. J. Mol. Sci. 17, 1–14, https:// doi.org/10.3390/ijms17091446.

-Levine JP. (2011). Identification, diagnosis, and prevention of osteoporosis. Am J Manag Care 17:S170–6.

-Pala E., Denkc and eken T., (2019). Differentially expressed circulating miRNAs in postmenopausal osteoporosis: ameta-analysis. Biosci. Rep. 39(5), BSR20190667.

-Li Z., Zhang W. and Huang Y. (2018). MiRNA-133a is involved in the regulation of postmenopausal osteoporosis through promoting osteoclast differentiation, Acta Biochim Biophys Sin, 50(3), 273–280.

-Anastasilakis A.D., Makras P., Pikilidou M., et al., (2018). Changes of circulating MicroRNAs in response to treatment with Teriparatide or Denosumab in postmenopausal osteoporosis, J. Clin. Endocrinol. Metab. (3) 1206–1213.

-Wang Y., Li L., Moore B.T., et al., (2012). MiR-133a in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis, PLoS One 7 e34641.

-Li H., Wang Z., Fu Q. and Zhang J., (2014). Plasma miRNA levels correlate with sensitivity to bone mineral density in postmenopausal osteoporosis patients. Biomarkers 19, 553–556.

-Letarouilly J.-G., Brouxa O. and Clabaut A., (2018). New insights into the epigenetics of osteoporosis Genomics, https:// doi.org/10.1016/ j. ygeno. 2018. 05.001.

-Cao Z., Moore B.T., Wang Y., Peng X.H., Lappe J.M., Recker R.R. and Xiao P., (2014). miR-422a as a potential cellular microRNA biomarker for postmenopausal osteoporosis. PLoS ONE, 9, e97098.

-Cheng P., Chen C., He H.B., Hu R., Zhou H.D., Xie H., Zhu W., Dai R.C., Wu X.P., Liao E.Y., et al. (2013). miR-148a regulates osteoclastogenesis by targeting v-maf musculoaponeurotic fibrosarcoma oncogene homolog b. J. Bone Miner. Res., 28, 1180–1190.

-Weilner S., Skalicky S., Salzer B., Keider V., Wagner M., Hildner F. Gabriel C., Dovjak P., Pietschmann P. and Grillari-Voglauer R., (2015). Differentially circulating miRNAs after recent osteoporotic fractures can influence osteogenic differentiation. Bone, 79, 43–51.

-Foessl I., Kotzbeck P. and Obermayer-Pietsch B., (2019). miRNAs as novel biomarkers for bone related diseases. J Lab Precis Med;4:2.

-Seeliger C., Karpinski K., Haug A.T.,Vester H., Schmitt A., Bauer J.S. and van Griensven M., (2014). Five freely circulating mirnas and bone tissue miRNAs are associated with osteoporotic fractures. J. Bone Miner. Res., 29, 1718–1728.

-Panach L., Mifsut D., Tarín J.J., Cano A. and García-Pérez M.A., (2015). Serum circulating MicroRNAs as biomarkers of osteoporotic fracture, Calcif. Tissue Int. 97, 495–505.

-Chen H., Jiang H., Can D., et al., (2017). Evaluation of MicroRNA 125b as a potential biomarker for postmenopausal osteoporosis, Trop. J. Pharm. Res. 16, 641.

-Suttamanatwong S. (2017). MicroRNAs in bone development and their diagnostic and therapeutic potentials in osteoporosis, Connect. Tissue Res. 58, 90–102.

-Sourvinou IS., Markou A. and Lianidou ES. (2013). Quantification of Circulating miRNAs in Plasma. J Mol Diagn; 15:827-34.

-Li Y., Jiang Z., Xu L., et al. (2011). Stability analysis of liver cancer-related microRNAs. Acta Biochim Biophys Sin (Shanghai);43:69-78.

-Ding H., Meng J., Zhang W., et al., (2017). Medical examination powers miR-194-5p as a biomarker for postmenopausal osteoporosis. Sci Rep.; 7(1):16726.

-Takahashi K., Yokota S-I., Tatsumi N., Fukami T., Yokoi T. and Nakajima M. (2013). Cigarette smoking substantially alters plasma microRNA profiles in healthy subjects. Toxicol Appl Pharmacol.; 272 (1):154–60.

-Becker N. and Lockwood CM. (2013). Pre-analytical variables in miRNA analysis. Clin Biochem.; 46(10–11):861–8.

-Radom-Aizik S., Zaldivar F., Oliver S., Galassetti P. and Cooper DM. (2010). Evidence for microRNA involvement in exercise-associated neutrophil gene expression changes. J Appl Physiol.;109 (1):252–61.

-Backes C., Leidinger P., Keller A., et al., (2014). Blood born miRNAs signatures that can serve as disease specific biomarkers are not significantly affected by overall fitness and exercise. PloS One.; 9(7):e102183.

-de Boer HC., van Solingen C., Prins J., et al., (2013). Aspirin treatment hampers the use of plasma microRNA-126 as a biomarker for the progression of vascular disease. Eur Heart J.;34(44):3451–7.

-Kroh EM., Parkin RK., Mitchell PS. and Tewari M., (2010). Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods.; 50(4): 298–301.

-Mendell JT. and Olson EN. (2012). MicroRNAs in stress signaling and human disease. Cell.; 148(6):1172-1187.

-Sun K.T., Chen M.Y., Tu M.G., et al. (2015). MicroRNA-20a regulates autophagy related protein-ATG16L1 in hypoxia-induced osteoclast differentiation, Bone 73 145e153.

-Huang Y., Ren K., Yao T., Zhu H., Xu Y. Ye H., Chen Z., Lv J., Shen S., Ma J., (2019). MicroRNA-25-3p regulates osteoclasts through nuclear factor I X, Biochemical and Biophysical Research Communications, https://doi.org/ 10.1016/ j.bbrc. 2019. 11.043.

-Letarouilly J.-G., Brouxa O. and Clabaut A. (2018). New insights into the epigenetics of osteoporosis Genomics, https:// doi.org/10.1016/ j. ygeno. 2018. 05.001

-Feurer E., Kan C., Croset M., Sornay-Rendu E. and Chapurlat R. (2019). Lack of Association Between Select Circulating miRNAs and Bone Mass, Turnover, and Fractures: Data from the OFELY Cohort, Journal of Bone and Mineral Research, Vol. xx, No. xx, pp 1–12, DOI: 10.1002/jbmr.3685.

-Fittipaldi S., Visconti V.V., Tarantino U., Novelli G. and Botta A. (2020). Genetic variability in noncoding RNAs: involvement of miRNAs and long noncoding RNAs in osteoporosis pathogenesis. Epigenomics, 12(22), 2035–2049.

Downloads

Published

2023-04-14

How to Cite

Halah Dawood Salman, & Manal M. Kadhim. (2023). MiRNA-133a and MiRNA-25 3p and their relationship with some variables in serum of patients with Osteoporosis. AVFT – Archivos Venezolanos De Farmacología Y Terapéutica, 40(8). Retrieved from http://saber.ucv.ve/ojs/index.php/rev_aavft/article/view/26105