Biología y aplicaciones clínicas de las células madre
Palabras clave:
Células Madre, Biología, Usos ClínicosResumen
Las células madre son un tipo muy especial de células que tienen la capacidad de generar todos los tipos celulares del organismo. La enorme capacidad de diferenciación celular de las células madre han planteado su posible uso en medicina regenerativa para regenerar y restaurar la función de tejidos y órganos en enfermedades que afectan los sistemas: cardiovascular, sistema nervioso, hematológico, musculoesquelético, piel, entre otros. La presente revisión aborda las características biológicas de las células madre, así como también el potencial terapéutico en medicina regenerativa
Descargas
Citas
1. Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000;100(1):157–68. http://dx.doi.org/10.1016/s0092-8674(00)81692-x.
2. Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science. 2000;287(5457):1442–6. http://dx.doi.org/10.1126/science.287.5457.1442.
3. Klimanskaya I, Rosenthal N, Lanza R. Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat Rev Drug Discov. 2008;7(2):131–42. http://dx.doi.org/10.1038/nrd2403.
4. Papaioannou VE. Stem cells and differentiation. Differentiation. 2001;68(4–5):153–4. http://dx.doi.org/ 10.1046/j.1432-0436.2001.680401.x.
5. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther.2019;10(1):68.http://dx.doi.org/10.1186/s13287-019-1165-5.
6. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7. http://dx.doi.org/10.1126/science.282.5391.1145.
7. Bradley A, Evans M, Kaufman MH, Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature. 1984;309(5965):255–6. http://dx.doi.org/10.1038/309255a0.
8. Nichols J, Smith A. Naive and primed pluripotent states. Cell Stem Cell. 2009;4(6):487–92. http://dx.doi.org/10.1016/j.stem.2009.05.015.
9. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003;113(5):631–42. http://dx.doi.org/10.1016/s0092-8674(03)00393-3.
10. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003; 113 (5):643–55. http://dx.doi.org/10.1016/
.org/10.1016s0092-8674(03)00392-1.
11. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. A stem cell molecular signature. Science. 2002; 298(5593):601–4. http://dx.doi.org/10.1126/science.1073823.
12. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95(3):379–91. http://dx.doi.org/10.
1016/s0092-8674(00)81769-9.
13. Burdon T, Chambers I, Stracey C, Niwa H, Smith A. Signaling mechanisms regulating self-renewal and differentiation of pluripotent embryonic stem cells. Cells Tissues Organs. 1999;165(3–4):131–43. http://dx.doi.org/10.1159/000016693.
14. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. http://dx.doi.org/10.1016/j.cell.2006.07.024.
15. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448(7151):313–7. http://dx.doi.org/10.1038/nature05934.
16. Cable J, Fuchs E, Weissman I, Jasper H, Glass D, Rando TA, et al. Adult stem cells and regenerative medicine-a symposium report. Ann N Y Acad Sci. 2020;1462(1):27–36. http://dx.doi.org/10.1111/nyas.14243.
17. Martin LA, Seandel M. Propagation of adult SSCs: from mouse to human. Biomed Res Int. 2013; 2013:384734. http://dx.doi.org/10.1155/2013/384734.
18. Chen J, Hendriks M, Chatzis A, Ramasamy SK, Kusumbe AP. Bone vasculature and bone marrow vascular niches in health and disease. J Bone Miner Res. 2020;35(11):2103–20. http://dx.doi.org/10.1002/jbmr.4171.
19. Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A. 2001;98(19):10716–21. http://dx.doi.org/10.1073/pnas.191362598.
20. Calvanese V, Mikkola HKA. The genesis of human hematopoietic stem cells. Blood. 2023;142(6):519–32. http://dx.doi.org/10.1182/blood.2022017934.
21. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4(1):22. http://dx.doi.org/10.1038/s41536-019-0083-6.
22. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7. http://dx.doi.org/10.1080/14653240600855905.
23. Shapiro AMJ, Thompson D, Donner TW, Bellin MD, Hsueh W, Pettus J, et al. Insulin expression and C-peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device. Cell Rep Med. 2021;2(12):100466. http://dx.doi.org/10.1016/j.xcrm.2021.100466.
24. Bershteyn M, Bröer S, Parekh M, Maury Y, Havlicek S, Kriks S, et al. Human pallial MGE-type GABAergic interneuron cell therapy for chronic focal epilepsy. Cell Stem Cell. 2023;30(10):1331-1350.e11. http://dx.doi.org/10.1016/j.stem.2023.08.013.
25. Bjorklund LM, Sánchez-Pernaute R, Chung S, Andersson T, Chen IYC, McNaught KSP, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A. 2002;99(4):2344–9. http://dx.doi.org/10.1073/pnas.022438099.
26. Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature. 2006;441(7097):1094–6. http://dx.doi.org/10.1038/nature04960.
