Universidad Central de Venezuela
Facultad de Ciencias
Escuela de Computacion
Laboratorio de ICARO

DISENO, IMPLEMENTACION Y
ADECUACION DE UNA HERRAMIENTA
EDUCATIVA BASADA EN MINIX PARA
CURSOS DE SISTEMAS OPERATIVOS

Presentado ante la ilustre
Universidad Central de Venezuela

Por los Bachilleres:

Dumar De Ledn
C.1.:18.465.540

E-mail:dumardeleon@gmail.com

José Espafia
C.1.:16.115.715

E-mail:espana.jose.manuel@gmail.com

Tutor: David Pérez

Caracas, Marzo de 2011

Universidad Central de Venezuela
Facultad de Ciencias
Escuela de Computacion
Laboratorio de ICARO

ACTA DEL VEREDICTO

Quienes suscriben, Miembros del Jurado designado por el Consejo de la Escuela de Computacion para
examinar el Trabajo Especial de Grado, presentado por los Bachilleres Dumar De Le6n C.1.:18.465.540 y
José Espafia C.l.: 16.115.715, con el titulo “DISENO, IMPLEMENTACION Y ADECUACION DE UNA
HERRAMIENTA EDUCATIVA BASADA EN MINIX PARA CURSOS DE SISTEMAS OPERATIVOS”, a
los fines de cumplir con el requisito legal para optar al titulo de Licenciado en Computacién, dejan

constancia de lo siguiente:

Leido el trabajo por cada uno de los Miembros del Jurado, se fijé el dia 8 de Abril de 2011, a las 3:00 PM,
para que sus autores lo defendieran en forma publica, en Laboratorio de Internet Il, lo cual estos
realizaron mediante una exposicién oral de su contenido, y luego respondieron satisfactoriamente a las
preguntas que les fueron formuladas por el Jurado, todo ello conforme a lo dispuesto en la Ley de
Universidades y demas normativas vigentes de la Universidad Central de Venezuela. Finalizada la

defensa publica del Trabajo Especial de Grado, el jurado decidié aprobarlo.

En fe de lo cual se levanta la presente acta, en Caracas el 8 de Abril de 2011, dejandose también

constancia de que actué como Coordinador del Jurado el Profesor Tutor David Pérez

Prof. David Pérez
(Tutor)

Prof. Carlos Acosta Prof. Jaime Parada

Carlos Acosta Jaime Parada

RESUMEN

Titulo:

DISENO, IMPLEMENTACION Y ADECUACION DE UNA HERRAMIENTA EDUCATIVA BASADA EN
MINIX PARA CURSOS DE SISTEMAS OPERATIVOS

Autor(es):

Dumar De Leén y José Espafia

Tutor:

Prof. David Pérez

En el siguiente Trabajo Especial de Grado se plantea la insercion del sistema operativo Minix 3 al curso
ofertado por la Escuela de Computacién de la UCV con el objetivo de solventar la poca sincronizaciéon
entre la planificacion tedrica-practica existente. Es decir, no existe ninguna metodologia que permita
reforzar ambas dinamicas durante la ejecucion del mismo. La solucién propuesta es adecuar el sistema
operativo Minix 3 a partir de un conjunto de siete laboratorios que abarcan topicos asociados a los temas
impartidos por el curso de Sistemas Operativos actual. Los laboratorios tienen los siguientes titulos:
Instalacion de Minix y entorno de desarrollo, Introduccién a Minix 3, Estudio del proceso de arranque,
Implementacion de un intérprete de comandos, Implementacién de llamadas al sistema, Implementacion
de seméaforos y Modificacién del planificador de procesos. De cada laboratorio se desarrollo la estructura
y solucién, dejando una soélida documentaciéon en distintos medios (documentos, implementacién del
codigo necesario y videos tutoriales). Por Ultimo, se adecuo una aplicacion para el manejo de proyectos
(wiki) la cual apoya al curso y permite integrar toda la informacién recopilada, tanto para el grupo docente
como para los estudiantes. Al culminar este Trabajo Especial de Grado se logré completar los objetivos
planteados desde el inicio a través de las soluciones anteriormente descritas, es por ello que se desea
que el trabajo realizado sea tomado en consideracion por la Escuela de Computacion para impartir
cursos futuros; dandole a mismo la didactica de los cursos de las principales universidades a nivel

mundial.

