Techno-functional properties and antioxidant capacity of the concentrate and protein fractions of Leucaena spp. seeds

Autores/as

DOI:

https://doi.org/10.37527/2022.72.3.005

Palabras clave:

Leucaena spp, Antioxidant Capacity, Protein Fractions, Techno-Functional Properties, Capacidad Antioxidante, Fracciones Proteicas, Propiedades Tecno-Funcionales

Resumen

Introduction: The use of vegetable proteins as ingredients in food systems is based on their functional properties. The water and oil holding capacity, foaming, and emulsifying capacity/stability, and antioxidant assay of the protein fractions - albumins, globulins 7S/11S, glutelins and prolamins - isolated from Leucaena seed were evaluated. Objective: The objective of this study was to evaluate the functional properties and antioxidant capacity of the concentrate and protein fractions of ripe Leucaena spp. seeds. Materials and methods: Ripe Leucaena seeds were collected and evaluated in Oaxaca, Mexico (16°59’21’’N 96°43’26’’O) during the months of February-April 2021.The protein concentrate was isolated by isoelectric precipitation (pH=9, pH=4). The albumins, globulins, glutelins and prolamins were isolated based on their solubility properties in different extracting solutions. Results: Glutelins constituted the main protein fraction (75.88%). Prolamins were not found. The glutelins fractions showed the highest oil holding capacity (0.93±0.08 mL g-1). The albumins fraction had the highest water holding capacity (2.53±0.15 mL g-1), foaming capacity and foam stability (71.83±1.26 % and 70.00±0.00%, respectively) and antioxidant capacity (18.09±0.88%). The globulins exhibited the highest emulsifying capacity and emulsion stability (56.83±1.76% and 55.67±1.20%, respectively). Conclusions: The concentrate and protein fraction of Leucaena seeds showed different techno-functional and antioxidant properties of interest for the food industry, like those showed by other commercial vegetable proteins.

Introducción: El uso de proteínas vegetales como ingredientes en sistemas alimentarios se basa en sus propiedades funcionales. Se evaluó la capacidad de retención de agua y aceite, la capacidad/estabilidad espumante y emulsionante y el ensayo antioxidante de las fracciones proteicas -albúminas, globulinas 7S/11S, glutelinas y prolaminas- aisladas de las semillas de Leucaena. Objetivo: El objetivo de este estudio fue evaluar las propiedades funcionales y la capacidad antioxidante del concentrado y las fracciones proteicas de las semillas maduras de Leucaena spp. Materiales y métodos: Las semillas maduras de Leucaena fueron recolectadas y evaluadas en Oaxaca, México (16°59’21’’N 96°43’26’’O) durante los meses de febrero-abril del año 2021. Se usó harina de Leucaena desgrasada para la preparación de las fracciones proteicas. El concentrado proteico se aisló por precipitación isoeléctrica (pH=9, pH=4). Las albúminas, globulinas, glutelinas y prolaminas se aislaron en función de sus propiedades de solubilidad en diferentes soluciones de extracción. Resultados: Las glutelinas constituyeron la principal fracción proteica (75,88%). No se encontraron prolaminas. La fracción de glutelinas mostró la mayor capacidad de retención de aceite (0.93±0,08 mL g-1). La fracción de albúminas presentó la mayor capacidad de retención de agua (2,53±0,15 mL g-1), capacidad espumante y estabilidad de la espuma (71,83±1,26% y 70,00±0,00%, respectivamente) y capacidad antioxidante (18,09±0,88%). Las globulinas mostraron la mayor capacidad emulsionante y estabilidad de la emulsión (56,83±1,76 y 55,67±1,20%, respectivamente). Conclusiones: El concentrado y las fracciones proteicas de las semillas de Leucaena mostraron diferentes propiedades tecno-funcionales y antioxidantes de interés para la industria alimentaria, similares a los reportados por diversas proteínas vegetales comerciales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Releases P. Tate Lyle y Nutriati firman alianza para la distribución de proteína y harina de garbanzo. 2021;. Disponible en: https://www.tateandlyle.com/latames/news/tate-lyle-y-nutriati-firman-alianza-para-ladistribuci-n-de-prote-na-y-harina-de-garbanzo. 2021. p.22–3.

