Programación fetal

Autores/as

  • María J. Castro Servicio de Neonatología. Hospital Dr. Miguel Pérez Carreño. Caracas, Venezuela

Palabras clave:

Programación Fetal, Programación Metabólica, Epigenética.

Resumen

El término Origen Temprano de las Enfermedades del Adulto explica la aparición temprana de las condiciones anormales cardiovasculares y metabólicas en la vida adulta, mayor riesgo de morbilidad y muerte asociados a factores ambientales, especialmente nutricionales, que actúan en las primeras etapas de la vida. Estas respuestas programadas dependen de la naturaleza del estímulo o noxa, del tiempo de exposición y del momento de ocurrencia de la noxa, pudiendo un solo genotipo original varios fenotipos y estarían condicionadas por criterios críticos en los cuales se desarrollarían cambios a largo plazo pudiendo ser reversibles o no. La Programación Fetal explica que respuestas adaptativas embrionarias y fetales en un ambiente subóptimo genera consecuencias adversas permanentes. La desnutrición, así como la sobrenutrición fetal aumenta el riesgo de desarrollar alteraciones en el peso y composición corporal fetal, y posteriormente obesidad, síndrome metabólico, incremento en la adiposidad, alteración en el metabolismo de la glucosa y / o insulina, alteración del metabolismo lipídico, alteraciones hepáticas y de las cifras tensionales. La impronta genómica es esencial para el desarrollo y defectos en la misma puede originar alteraciones de la identidad parental transmisibles a las siguientes generaciones. Esta programación fetal puede ser explicada por la epigenética, definida como la serie de alteraciones hereditarias de la expresión genética a través de modificaciones del ADN y las histonas centrales sin cambios en la secuencia de ADN. Estas modificaciones epigenéticas alteran la estructura y condensación de la cromatina, afectando la expresión del genotipo y fenotipo. Este artículo desarrolla los aspectos involucrados en la Programación Fetal y los posibles mecanismos sobre la misma.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Latham KJ. Human Health and the Neolithic Revolution: an Overview of Impacts of the Agricultural Transition on Oral Health, Epidemiology, and the Human Body. Nebraska Anthropologist. 2013; 187: 95-102.

Stutz AJ. Paleolithic the International Encyclopedia of Biological Anthropology. Edited by WendaTrevathan. JohnWiley & Sons; 2018. DOI: 10.1002/9781118584538.ieba0363

Chacín M, Rojas J, Pineda C, Rodríguez D, Núñez Pacheco M, Márquez Gómez M, et al. Predisposición humana a la Obesidad, Síndrome Metabólico y Diabetes: El genotipo Ahorrador y la incorporación de los diabetogenes al genoma humano desde la Antropología Biológica. Síndrome Cardiometabólico. 2011; 1 (1): 11-15.

Holt BM, Formicola V. Hunters of the Ice Age: The Biology of Upper Paleolithic People. Yearbook of Physical Anthropology. 2008; 51:70-99.

Rojas J, Bermúdez V, Lea E, Aparicio D, Peña G, Acosta L, et al. Origen étnico y enfermedad cardiovascular. AVFT. 2008; 27(1): 41-58.

Langley-Evans SC, McMullen S. Developmental Origins of Adult Disease. Med Princ Pract. 2010;19: 87-98.

Barker DJ. Developmental origins of adult health and disease. J Epidemiol Community Health. 2004; 58: 114-115.

Neel JV. Diabetes mellitus: a ''thrifty'' genotype rendered detrimental by ‘‘progress’’? Am J Hum Genet.1962; 14: 353-362.

McMillen C, Robinson JS. Developmental Origins of the Metabolic Syndrome: Prediction, Plasticity, and Programming. Physiol Rev. 2005; 85: 571-633.

Oliver MH, Hawkins P, Harding JE. Periconceptional undernutrition alters growth trajectory and metabolic and endocrine responses to fasting in late gestation fetal sheep. Pediatr Res. 2005; 57:591-598.

Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976; 295(7):349-353.

Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum Dev.2006; 82:485-491.