Palabras Claves: Sistema Operativo Instruccional, Minix 3, Laboratorio, implementacion, documentacion.

Tabla de contenido

INAICE T FIGUIAScveuvviteeci ettt ettt ettt ettt ettt s et et e s e s st et e s e e et et e s e se et et ese st es et esessasesereaeas 13
INAICE T TADIASvovieiietceie ettt ettt ettt s et et s st et e s et e b et e et esese s et etesessssesese e, 17
R [0 Lo o (U T o o PP P TR PP RPN 19
1.1 Planteamiento del ProbIEMa ..o 20
I O o= 11/ LSS UREPRR 20
1.2.1 ODJELIVO GENEIAL....eiiiiiiiiie ittt e et e e e et e e et e e e e anbre e e e e 20
1.2.2 ODbjJetiVOS ESPECITICOS .. .eiiiuiiie ittt ettt st e sbe e e sabe e s be e e smbe e e nnnee e 21

IO TN [0 11 1) o= o3 To] RO PP PP PP POPPPPRPPTPPP 21
1.4 Distribucion del dOCUMENTO........ciuiiiiiieiiie ittt e b e e e e nnee e 21

P\ - T oo I (=T T (o o OO URPTPPRPPPRTPPRN 25
2.1 Y1y (=T 0 F= O] o= = U1 LY/ 25
2.2 LIAMAadas @l SISTEIMAeiiiiiiiii ittt sttt e e st s e e aann s 26
2.3 PrOCESOS € HIlOS ...ttt ab e 27
2.4 EXCIUSION MULIUBeeiiiiiiiiieiiiiie ettt e e sttt e e skttt e skt e e e e skt et e e s bbbt e e s abbeeesnnneeas 28

P o R ST =T 1 F= 1 0] (01 SO OO PT P OPRPPPP 29

2.5 GESHON 8 MEIMOIIAteieiitieiiie ettt ettt ettt ettt et e ket sttt e be e e abb e e sbe e e eabeeeabeeenbbeesbeeennneennne 29
2.5 1 REUDICACION ..ottt ettt ettt bbbt e sttt e shb e e et e e bn e e snbe e e nnr e e e 30
YA = (0] (=Tol ol o | o OO PP UOPPRPPPPPPP 30
2.5.3 COMPAITICION ..teiiiitiee ettt ettt e e sttt e e et b et e e sab et e e e anbbe e e e anbaeeeeanbaeeeesnbneeeen 30
2.5.4 OrganizacCion IOQICAuueeiiiieiee ittt e et e e b e baee e 30
2.5.5 Organizacion fISICAccciuuriiiie e e e e e e e e e e e e e s e et e e e e e e e s et ra e e e e e e e e aarrees 31
2.5.6 Particionamiento de 18 MEMOIIAcoiuiiieiiiieee et e e e e e srreee e 31

2.6 SiStEMAS UE AICRIVOSeeiiiiiiiii ettt ettt et ettt e s e e e s e s 32
2.7 Herramientas de ensefianza en Sistemas OPEratiVOS.c..ceeirirreieiiieieeinireee e sriee e 33
2.8 ¢Qué es un Sistema Operativo INStruccional (SOI)?.......oviiiiiieiiiee e 34
2.9 Herramientas de virtualizacion, simulacion y emulacion ... 36
2.10 Sistemas Operativos INSITUCCIONAIESuuiiiiiieiie i e e e e e 36

0 0 O 17 L 1 PP ERRT P 37

B B - Ted 1 1 SRR PRPPPPRPN 37

B2 TR T 1T PRSPPI 37
2.00.4 GEEKOS ...t a bt e e bt e e e b et e e e et be e e e abaeeeeabaeeeeans 38
2.00.5 JOS 38
2.11 Comparacion entre los Sistemas Operativos INStruCCIONAIEScocveriiieriiiiiie e 38
3 Adecuacion de MINIX 3 @ 18 UCVii ittt ettt et et sab e snneas 43
3.1 Laboratorio 0 — Instalacién de Minix y entorno de desarrollocccceveeeiiiiiiiieene e, 43
0 0 A |V [111 VZ= Tod o | IO PP PP OP R PPPP 43
312 ODJELIVOS oo 43