Wali A, Mijiti Y, Yanhua G, Yili A, Aisa HA, Kawuli A. Isolation and Identification of a Novel Antioxidant Peptide from Chickpea (Cicer arietinum L.) Sprout Protein Hydrolysates. Int J Pept Res Ther2021;27(1):219–227. https://doi.org/10.1007/s10989-020-10070-2

Moreno-Valdespino CA, Luna-Vital D, Camacho-Ruiz RM, Mojica L. Bioactive proteins and phytochemicals from legumes: Mechanisms of action preventing obesity and type-2 diabetes. Food Res Int2020;130:108905. https://doi.org/10.1016/j.foodres.2019.108905

Bravo-Delgado HR, Jiménez-Castillo SF, Meza-Alvarez LI, Arangute-Zarate A, Nieva-Vazquez A. Propiedades funcionales, capacidad antioxidante de la harina de guaje (Leucaena leucocephala) y su uso en la industria alimentaria. Rev Tecnológica Agrobioalimentaria. 2019;3(1):1-6.

Hernández-Morales J, Sánchez-Santillán P, Torres-Salado N, Herrera-Pérez J, Rojas-García AR, Reyes-Vázquez I, et al. Composición química y degradaciones in vitro de vainas y hojas de leguminosas arbóreas del trópico seco de México. Rev Mex Ciencias Pecu. 2018;9(1):105–120.

Martínez-Hernández PA, Cortés-Díaz E, Purroy-Vásquez R, Palma-García JM, Del Pozo-Rodríguez PP, Vite-Cristóbal C. Leucaena leucocephala (LAM.) De wit a key species for a sustaintable bovine production in tropic. Trop Subtrop Agroecosystems. 2019;22(2):331–357.

Nehdi IA, Sbihi H, Tan CP, Al-Resayes SI. Leucaena leucocephala (Lam.) de Wit seed oil: Characterization and uses. Ind Crops Prod [Internet]. 2014;52:582–587. http://dx.doi.org/10.1016/j.indcrop.2013.11.021

Dago Dueñas Y, Milian Domínguez JC, Calzadilla Reyes K, Redonet Miranda M de los Á, López Quintana Y, Hernández Guanche L. Potential use of Leucaena leucocephala Lam (Leucaena) present in agroforestry systems of Pinar del Río. Rev Cuba Ciencias For 2020;8(1):154–62. http://scielo.sld.cu/pdf/cfp/v8n1/2310-3469-cfp-8-01-154.pdf

Richter HG, Dallwitz MJ. Maderas comerciales. https://www.delta-intkey.com/wood/es/www/mimleuc.htm.2019. http://biodiversity.uno.edu/delta/wood/es/index.htm

Sethi P, Kulkarni PR. Chemical composition of Leucaena leucocephala seeds. Int J Food Sci Nutr. 1994;45(1):5-13. http:/doi.org/10.3109/09637489409167012.

Ohara A, Cason VG, Nishide TG, Miranda de Matos F, de Castro RJS. Improving the antioxidant and antidiabetic properties of common bean proteins by enzymatic hydrolysis using a blend of proteases. Biocatal Biotransformation 2021; 39 (2):1–9. https://doi.org/10.1080/10242422.2020.1789114

Maldonado-Cervantes E, Jeong HJ, León-Galván F, Barrera-Pacheco A, De León-Rodríguez A, González De Mejia E, et al. Amaranth lunasin-like peptide internalizes into the cell nucleus and inhibits chemical carcinogen-induced transformation of NIH-3T3 cells. Peptides. 2010;31(9):1635-1642. https://doi.org/10.1016/j.peptides.2010.

AOAC. Association of Official Analytical Chemists. Official Methods of Analysis. 15 th Ed. Kenneth Helrich, editor. Arlington, USA.; 1990.

Wang JC, Kinsella JE. Functional Properties of Novel Proteins: Alfalfa Leaf Protein. J Food Sci. 1976;41(2):286-292. http:/doi.org/10.1111/j.1365-2621.1976.tb.

Chaparro SP, Tavera ML, Martínez JJ, Gil JH. Aislados proteicos de la semilla de guanábana (Annona muricata). Rev UDCA Actual Divulg Científica. 2014;17(1):151-160. https://doi.org/10.31910/rudca.v17.n1.201.

