Low grade glioma segmentation using an automatic computational technique in magnetic resonance imaging

Authors

  • Miguel Vera
  • Yoleidy Huérfano
  • Oscar Valbuena
  • Yudith Contreras
  • María Cuberos
  • Marisela Vivas
  • Williams Salazar
  • María Isabel Vera
  • Maryury Borrero
  • Carlos Hernández
  • Doris Barrera
  • Ángel Valentín Molina
  • Luis Javier Martínez
  • Juan Salazar
  • Elkin Gelves
  • Frank Sáenz

Keywords:

Magnetic resonance brain imaging, Cerebral tumor, Low grade glioma, Grade II astrocytoma, Computational technique, Segmentation.

Abstract

Through this work we propose a computational technique forthe segmentation of a brain tumor, identified as low gradeglioma (LGG), specifically grade II astrocytoma, which ispresent in magnetic resonance images (MRI). This techniqueconsists of 3 stages developed in the three-dimensionaldomain. They are: pre-processing, segmentation and postprocessing.The percent relative error (PrE) is considered tocompare the segmentations of the LGG, generated by a neuro-oncologist manually, with the dilated segmentations of theLGG, obtained automatically. The combination of parameterslinked to the lowest PrE, allow establishing the optimal parametersof each computational algorithm that makes up theproposed computational technique. The results allow reportinga PrE of 1.43%, which indicates an excellent correlationbetween the manual segmentations and those produced bythe computational technique developed.

Downloads

Download data is not yet available.

How to Cite

Vera, M., Huérfano, Y., Valbuena, O., Contreras, Y., Cuberos, M., Vivas, M., Salazar, W., Vera, M. I., Borrero, M., Hernández, C., Barrera, D., Molina, Ángel V., Martínez, L. J., Salazar, J., Gelves, E., & Sáenz, F. (2018). Low grade glioma segmentation using an automatic computational technique in magnetic resonance imaging. AVFT – Archivos Venezolanos De Farmacología Y Terapéutica, 37(4). Retrieved from http://saber.ucv.ve/ojs/index.php/rev_aavft/article/view/15678