27. Patel K, Namburi S, Latif T, Oluwole OO, Cross SJ, Simmons G, et al. Interim results from the ELiPSE-1 study: A phase 1, multicenter, open-label study of CNTY-101 in subjects with relapsed or refractory CD19-Biolo7023. http://dx.doi.org/10.1200/jco.2024.42.16_suppl.7023.
28. Ramachandran I, Rothman S, Clausi M, Mcfadden K, Salantes B, Jih G, et al. Multiple doses of cnty-101, an iPSC-derived allogeneic CD19 targeting CAR-NK product, are safe and result in tumor microenvironment changes associated with response: A case study. Blood . 2023;142(Supplement 1):1654–1654. http://dx.doi.org/10.1182/blood-2023-182313.
29. Takagi S, Mandai M, Gocho K, Hirami Y, Yamamoto M, Fujihara M, et al. Evaluation of transplanted autologous induced pluripotent stem cell-derived retinal pigment epithelium in exudative age-related macular degeneration. Ophthalmol Retina. 2019;3(10):850–9. http://dx.doi.org/10.1016/j.oret.2019.04.021.
30. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038–46. http://dx.doi.org/10.1056/NEJMoa1608368.
31. Cassinotti A, Annaloro C, Ardizzone S, Onida F, Della Volpe A, Clerici M, et al. Autologous hematopoietic stem cell transplantation without CD34+ cell selection in refractory Crohn’s disease. Gut. 2008;57(2):211–7. http://dx.doi.org/10.1136/gut.2007.128694.
32. Oyama Y, Craig RM, Traynor AE, Quigley K, Statkute L, Halverson A, et al. Autologous hematopoietic stem cell transplantation in patients with refractory Crohn’s disease. Gastroenterology. 2005;128(3):552–63. http://dx.doi.org/10.1053/j.gastro.2004.11.051.
33. Hagège AA, Marolleau J-P, Vilquin J-T, Alhéritière A, Peyrard S, Duboc D, et al. Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first phase I cohort of patients: Long-term follow-up of the first phase I cohort of patients. Circulation. 2006;114(1 Suppl) 1:108-13. http://dx.doi.org/10.1161/CIRCULATIONAHA.105.000521.
34. McKenna SL, Ehsanian R, Liu CY, Steinberg GK, Jones L, Lebkowski JS, et al. Ten-year safety of pluripotent stem cell transplantation in acute thoracic spinal cord injury. J Neurosurg Spine . 2022;37(3):321–30. http://dx.doi.org/10.3171/2021.12.SPINE21622.
35. Schweitzer JS, Song B, Herrington TM, Park T-Y, Lee N, Ko S, et al. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. N Engl J Med. 2020;382(20):1926–32. http://dx.doi.org/10.1056/NEJMoa1915872.
36. Wittig O, Romano E, González C, Diaz-Solano D, Márquez ME, Tovar P, et al. A method of treatment for nonunion after fractures using mesenchymal stromal cells loaded on collagen microspheres and incorporated into platelet-rich plasma clots. Int Orthop. 2016;40(5):1033–8. http://dx.doi.org/10.1007/s00264-016-3130-6.
37. Cardier JE, Diaz-Solano D, Wittig O, Sierra G, Pulido J, Moreno R, et al. Osteogenic organoid for bone regeneration: Healing of bone defect in congenital pseudoarthrosis of the tibia. Int J Artif Organs. 2024;47(2):107–14. http://dx.doi.org/10.1177/03913988231220844.
38. Wittig O, Diaz-Solano D, Chacín T, Rodríguez Y, Ramos G, Acurero G, et al. Healing of deep dermal burns by allogeneic mesenchymal stromal cell transplantation. Int J Dermatol. 2020;59(8):941–50. http://dx.doi.org/10.1111/ijd.14949.
39. Wittig O, Gutiérrez M, Diaz-Solano D, Fuentes S, Lara E, Duque K, et al. The effect of allogeneic mesenchymal stromal cell transplantation on an infant with skin necrosis by calcium gluconate extravasation: Case report. J Paediatr Child Health. 2025;(jpc.70254). http://dx.doi.org/10.1111/jpc.70254.
40. Gomez-Sosa JF, Diaz-Solano D, Wittig O, Cardier JE. Dental pulp regeneration induced by allogenic mesenchymal stromal cell transplantation in a mature tooth: A case report. J Endod. 2022;48(6):736–40. http://dx.doi.org/10.1016/j.joen.2022.03.002.
41. Gomez-Sosa JF, Cardier JE, Wittig O, Díaz-Solano D, Lara E, Duque K, et al. Allogeneic bone marrow mesenchymal stromal cell transplantation induces dentin pulp complex-like formation in immature teeth with pulp necrosis and apical periodontitis. J Endod. 2024;50(4):483–92.http://dx.doi.org/10.1016/j.joen.2024.01.002.