Modelos predictivos para la seguridad alimentaria en América Latina: Una revisión de alcance
DOI:
https://doi.org/10.37527/2025.75.2.006Palabras clave:
Sistemas Agroalimentarios, Modelos Predictivos, Algoritmos Computacionales, Latinoamérica, Food Security, Agro-Food Systems, Predictive Models, Computational Algorithms, Latin AmericaResumen
Introducción: La seguridad alimentaria en América Latina enfrenta desafíos significativos debido a factores como el cambio climático, la desigualdad social y la inestabilidad económica, lo que resalta la necesidad de herramientas avanzadas para su análisis y gestión. Este artículo revisa el estado actual de la literatura sobre modelos predictivos aplicados a la seguridad alimentaria en Latinoamérica, con énfasis en el contexto colombiano durante el período 2014- 2024. Objetivo: Describir los enfoques metodológicos, los algoritmos utilizados y sus aplicaciones prácticas en este ámbito. Materiales y métodos: Se realizó una revisión de alcance siguiendo los lineamientos PRISMA-ScR, que incluyó 65 estudios relevantes. Resultados: Los hallazgos destacan el predominio de variables climáticas, agrícolas y tecnológicas, mientras que las categorías socioeconómicas y sanitarias/ nutricionales estuvieron subrepresentadas. Los algoritmos más utilizados fueron Bosques Aleatorios y Redes Neuronales Artificiales, ambos con un 16,9%. Las principales áreas de enfoque fueron la gestión sostenible de recursos naturales (26,2%), la predicción del rendimiento agrícola (21,54%) y los impactos del cambio climático y la calidad y seguridad de los alimentos (13,85% cada una). Conclusiones: La integración de categorías de datos más amplias y el desarrollo de modelos más robustos son fundamentales para fortalecer la seguridad alimentaria en la región, contribuyendo a los objetivos de desarrollo sostenible y a políticas públicas más efectivas.
Introducción: La seguridad alimentaria en América Latina enfrenta desafíos significativos debido a factores como el cambio climático, la desigualdad social y la inestabilidad económica, lo que resalta la necesidad de herramientas avanzadas para su análisis y gestión. Este artículo revisa el estado actual de la literatura sobre modelos predictivos aplicados a la seguridad alimentaria en Latinoamérica, con énfasis en el contexto colombiano durante el período 2014- 2024. Objetivo: Describir los enfoques metodológicos, los algoritmos utilizados y sus aplicaciones prácticas en este ámbito. Materiales y métodos: Se realizó una revisión de alcance siguiendo los lineamientos PRISMA-ScR, que incluyó 65 estudios relevantes. Resultados: Los hallazgos destacan el predominio de variables climáticas, agrícolas y tecnológicas, mientras que las categorías socioeconómicas y sanitarias/ nutricionales estuvieron subrepresentadas. Los algoritmos más utilizados fueron Bosques Aleatorios y Redes Neuronales Artificiales, ambos con un 16,9%. Las principales áreas de enfoque fueron la gestión sostenible de recursos naturales (26,2%), la predicción del rendimiento agrícola (21,54%) y los impactos del cambio climático y la calidad y seguridad de los alimentos (13,85% cada una). Conclusiones: La integración de categorías de datos más amplias y el desarrollo de modelos más robustos son fundamentales para fortalecer la seguridad alimentaria en la región, contribuyendo a los objetivos de desarrollo sostenible y a políticas públicas más efectivas.
Descargas
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Juanita Trejos-Suárez, Lina Valeria Cuadrado Pardo, Josuepth Esteban Tabares, Sandra Garzón, Alejandro Bryon, Zaida Alarcón

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Usted es libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar — remezclar, transformar y construir a partir del material
La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
NoComercial — Usted no puede hacer uso del material con propósitos comerciales.
No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.