Kumar KS, Ganesan K, Selvaraj K, Subba Rao P V. Studies on the functional properties of protein concentrate of Kappaphycus alvarezii (Doty) Doty - An edible seaweed. Food Chem 2014;153:353–360. http://dx.doi.org/10.1016/j.foodchem.2013.12.058

Brand-Williams W, Cuvelier ME, Berset C. 4A Standard Calibration Techniques. Microflown E-b. 1995;28:25-30. ISSN 00236438.

Rosida DF, Hapsari N, Hidayah T. Functional properties of Leucaena leucocephala protein concentrates resulted separation of ultrafiltration membrane. In: MATEC Web of Conferences 2016. https:/doi.org/10.1051/matecconf/20165801012

Wani IA, Sogi DS, Shivhare US, Gill BS. Physicochemical and functional properties of native and hydrolyzed kidney bean (Phaseolus vulgaris L.) protein isolates. Food Res Int 2015;76(P1):11–18. http://dx.doi.org/10.1016/j.foodres.2014.08.027

Sathe SK. Dry bean protein functionality. Crit Rev Biotechnol. 2002;22(2):175-223. https:/doi.org/10.1080/07388550290789487.

Raya-Pérez JC., Gutiérrez-Benicio GM, Ramírez-Pimentel, J.G. Covarrubias-Prieto J, Aguirre-Mancilla CL. Caracterización de proteínas y contenido mineral de dos variedades nativas de frijol de México. Agron Mesoam 2014;25(1):11–14.

Higuchi W, Fukazawa C. A rice glutelin and a soybean glycinin have evolved from a common ancestral gene. Gene. 1987;55(2–3):245–253.

Espitia-Orozco F, Negrete-Toledo A, Ordoñez-Acevedo A, León-Galván M. Caracterización de las proteínas de reserva de la semilla de parota (Enterolobium cyclocarpum). Investig y Desarro en Cienc y Tecnol Aliment. 2016;1(2):147-152.

Gueguen J, Cerletti P. Proteins of some legume seeds : soybean , pea , fababean and lupin. In: Hudson BJF, editor. New and Developing Sources of Food Proteins. 1994. p. 145–193.

Boye JI, Aksay S, Roufik S, Ribéreau S, Mondor M, Farnworth E, et al. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Res Int. 2010;43(2):537–546. http://dx.doi.org/10.1016/j.foodres.2009.07.021

Boye J, Zare F, Pletch A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res Int. 2010;43(2):414–431. http://dx.doi.org/10.1016/j.foodres.2009.09.003

Sánchez-Mendoza NA, Ruiz-Ruiz JC, Dávila-Ortiz G, Jiménez-Martínez C. Propiedades tecnofuncionales y biológicas de harina, aislado y fracciones proteicas mayoritarias de semillas de Inga paterno. CYTA - J Food. 2017;15(3):400–408. https://doi.org/10.1080/19476337.2017.1286522

Vani B, Zayas JF. Foaming Properties of Selected Plant and Animal Proteins. J Food Sci [Internet]. 1995;60(5):1025–8. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2621.1995.tb06285.x

Kinsella J, Whitehead D. Proteins in whey: chemical, physical, and functional properties. In: Advances in Food Nutrition Research. Ithaca, New York: Institute of Food Science; 1989. p. 343–436.

Sikorski ZE. Chemical and Functional Properties of Food Components Series. CRC Press, editor. Poland; 2001. 544 p.

Acquah C, Ekezie F, Udenigwe CC. Potential applications of microalgae-derived proteins and peptides in the food industry. In: Cultured Microalgae for the Food Industry INC; 2021. p. 97–126. http://dx.doi.org/10.1016/B978-0-12-821080-2.00011-3

Granito M, Guerra M, Torres A. Efecto del procesamiento sobre las propiedades funcionales de Vigna Sinensis. Interciencia. 2004;29 (9): 521-526 1-16.

