SABER UCV >
2) Tesis >
Pregrado >
Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/10872/12620
|
Título : | Sobre Operadores de Composición Uniformemente Acotado en Espacios de Funciones de Variación Acotada en el sentido de Riesz-Popoviciu. |
Autor : | Rojas A., Jessica L. |
Palabras clave : | función real número finito convergente en R series trigonométricas teoría analítica cuerda vibrante |
Fecha de publicación : | 3-Nov-2015 |
Resumen : | En el siglo pasado en el año de 1829 P.L. Dirichlet [9], demostró que toda función real a valores en R definida por medio de un número finito de partes monótonas tiene serie de Fourier puntualmente convergente en R. Este resultado es conocido hoy como: Criterio de Dirichlet sobre la convergencia de series de Fourier. Así por primera vez y rigurosamente se obtuvo una demostración de la conjetura planteada en el año 1807 por Fourier, referente a la representatividad de una función arbitraria por medio de series trigonométricas. Este resultado aparece en el trabajo de Fourier sobre la teoría analítica del calor [10]. Según B. Nagy [44], la historia del desarrollo de la teoría de las series de Fourier comienza a partir de una disputa ocurrida alrededor de la mitad del siglo XVIII, entre D'Alembert, Euler y D. Bernoulli, respecto al problema de la cuerda vibrante. |
URI : | http://hdl.handle.net/10872/12620 |
Aparece en las colecciones: | Pregrado
|
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.
|