K T T €11 0] o To I o [0 Tod =T o | (= PO P PP UOPPPPPPPPPP 43
.14 ESHUAIANTESeeeiiiiiiiie ettt ettt e e et e e st e e e st et e e e s ba e e e e e bee e e e aba e e e e abneeeean 44
.15 ENITEOADIES ...ttt e et e e e s b e e e ba e e e e abaeeeeaa 44
TR LG B B 1 - TodTo | o OO PP OP PP PPPP 44
G0 A b To Tor U4 g =Y g1 = Toa (o] g VA= N Y0 o - SR 44
3.2 Laboratorio 1 — INtroduCCiON @& MINIX 3ueeiiiiieiiiieiie et ne e snneesnee e 44
K0 R |V 01 11 VZ- Yo (o 1 o OO PP UOPPRPPPPPPP 44
A ©] < 1Y 1 PP TUUPPRPPPPPRP 44
K T €11 0] o To I o [0 Tod =] | (= O PP TUOPPRPRPPPPPP 44
3.2.4 ESHUAIANTESooeiiiiriiie ittt ettt ettt e ettt e e a e e e s e e e s r et e e e e e e e a e e e nrneeeeaa 45
3.25 ENregabIes ... 45
I B B 1 - TeiTo | o PO TP PP PP U P PP PP R OPPPOPPPT 45
3.2.7 DOCUMENIACION Y BYUTA ..eeiiiviiieiiitiiee e itiie ettt ettt ettt e et e e e abae e e s sbbe e e e sabaeeeesnbneeeean 45
3.3 Laboratorio 2 — Estudio del proceso de arranQUE.............ueeeirueeieiiiieeesiiieeeesiiee et e s eeree e e 45
1T 254 R |V o1 11V Z Yo (o o PP PPPPRP 45

R I ©] o] =1 110 S TP PPPT PP 46
RS T B €17 01 o To Jo (o Tod=T o | (= TP PSPPI 46
3.3.4 ESHUAIANTESeeeiiiiiiiie ittt et e et e et e e e b e e e e e b e e e e e e e r e e e nrneeeeaa 46

3.3.5 ENMIEOADIES ...ttt bbbt e e s b e e e e s b e e e e abnreeeaa 46
TG J G B 1 - ToxTo | o [OOSR OT SRR 46
GRS T A b To Tor U4 =Y g1 = Tox (o] g VA= 1 Y0 o - SRS 46
3.4 Laboratorio 3 — Implementacién de un intérprete de cComandosccccceeevviiiiiieeeee e ecciiieeeeenn a7
I 5 |V [111V Tod o | o [PPSR 47
N ©] < 1Y o 1 O PO P PP PP UOPPPPPPPPPP 47
K B €11 0] oTo I o [0 To =] | (= IO PO P PP PP UOPPPPPPPPPP 47
344 ESHUAIANTES ...oeeiiiieiiii etttk e et s e b et e Rt s e e n e E e e 47
345 ENregabIes ... 48
I L R B 1 - TodTo | o OO PT PP OP PP PPPP 49
3.4.7 DOCUMENTACION Y BYUTA ..eeiiiiiieeiiitiiee ettt ettt e ettt et e e st e e s st e e e e sbae e e e snbneeeesnbneeeean 49
35 Laboratorio 4 — Implementacién de llamadas al Sistema...........coovviiiiiiiieiiiiie e 50
K70 R 1V 01 11 VZ Yo (o 1 o B TP PO P PP PP UOPPPPRPPPPPP 50
35,2 ODJEUVOS oo 50
3.5.3 GrUPO AOCENLE ..o e 50
3.5.4 ESHUAIANTESooeiiiiiiiie ittt et et e e e e e s e e e e e e e a e e e e a e e eeeaa 50
.55 ENEOADIES ...t bbb e e e e b e e e s s ba e e e abaeeeeaa 51
SN ST B 10 Yo (o] o B PP TUOPPRPPPPPPP 51
3.5.7 DOCUMENIACION Y BYUTA ..eeiiitiiieiiitiiee ettt ettt e ettt e e st e e e st et e e s sabae e e e snbneeeeanbbeeeean 51
3.6 Laboratorio 5 — Implementacion de SEMAFOIOScooiiiiiiiiiii e 51
I ST R |V [111 VZ= Tod o | IO OO PSP P PP PP OPPPPPPPTN 51
B.6.2 ODJELIVOS i 51
K G T €11 0] o To I o [0 Tod =T | (= I PP UOPPRPPPPPPP 52
K R S S (1 o [= o1 (= SRR PRPPPRPRP 52
K G ST =Y 01 (=T o1 o] (T PP PRPPRPPRP 52
N ST I B 1 - Tod o] o PO O SRR PP ROPPP 52
3.6.7 DOCUMENIACION Y AYUTA ..eeeiiuviieeeiiiieeeiiieeeesteeeessstaeeeessteeeeessbaeeessstaeeesstaeeessstaeeessnsaeaessnsseeeesns 52
3.7 Laboratorio 6 — Modificacion del planificador de ProCeSOS.........ccuuvieiiiiiieiiiiiie i e ssiiee e 53