Schulz LC. The Dutch Hunger Winter and the developmental origins of health and disease. PNAS. 2010; 107(39): 16757-16758.

Painter RC, Roseboom TJ, Bleker OP. Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol. 2005; 20(3): 345-50.

Roseboom T. Epidemiological evidence for the developmental origins of health and disease: effects of prenatal undernutrition in humans. J Endocrinol. 2019; 242:T135-T144.

Barker DJ. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ. 1989; 298: 564-7.

Barker DJ, Clark PM. Fetal undernutrition and disease in later life. Rev Reproduction. 1997; 2:105-12.

Barker DJ, Bull AR, Osmond C, Simmonds SJ: Fetal and placental size and risk of hypertension in adult life. BMJ. 1990; 301: 259-262.

Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992; 35: 595-601.

Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM: Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993; 36: 62-67.

Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, Winter PD: Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991; 303: 1019-1022.

Gluckman PD, Hanson MA. The developmental origins of the metabolic syndrome. Trends Endocrinol Metab. 2004; 15 (4 ):183-187.

Lucas A. Programming by early nutrition in man. Ciba Found Symp. 1991; 156: 38-50.

Langley-Evans SC, McMullen S. Developmental Origins of Adult Disease. Med Princ Pract. 2010; 19:87-98.

Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD, Hanson MA. Epigenetic Mechanisms and the Mismatch Concept of the Developmental Origins of Health and Disease. Pediatr Res. 2007; 61: 5R-10R.

Ramírez-López MT, Vázquez Berrios M, Arco González R, Blanco Velilla RN, Decara del Olmo J, Suárez Pérez J, et al. El papel de la dieta materna en la programación metabólica y conductual: revisión de los mecanismos biológicos implicados. Nutr Hosp. 2015; 32 (6):2433-2445.

Kwong WY, Wild AE, Roberts P, Willis AC, Fleming TP. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development. 2000; 127(19): 4195-4202.

Barrera Reyes R, Fernández Carrocera LA. Programación metabólica fetal. Perinatol Reprod Hum. 2015; 29 (3):99-105.

Thompson JA, Regnault TR. In utero origins of adult insulin resistance and vascular dysfunction. Semin Reprod Med. 2011; 29: 211-24.

Innis SM. Metabolic programming of long-term outcomes due to fatty acid nutrition in early life. Matern Child Nutr. 2011.7:112-23.

Mañalich R, Reyes L, Herrera M, Melendi C, Fundora I. Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int. 2000; 58:770-773.

Macías Sánchez KL, Zazueta-Novoa V, Mendoza-Macías CL, Rangel-Serrano A, Padilla-Vaca F. Epigenética, más allá de la Genética. Acta Universitaria. 2008; 18(1): 50-56.

Ruemmele FM, Garnier-Lengliné H. ¿Por qué la genética es importante para la nutrición? Lecciones de investigación epigenética. Ann NutrMetab. 2012; 60 (suppl 3): 38-43.

Geutjes E, Bajpe P, Bernard T. Targeting the epigenome for treatment of cancer. Oncogene. 2012; 31: 3827-3844

Moore KL, Persaud TVN. The Developing Human: Clinically Oriented Embryology, 6th ed. Philadelphia: W.B. Saunders; 1998.

Rodil-García P, Salazar-Olivo LA. La expresión neonatal de microRNAs como potenciales biomarcadores tempranos del síndrome metabólico. Perinatal Reprod Hum. 2015; 29 (1):14-20.

Dehwah MAS, Xu A, Huang Q. MicroRNAs and type 2 diabetes/obesity. J Genet Genomics. 2012; 39:11-8.

Otten J, Hellwig J, Meyers L. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. Washington, DC: Institute of Medicine; 2006.

Ramakrishnan U, Grant F, Goldenberg T, Zongrone A, Martorell R. Effect of women's nutrition before and during early pregnancy on maternal and infant outcomes: a systematic review. Paediatr Perinat Epidemiol. 2012; 26 (Suppl 1): 285-301.

American College of Obstetricians and Gynecologists. ACOG Committee opinion no. 549: obesity in pregnancy. Obstet Gynecol. 2013; 121:213.

