Effect of acetylsalicylic acid on arterial stiffness in pregnancy in a Colombian population: prospective cohort study
Keywords:
Aspirin, Vascular Stiffness, Preeclampsia, Induced Hypertension in PregnancyAbstract
To estimate the effect of acetylsalicylic acid consumption on hemodynamic variables and arterial stiffness at different times of gestation and the development of hypertensive disorders. Methods: Prospective cohort study included 1800 women with pregnancies of 17 weeks or less, with no history of hypertension; 487 (27%) received 100 mg/day of acetylsalicylic acid before week 16. The variables were measured at four points of gestation. The effect of consumption was estimated using the model of generalized estimable equations, adjusted for confounding variables. Results: Baseline levels of the variables were higher in the group receiving acetylsalicylic acid, but with no difference in the rate of change when adjusted. The adjusted differences in aortic increase index, pulse wave velocity, central aortic systolic pressure, systolic blood pressure, and mean arterial pressure, between patients who consumed acetylsalicylic acid and those who did not consume was 0.5% (-0.2, 1.3); 0.1 m/s (-0.02; 0.1), 0.9 mm Hg (-0.1; 1.8), 0.7 mm Hg (-0.2, 1.6) and 0.6 mm Hg (-0.2, 1.4), respectively. In patients who received acetylsalicylic acid and developed preeclampsia, an adjusted average increase of 0.3 m/s (95% CI 0.1, 0.5) was found between each measurement of pulse wave velocity. Conclusions: In women who received acetylsalicylic acid and developed preeclampsia, an increase in the adjusted average change in pulse wave velocity was found, indicating that consumption of acetylsalicylic acid did not decrease arterial stiffness.
Downloads
References
Magee L, Von Dadelszen P, Stones W, Mathai M. The FIGO textbook of pregnancy hypertension: An evidence-based guide to monitoring, prevention and management. London: The Global Library of Women’s Medicine; 2016.
Say L, Chou D, Gemmill A, Tunçalp Ö, Moller A-B, Daniels J, et al. Global causes of maternal death: a WHO systematic analysis. The Lancet Glob Health. 2014;2(6):e323-e33. DOI: 10.1016/S2214-109X(14)70227-X.
Instituto Nacional de Salud. Mortalidad materna (temprana). Periodo epidemiologíco XIII. Colombia [Internet]; 2019 [consultado 11 de noviembre de 2020]. Disponible en: https://www.ins.gov.co/buscador-eventos/Informesdeevento/MORTALIDAD%20MATERNA%20PE%20XIII%202019.pdf.
Foo FL, McEniery CM, Lees C, Khalil A, International Working Group on Maternal H. Assessment of arterial function in pregnancy: recommendations of the International Working Group on Maternal Hemodynamics. Ultrasound Obstet Gynecol. 2017;50(3):324-331. DOI: 10.1002/uog.17565.
Hausvater A, Giannone T, Sandoval YH, Doonan RJ, Antonopoulos CN, Matsoukis IL, et al. The association between preeclampsia and arterial stiffness. J Hypertens. 2012;30(1):17-33. DOI: 10.1097/HJH.0b013e32834e4b0f.
Franz MB, Burgmann M, Neubauer A, Zeisler H, Sanani R, Gottsauner-Wolf M, et al. Augmentation index and pulse wave velocity in normotensive and pre-eclamptic pregnancies. Acta Obstet Gynecol Scand. 2013;92(8):960-966. DOI: 10.1111/aogs.12145.
Avolio A. Arterial Stiffness. Pulse (Basel). 2013;1(1):14-28. DOI: 10.1159/000348620.
Khalil A, Akolekar R, Syngelaki A, Elkhouli M, Nicolaides KH. Maternal hemodynamics at 11–13 weeks’ gestation and risk of pre-eclampsia. Ultrasound Obstet Gynecol. 2012;40(1):28-34. DOI: 10.1002/uog.11183.
Avolio A, Butlin M, Liu Y-Y, Viegas K, Avadhanam B, Lindesay G. Regulation of arterial stiffness: Cellular, molecular and neurogenic mechanisms. Artery Research. 2011;5(4):122-7. DOI: https://doi.org/10.1016/j.artres.2011.10.002.
Hubel CA. Oxidative stress in the pathogenesis of preeclampsia. Proc Soc Exp Biol Med. 1999;222(3):222-235. DOI: 10.1046/j.1525-1373.1999.d01-139.x.
Wu F, Tian FJ, Lin Y, Xu WM. Oxidative Stress: Placenta Function and Dysfunction. Am J Reprod Immunol. 2016;76(4):258-271. DOI: 10.1111/aji.12454.
Schoots MH, Gordijn SJ, Scherjon SA, van Goor H, Hillebrands JL. Oxidative stress in placental pathology. Placenta. 2018;69:153-161. DOI: 10.1016/j.placenta.2018.03.003.
Walsh SW. Low-dose aspirin: treatment for the imbalance of increased thromboxane and decreased prostacyclin in preeclampsia. Am J Perinatol. 1989;6(2):124-132. DOI: 10.1055/s-2007-999562.
Atallah A, Lecarpentier E, Goffinet F, Doret-Dion M, Gaucherand P, Tsatsaris V. Aspirin for Prevention of Preeclampsia. Drugs. 2017;77(17):1819-1831. DOI: 10.1007/s40265-017-0823-0.
Lain KY, Roberts JM. Contemporary concepts of the pathogenesis and management of preeclampsia. JAMA. 2002;287(24):3183-3186. DOI: 10.1001/jama.287.24.3183.
Duley L, Meher S, Hunter KE, Seidler AL, Askie LM. Antiplatelet agents for preventing pre-eclampsia and its complications. Cochrane Database Syst Rev. 2019 Oct 30;2019(10):CD004659. DOI: 10.1002/14651858.CD004659.pub3.