I % T Y, [0 1 1VZ= Vo3 (o] o U 53

G A © 1] 11 1110 1SR 53
G0 T €11 01 o To Jo [0 To7=T | (= SRR 53
I S (0o [T 1 (=T OO PPRP 53
375 ENITEOADIES ... bbb e b e e b e e e abneeeeaa 53

I LG T B 1 - Tox o o PRSP 54
3.7.7 DOCUMENLACION Y AYUTAuveeiutiieiiiie ettt ettt e ettt et et e et eesbe e e sbb e e s be e e sabeesnbeeanbeeesabeeeaneeennns 54
3.8 La planificacion de [0S 1abOratorioscuueeiiiiiiiiiieeie e e e e e e s e snnrraeeeeee s 55
4 Herramientas d€ deSAITON0oiuiiii ettt e s e e e e nre e e e e e e 57
4.1 Lenguaje de programaciOn C..........cccuuiiiiie e e e e e e e e st e e e e e s s et e e e e e e s e aanrraaaaaaes 57
4.2 VMWAIE WOTKSTALION ...ttt ettt e st e e et e e s et e e e nbee e e e eneee 57
4.3 1] = ol] o] PP P PP PP POPPPPRPPPPP 58
I 07 10 1 r= LY F= 101 (o [o B OO PR PTPPPN 59
4.5 /1] 70 o (o] [o - USSR 59
451 EValuACION Y EIBCCION ...ttt e e e e e e e e e st e e e e e e s e s nraraeeeeeeeeaanns 60
4.5.2 ProCes0 de dESAITOIOeeiiiiiiii ettt 60
e B 1 (=1 = LodTo 1= J PP UPP PRI 61
I R 1 (= = Lod o] It PSPPSRI 62
455 IteracCion 2 ¥ ILErACION 3......coi ittt st et e e s bbbt e e s nba e e e e annneeas 62
A.5.6 TEEIACION 4 ..ottt b e s bt skt e e e ek et e s et bn e e et bt e be e e nnbe e areeen 63
T A 1 (=1 = ol o] T TP PSPPSR UPPTOPPPUPPRPPROR 63
N T | (=1 = (o (o] I G T VA 1 (=Y = Uox o] o APPSR 63
I I (= = Lo To] o IR T PP UPP PRI 64

5 Instalacion de Minix y entorno de deSaArrOll0...........coeiiuiieiiiiiieei et 65
51 INSTAIACION A8 IMINIX.....tiiiei ittt e sttt e e e st bt e e e sbe e e e s anbb e e e e sbbeeeeabaeeeeans 65
5.1.1 Configuracion de la MAQUINA VIrtUAIcooiuiiieiiiiiiee e e e stee e e e sraee e seaeee e 65
5.1.2 Instalacion de MiniX VErSION 3.1.6c.uiiiiiiiiiiaiiie ittt sbe e nee e 65
5.2 Instalacion del entorno de deSAITONOc.uii it 66

6 INrOAUCCION 8 IMIINIX 3 ...ttt e e e e et e e e e e et et et s e e e e e s ee et e seeeseeeaa bt eeeeesenssasa s eseeeessaranns 67