Royal College of Obstetricians and Gynecologists. 2014. Healthy eating and vitamin supplements in pregnancy https://www.rcog.org.uk/globalassets/documents/patients/patient-information-leaflets/pregnancy/pi-healthy-eating-and-vitamin-supplements-in-pregnancy.pdf. (Revisado 16 diciembre de 2019)

Ritchie LD, King JD. Nutrient Recommendations and Dietary Guidelines For Pregnant Women. En: Handbook Of Nutrition And Pregnancy. Humana Press. USA; 2008.

Karakosta P, Chatzi L, Plana E, Margioris A, Castanas E, Kogevinas M. Leptin levels in cord blood and anthropometric measures at birth: a systematic review and meta-analysis. Paediatr Perinat Epidemiol. 2011; 25:150-63.

Ramírez-Vélez R. Programación Fetal in utero y su impacto en la salud del adulto. Endocrinol Nutr. 2012; 59(6):383-393.

Dunger D, Ong K. Abundance of adiponectin in the newborn. Clinical Endocrinology. 2004; 61:416-7.

Newbern D, Freemark M. Placental hormones and the control of maternal metabolism and fetal growth. Curr Opin Endocrinol. Diabetes Obes. 2011; 18: 409-16.

McMillen IC, Muhlhausler BS, Duffield JA, Yuen BS. Prenatal programming of postnatal obesity: fetal nutrition and the regulation of leptin synthesis and secretion before birth. Proc Nutr Soc. 2004; 63:405-12.

Mitchell P, Liew G, Rochtchina E. Evidence of arteriolar narrowing in low-birth-weight children. Circulation. 2008; 118:518-24.

Kistner A, Jacobson L, Jacobson SH, Svensson E, Hellstrom A. Low gestational age associated with abnormal retinal vascularization and increased blood pressure in adult women. Pediatr Res. 2002; 51:675-80.

Li P, Chappell MC, Ferrario CM, Brosnihan KB. Angiotensin-(1-7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide. Hypertension. 1997; 29:394-400.

Van Hinsbergh VW, Koolwijk P. Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res. 2008; 78: 203-12.

Beaty RM, Edwards JB, Boon K, Siu IM, Conway JE, Riggins GJ. PLXDC1 (TEM7) is identified in a genome-wide expression screen of glioblastoma endothelium. J Neurooncol. 2007; 81:241-8.

Seckl JR, Holmes MC. Mechanisms of disease: glucocorticoids, their placental metabolism and fetal "programming" of adult pathophysiology. Nature clinical practice Endocrinology & metabolism. 2007; 3(6):479-88.

Manderson JG, Patterson CC, Hadden DR, Traub AI, Leslie H, McCance DR. Leptin concentrations in maternal serum and cord blood in diabetic and nondiabetic pregnancy. Am J Obstet Gynecol. 2003; 188: 1326-32.

Plagemann A. ‘Fetal programming’ and ‘functional teratogenesis’: on epigenetic mechanisms and prevention of perinatally acquired lasting health risks. J Perinat Med. 2004;32: 297-305.

Franke K, Harder T, Aerts L, Melchior K, Fahrenkrog S, Rodekamp E, et al. ‘‘Programming’ of orexigenic and anorexigenic hypothalamic neurons in offspring of treated and untreated diabetic mother rats. Brain Res. 2005; 1031: 276-83.

Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001; 414:799-806.

Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest. 2000; 106:165-9.

Zhou MS, Schulman IH, Raij L. Vascular inflammation, insulin resistance, and endothelial dysfunction in salt-sensitive hypertension: role of nuclear factor kappa B activation. J Hypertens. 2010; 28:527-35.

Rocco L, Gil FZ, Da Fonseca Pletiskaitz TM, De Fátima Cavanal M, Gomes GN. Effect of sodium overload on renal function of offspring from diabetic mothers. Pediatr Nephrol. 2008; 23:2053-60.