Nieto- Nieto TV, Wang Y, Ozimek L, Chen L. Improved thermal gelation of oat protein with the formation of controlled phase-separated networks using dextrin and carrageenan polysaccharides. Food Res Int2016;82:95–103. http://dx.doi.org/10.1016/j.foodres.2016.01.027

Aryee ANA, Agyei D, Udenigwe CC. Impact of processing on the chemistry and functionality of food proteins. Second Ed. Proteins in Food Processing. Elsevier Ltd.; 2018. 27–45. https://doi.org/10.1016/B978-0-08-100722-8.00003-6

Avelar Z, Vicente AA, Saraiva JA, Rodrigues RM. The role of emergent processing technologies in tailoring plant protein functionality : New insights. Trends Food Sci Technol. 2021;113(july):219–231. https://doi.org/10.1016/j.tifs.2021.05.004.

Bessada SMF, Barreira JCM, Oliveira MBPP. Trends in Food Science & Technology Pulses and food security: Dietary protein , digestibility , bioactive and functional properties. Trends Food Sci Technol2019;93(228):53–68. https://doi.org/10.1016/j.tifs.2019.08.022

Betancur-Ancona D, Gallegos-Tintoré S, Chel-Guerrero L. Wet-fractionation of Phaseolus lunatus seeds: Partial characterization of starch and protein. J Sci Food Agric. 2004;84(10):1193–1201.

Clark JP. Emulsions: When oil and water do mix. Food Technology 2013; 67(8): 80–82. https://www.ift.org/news-and-publications/food-technology-magazine/issues/2013/august/columns/processing-1

Lawal OS, Adebowale KO, Ogunsanwo BM, Sosanwo OA, Bankole SA. On the functional properties of globulin and albumin protein fractions and flours of African locust bean (Parkia biglobossa). Food Chem. 2005;92(4):681–691.

Deng Q, Wang L, Wei F, Xie B, Huang FH, Huang W, et al. Functional properties of protein isolates, globulin and albumin extracted from Ginkgo biloba seeds. Food Chem 2011;124(4):1458–1465. http://dx.doi.org/10.1016/j.foodchem.2010.07.108

Kumar M, Tomar M, Potkule J, Reetu, Punia S, Dhakane-Lad J, et al. Functional characterization of plant-based protein to determine its quality for food applications. Food Hydrocoll2022;123:106986. https://doi.org/10.1016/j.foodhyd.2021.106986

Kinsella JE, Melachouris N. Functional properties of proteins in foods: A survey. CRC Crit Rev Food Sci Nutr. 1976; 7(3):219–280. https://doi.org/10.1080/10408397609527208

Dueñas M, Hernández T, Estrella I. Changes in the content of bioactive polyphenolic compounds of lentils by the action of exogenous enzymes. Effect on their antioxidant activity. Food Chem 2007; 101(1): 90-97. https://doi.org/10.1016/j.foodchem.2005.11.0. https://linkinghub.elsevier.com/retrieve/pii/S0308814606000483

Parmar N, Singh N, Kaur A, Thakur S. Comparison of color, anti-nutritional factors, minerals, phenolic profile and protein digestibility between hard-to-cook and easyto-cook grains from different kidney bean (Phaseolus vulgaris) accessions. J Food Sci Technol 2017;54(4):1023-1034. https:/doi.org/10.1007/s13197-017-2538-.

Román-Cortés N, Del Rosario García-Mateos M, Castillo-González AM, Sahagún-Castellanos J, Jiménez-Arellanes A. Componentes nutricionales y antioxidantes de dos especies de guaje (Leucaena spp.): Un recurso ancestral subutilizado. Rev Chapingo, Ser Hortic. 2014;20(2):157-170. https:/doi.org/10.5154/r.rchsh.2013.07.02.

Boukhanouf S, Louaileche H, Perrin D. Phytochemical content and in vitro antioxidant activity of faba bean (Vicia faba L.) as affected by maturity stage and cooking practice. Int Food Res J 2016;23(3):954–961. http://www.ifrj.upm.edu.my

Publicado

2022-11-14

Cómo citar

Noyola-Altamirano, B., Méndez-Lagunas, L. L., Rodríguez-Ramírez, J., Sandoval-Torres, S., Aquino-González, L. V., & Barriada-Bernal, L. G. (2022). Techno-functional properties and antioxidant capacity of the concentrate and protein fractions of Leucaena spp. seeds. Archivos Latinoamericanos De Nutrición (ALAN), 72(3), 196–204. https://doi.org/10.37527/2022.72.3.005

Número

Sección

Artículo Original