6.1 SiStema OPEratiVo MINIXceeeeiiiiiiiieiiee e e s iiite e e e e e s s s e e ee e e s e sas e e e e eeeessssarareeaaeessannsntanneeaeassanns 67
6.1.1 La HiStoria de MINIXc.eeiieiiiiieiiie ettt e s nnn e re e e nnn e 67
LT Y L= {1 g L= T o [Y T o OO 68
6.1.3 ACEICA 08 MINIX 3. .eiiiiiiiiiei ittt et e e e st et e e st e e e e e st b e e e e s bre e e e s bbe e e e anrreeeaa 69
6.1.4 (ES Minix 3 un SO confiable?.........coooiiiiiiiii 69
6.1.5 MeJoras SODIE MINIX 3cooi ittt e et e e e st e e e s sbb e e e s sbeeeeeanreeeeaa 71
6.1.6 ODbJetiVOS 08 MINIX S..iiiiiiiiieiie et s e s e e e e e e s e st r e e e e e s s aante e e e e eeeesasnnntenneaaeeesansnnenns 71
6.1.7 ESrUCtUra de MINIX 3ooeiiiiiiiee ittt e e e e s e e s s e e e s s e e e e snn e e e e anneee e 71
6.1.8 Ventajas de la arqUItECIUIAccovviiiiiiiiie e 73
6.1.9 Desventajas de [a arqUITECTUIAccoiuiiiiiiiiiee ittt e b e e sbneee e 74
6.1.10 ¢DoONnde se puede oObtENEr MINIX 32.......uuiiiiiiiiee ittt sb e e e sbneee e 74
6.1.11 Requerimientos necesarios para la instalacion de MinixX 3..........ccccciiiiieiiiiiieiiniiee e 74

7 EsStudio del proCeSso de ArTANQUEcccoeieieie i 77

7.1 BIOS (BasiC INPUt OULIPUL SYSTEIM) ...uuvuiriiiiiiiiiiiiieieieieieisisisiererersrerersrernrersrersree—————————. 77

7.2 Dispositivos de AIMACENAMIENTOuuuuiiieiriiiiiuieieieiererererere . 77
7.2.1 Unidad de diSQUELE (FIOPPY). -.eeeeiitiiieeiiiiee ittt ettt e et e e e snbneeeeen 78

7.3 (6T]o F=To lo (=00 IR oTo o [F] o JN S PP PPRP 79

7.4 Modos de direccionamiento A& SECIOTESueiiiuiiiieiiiiii e 80
7.4.1 CHS (Cylinder Head SECION)ccciiiiiiiiiiieee ettt 80
7.4.2 LBA (Logical BIOCK AdAreSSING).....ccceiiiiiiiiieieiiieeeeee ettt 81

7.5 INterrupCion OX13 de Ia BIOS e e e e e e e s et rrreeeeee s 82
7.5.1 INT OXL3, AH = OX00.....ciiiiiiiiiiieie ettt ettt e e e e e 82
T | I) a0) (0 83
T T | I) B T o B 0 (1 P 83
7.5.4 INT OXL3, AH = OXA2...coiiiiiiieeiee e 84

7.6 SECUENCIA U8 AITANGUEeeeiiieeeiiittteeit e e e e e iaate bt ittt e e e e e e aabeeeeeeaeaaaannbeeeeeaaeeaaasbabaeeeaaeseaanbabbeeeaaeseaanns 85

7.7 L F= TS (=T o To o) AP P PP PP PPPPR TP 92

8

9

10

10

7.8 (27T 011 o] [0 1o G 99

Implementacion de un intérprete de COMANAOScouuiiiiiiiee e e e e e e 107
Implementacion de llamadas al SIStEMAueeiiieiiiiiiiie e e e e 113
9.1 Llamadas al sistema €N MiNIX 3.......cooiiiiiiiiie e 113
9.2 Implementacion de Llamadas al SIStEM@.cueiiiiiiiiieiiii et 116

9.2.1 Funciones relacionadas con llamadas al SIStEMacceiiiiiieiiiiiiei e 116

9.2.2 ¢CoOmo se crea una llamada al SISTEMA?cuveeiiiiiiiiiiieee e 119

9.2.3 Pasos para crear una llamada al sistema (enfoque directo)ccccvveeeeiiiviciieeeee e, 120

9.2.4 Llamada al sistema (usando una biblioteca)ccccccvvveviiiiiiii 124

9.2.5 Llamada al sistema (eXteNdida)ccceviiiiiiiiiiii e 130
IMplementacion de SEMATOIOSoiiuiiiiiiiiie et e et e e et b e e e st e e e e sbneeeeans 137
10.1 Secuencia de inicializacion del &rbol de procesos en MiNiX 3 ..., 137
10.2 Comunicacion entre ProCces0 €N MINIX 3.iiiiiiiiieeiiiiee e 139