Luyckx VA, Bertram JF, Brenner BM, Fall C, Hoy WE, Ozanne SE, Vikse BE. Effect of fetal and child health on kidney development and long-term risk of hypertension and kidney disease. Lancet. 2013;382 (9888): 273-83.

Zandi-Nejad K, Luyckx VA, Brenner BM. Adult hypertension and kidney disease: the role of fetal programming. Hypertension. 2006;47(3):502-8.

Luyckx VA, Brenner BM. Birth weight, malnutrition and kidney-associated outcomes -a global concern. Nature Reviews Nephrology. 2015;11(3):135-49.

Malenfant P, Joanisse DR, Theriault R, Goodpaster BH, Kelley DE, Simoneau JA. Fat content in individual muscle fibers of lean and obese subjects. Int J Obes Relat Metab Disord. 2001; 25:1316-21.

Schuler M, Ali F, Chambon C. PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab. 2006; 4:407-14.

Zhu MJ, Ford SP, Means WJ, Hess BW, Nathanielsz PW, Du M. Maternal nutrient restriction affects properties of skeletal muscle in offspring. J Physiol. 2006; 575:241-50.

Thorn SR, Regnault TR, Brown LD. Intrauterine growth restriction increases fetal hepatic gluconeogenic capacity and reduces messenger ribonucleic acid translation initiation and nutrient sensing in fetal liver and skeletal muscle. Endocrinology. 2009; 150:3021-30.

Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005; 115: e290-6.

Ross MG, Beall MH. Adult sequelae of intrauterine growth restriction. Semin Perinatol. 2008; 32: 213-8.

Arends NJ, Boonstra VH, Duivenvoorden HJ, Hofman PL, Cutfield WS, Hokken-Koelega AC. Reduced insulin sensitivity and the presence of cardiovascular risk factors in short prepubertal children born small for gestational age (SGA). Clin Endocrinol. 2005; 62:44-50.

Reynolds RM. Glucocorticoid excess and the developmental origins of disease: two decades of testing the hypothesis–2012 Curt Richter Award Winner. Psychoneuroendocrinology. 2013; 38(1):1-1.

Koleganova N, Piecha G, Ritz E. Prenatal Causes of Kidney Disease. Blood Purif. 2009; 27:48-52.

Myrie SB, McKnight LL, Van Vliet BN, Bertolo RF. Low Birth Weight Is Associated with Reduced Nephron Number and Increased Blood Pressure in Adulthood in a Novel Spontaneous Intrauterine Growth-Restricted Model in Yucatan Miniature Swine. Neonatology. 2011; 100: 380-386.

Puddu M, Fanos V, Podda F, Zaffanello M. The Kidney from Prenatal to Adult Life: Perinatal Programming and Reduction of Number of Nephrons during Development. Am J Nephrol. 2009; 30: 162–170.

Barker DJ, Bagby SP, Hanson MA: Mechanisms of disease: in utero programming in the pathogenesis of hypertension. Nat Clin Pract Nephrol. 2006; 2: 700-707.

Yan X, Huang Y, Zhao JX, Long NM, Uthlaut AB, Zhu MJ, Ford SP, Nathanielsz PW, Du M. Maternal obesity-impaired insulin signaling in sheep and induced lipid accumulation and fibrosis in skeletal muscle of offspring. Biol Reprod. 2011; 85(1):172-8.

Constantinof A, Moisiadis VG, Matthews SG. Programming of stress pathways: A transgenerational perspective. The Journal of steroid biochemistry and molecular biology. 2016;160: 175-80.

Moisiadis VG, Matthews SG. Glucocorticoids and fetal programming part 2: mechanisms. Nature Reviews Endocrinology. 2014;10(7):403.

Yajnik CS, Deshpande SS, Jackson AA, Refsum H, Rao S, Fisher DJ, Bhat DS, Naik SS, Coyaji KJ, Joglekar CV, Joshi N. Vitamin B 12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia. 2008;51(1):29-38.

Cómo citar

Castro, M. J. (2020). Programación fetal. Revista Digital De Postgrado, 9(2), e214. Recuperado a partir de http://saber.ucv.ve/ojs/index.php/rev_dp/article/view/18934