Henderson JT, Whitlock EP, O’Connor E, Senger CA, Thompson JH, Rowland MG. Low-dose aspirin for prevention of morbidity and mortality from preeclampsia: a systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med. 2014;160(10):695-703. DOI: 10.7326/M13-2844.
ACOG Committee Opinion No. 743: Low-Dose Aspirin Use During Pregnancy. Obstet Gynecol. 2018 Jul;132(1):e44-e52. DOI: 10.1097/AOG.0000000000002708.
Wang Y, Walsh SW. Aspirin inhibits both lipid peroxides and thromboxane in preeclamptic placentas. Free Radical Biology and Medicine. 1995;18(3):585-591. DOI: https://doi.org/10.1016/0891-5849(94)00157-F.
Perneby C, Vahter M, Akesson A, Bremme K, Hjemdahl P. Thromboxane metabolite excretion during pregnancy--influence of preeclampsia and aspirin treatment. Thromb Res. 2011;127(6):605-606. DOI: 10.1016/j.thromres.2011.01.005.
Panagodage S, Yong HE, Da Silva Costa F, Borg AJ, Kalionis B, Brennecke SP, et al. Low-Dose Acetylsalicylic Acid Treatment Modulates the Production of Cytokines and Improves Trophoblast Function in an in Vitro Model of Early-Onset Preeclampsia. Am J Pathol. 2016;186(12):3217-24. DOI: 10.1016/j.ajpath.2016.08.010.
Gil-Villa AM, Norling LV, Serhan CN, Cordero D, Rojas M, Cadavid A. Aspirin triggered-lipoxin A4 reduces the adhesion of human polymorphonuclear neutrophils to endothelial cells initiated by preeclamptic plasma. Prostaglandins Leukot Essent Fatty Acids. 2012;87(4-5):127-134. DOI: 10.1016/j.plefa.2012.08.003.
Dutta S, Kumar S, Hyett J, Salomon C. Molecular targets of aspirin and prevention of preeclampsia and their potential association with circulating extracellular vesicles during pregnancy. Int J Mol Sci. 2019;20(18):4370. DOI: 10.3390/ijms20184370.
Hashemi M, Baktash F, Heshmat-Ghahdarijani K, Zarean E, Bahrani S. Evaluation the effect of low-dose aspirin on endothelial dysfunction in preeclamptic patients. J Res Med Sci. 2016;21:131. DOI: 10.4103/1735-1995.196613.
Pietri P, Vlachopoulos C, Terentes-Printzios D, Xaplanteris P, Aznaouridis K, Petrocheilou K, et al. Beneficial effects of low-dose aspirin on aortic stiffness in hypertensive patients. Vasc Med. 2014;19(6):452-457. DOI: 10.1177/1358863X14556695.
Vlachopoulos C, Dima I, Aznaouridis K, Vasiliadou C, Ioakeimidis N, Aggeli C, et al. Acute systemic inflammation increases arterial stiffness and decreases wave reflections in healthy individuals. Circulation. 2005;112(14):2193-2200. DOI: 10.1161/CIRCULATIONAHA.105.535435.
Mannaerts D, Faes E, Goovaerts I, Stoop T, Cornette J, Gyselaers W, et al. Flow-mediated dilation and peripheral arterial tonometry are disturbed in preeclampsia and reflect different aspects of endothelial function. Am J Physiol Regul Integr Comp Physiol. 2017;313(5):R518-R25. DOI: 10.1152/ajpregu.00514.2016.
Olafiranye O, Hostler D, Winger DG, Wang L, Reis SE. Effect of aspirin on acute changes in peripheral arterial stiffness and endothelial function following exertional heat stress in firefighters: The factorial group results of the Enhanced Firefighter Rehab Trial. Vasc Med. 2015;20(3):230-236. DOI: 10.1177/1358863X15571447.
Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27(21):2588-2605. DOI: 10.1093/eurheartj/ehl254.
O’Rourke MF, Staessen JA, Vlachopoulos C, Duprez D, Plante GéE. Clinical applications of arterial stiffness; definitions and reference values. Am J Hypertens. 2002;15(5):426-444. DOI: 10.1016/S0895-7061(01)02319-6.
Liang K, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986;73(1):13-22. DOI: 10.1093/biomet/73.1.13 %J Biometrika.
Ballinger GA. Using generalized estimating equations for longitudinal data analysis. ORM. 2004;7(2):127-50. DOI: 10.1177/1094428104263672.
Chirinos JA, Segers P, Hughes T, Townsend R. Large-Artery stiffness in health and disease: JACC state-of-the-art review. J Am Coll Cardiol. 2019;74(9):1237-1263. DOI: https://doi.org/10.1016/j.jacc.2019.07.012.
Osman MW, Nath M, Breslin E, Khalil A, Webb DR, Robinson TG, et al. Association between arterial stiffness and wave reflection with subsequent development of placental-mediated diseases during pregnancy: findings of a systematic review and meta-analysis. J Hypertens. 2018;36(5):1005-1014. DOI: 10.1097/HJH.0000000000001664.
Kirollos S, Skilton M, Patel S, Arnott C. A systematic review of vascular structure and function in pre-eclampsia: Non-invasive assessment and mechanistic links. Front Cardiovasc Med. 2019;15(6):166. DOI: 10.3389/fcvm.2019.00166.
Phan K, Gomez Y, El-Messidi A, Gagnon R, Daskalopoulou S. PO-30 Effect of low-dose acetylsalicylic acid on arterial stiffness in high-risk pregnancies: An observational longitudinal study. Artery Research. 2016;16(C):97. DOI: 10.1016/j.artres.2016.08.033