10.2.1 Mecanismo de paso de mensajes €N MiNIX 3......ccooeeieiiiiiiieie e 139
10.3 Sincronizacion de procesos de usuario €N MINIX 3.........ceieiiiiiiiiiiiieeee e e e e e e e 140

10.3.1 SeMAFOroS €N MINIX 3 ...oiiiiiiiiiieiie ettt et e st e e s e e s bt e s bne e sbe e e snbeeareeen 141
104 SEIVIAON PM .ttt ekttt e ottt e s bbbt e e s bbb et e s bt et e e s bbn e e e s nnaeeas 143
10.5 Implementacion de SEMAFOroS MINIX 3eiiiiiiiiiiiiiiie e 146
Modificacion del planificador d& PrOCESOSicuviiiiiiiiie ittt et e e sbeeee e 153
11.1 Criterios para la planifiCacCiOon:ccoiiiiiiiiiiei e e e s e e e e e e s str e e e e e e e e aaans 154
11.2 Algoritmos de planifiCacCiOoncoiiiiiiiiiiiiiee e e e e e e e e e e et e e e e e e aans 155
11.3 Planificacion por Priofidadesceiieiiiiiiiiieee et e e e e e e e et e e e e e e s s saba b e eeeaeeeaaans 155
11.4 Planificacion FIFO (First IN FIrSt OUL)coouueiiiiiiiieiiiieie e 156
11.5 Planificacion SIF (ShOrtest JOD FirSt)cocuiiiiiiiiieiiiie e 156
11.6 Planificacién SRT (Shortest Remaining TiMe)cocueiiiiiiiiiiiiiiie e 157
11.7 Planificacion RR (ROUNA RODIN)oiiiiiiiiiiiiiiie ettt e e e e nneaeeas 157
11.8 Planificacion MLQ (MUlti-leVel QUEUES)oiiiiiiieeiiiiiie it ettt e e st e st e e e e s sneaeeesnneaees 158
11.9 Planificaciéon MLFQ (Multi-level Feedback QUEUES).........cccuviieiiiiiieiiiiiee e 158

11.10 Planificacion de ProCeS0S €N MINIXcciuuiiiueiaiieeiieeastieesieeesiteeste e sbee e sbeeasseeesseeesbeeesabeeanseeans 159

11.10.1 Algoritmo de planificacion en MiNiX V3.1.6........cuuieieriiiiiiiiiiiieee e iiciireer e e e e e sserre e e e e e e eenenees 160
11.10.2 Desarrollo de ambiente de pruebas sobre el planificador en MiniX............cccccvvvvveeeeeiicnnnnen, 162
11.10.3Manejo de colas de planificacidn en MiniX V3.1.6........ccccuviereeeiiiiiiiiiiiiee e e e 165
11.11 ANAIISIS dE FESUIAUOS.c.eeeiiiiiie ittt ettt ettt ettt e e e bt e e s abe e sbe e e sabeeenneeeas 166
I O] o Tod (U T[0T =T O P PP PUP PP PPPPPN 171
D R o 11 = Yo (o =2 PSP PPPUPPRPRR 172
12.2 Trabajos fULUIOSeiiiiiiiie et e e e s e r e e e e e s et e e e e e e s santnteeeeeaeessnnntareeeeeeeeeannns 173
12.3 RECOMENUACIONESvveiiiiriiieiiteiee et e e st e e st e e st e e e s st e e s e e e s s et e s s e e e e ssnn e e e s nnneeesnnneees 173
RGN ST (T £=T g Tor o T PP PU PP PRSP 175

11

12

indice de Figuras

Figura 2.1 Capas de un sistema de COMPULACIONccuuiiiuiieiiiiaiie ettt ettt sbe e sene e e 25
Figura 4.1 Metodologia de desarrollo de SOfIWAIEcoiueiiiiiiiii it 61
Figura 6.1 EStructura de MINIX 3ciiiiiiiiiie e e e s st e e e e e e s s s e e e e e e e s s s anta e e e e eeessannsntaneeeeeeesannnnrenes 72
Figura 7.1 Geometria de UN QiISQUELE.......uueiii it r e e e e s s s e e e e e e s st e e e e e e e e s e nnnreees 78
Figura 7.2 Geometria de UN diSCO QUIO.........cceiiiiiiiiiiii e cieie e s e e e e e s r e e e e s s s bt e e e e e e e e sannnrenes 79
Figura 7.3 COdigo de INT OX13, AH = OX00ccuueiiiiiieiiieiieeesiteeatee et et e e siee et e sbe e ssbeesbeeesbeeesnbeeasnneenens 82
Figura 7.4 COdigo de INT OX13, AH = OX02ccuueiiiiiieiiiieiieeesiteeatee ettt e i et e bee e ssbeesbeeasbeeesnbeeasnneenens 83
Figura 7.5 COdigo de INT OXL3, AH = OX08ccciiuiriieiiiiiie ittt ettt ettt e e e b e e e e 84
Figura 7.7 EStructura de UN AISQUETE.eeccce e s s s s a e s e e s s e e e e e e e e e e e e e e e s e an e e e e ae s 85
Figura 7.6 COdIigo de INT OXL13, AH S OXA2eeiiiiiiiiieiiiiie ettt sitee e sitee e s st e e s sebee e s ssbee e s s nbe e e e anbeeeeenees 85
Figura 7.8 EStructura de UN diSCO TUIOuuuieee s s e a s s s s e s e s s e e e e e e e e e e e e e an e e e e ae s 86
Figura 7.9 Disefio de la memoria RAM luego de que Minix ha sido cargado desde el disco..................... 87
Figura 7.10 Proceso de arranque de MINIX 3coeeeioiiiieeiiee ettt 88
Figura 7.11 Estructura de un diSCO PArtiCIONATO0coiuuiiiiiiiiie ittt 89
Figura 7.12 Primer sector fiSiCO del diSCO AUIOuuuiiiiiii it a e e e 92
Figura 7.13 Disefio de una entrada de la tabla de partiCionccccviiieiiei i 92
Figura 7.14 Estructura de la tripla CHS..... ... 93
Figura 8.1 Codigo fuente de un Shell SIMPIE ... e 111
Figura 9.1 Flujo de informacién en la nueva llamada al Sistema...........ccceovieiiiiiiii e 116
Figura 9.2 FUNCION _SYSCAIL......ccoiiiiiiiiiiie ettt e et e e e neb e e e e 117
Figura 9.3 COdigo fuente de liD.N 118
Figura 9.4 FUNCION TASKCAILC.coii ittt e et e e e e e s e et e e e e e e s e s aab e e e eeeeesennnnreees 119
Figura 9.5 prueba_imprimirmMSQ.C.. ..ottt e e e e e e s e e e e e e s aaeeees 120
Figura 9.6 COdIgo fUENtE e tADIE.C ...ooeviiei e e 121
Figura 9.7 Codigo fuente de table.c (MOIfICAAO0)ccoviiiiieiiiiiee e 121
Figura 9.8 COdIgo fUENtE & ProtO.N.......eeiiiiiiee e e 122
Figura 9.9 COdIgo fUBNLE 0B GEISEL.C ..ovvviieeiiiii ettt e e e et e e et e e e e st e e e e sntee e e e nnraeaeennees 123

13

file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535311
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535312
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535313
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535315
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535323
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535328

Figura 9.10 Llamada al sistema usando biblioteca (SENCIlla).............coocviieiiiiiiiiii 124

Figura 9.11 ESITUCIUIA MESSAUE ..ccciiiuvvrieireeeeeiiittieeeeeeeesssitateeeeaeessssastaaeeeeeeesssssstaaeeaeeeesaassstaseeaeeeesannsnrenes 124
Figura 9.12 C6digo fuente de newcall.C (VEISION 1)ccccoiciiiiiiie e ee e st e e e e s ee e e e e e e 125
Figura 9.13 COdigo fUEBNTE A MAIN.Cuviiiiiie et e e e e e e e s r e e e e e s s s e e e eeeesannnranes 127
Figura 9.14 Llamada al sistema (EXIENAIAA)uueeeiiiiiieiiiie e 131
Figura 10.1 Flujo de mensajes €N MiNIX 3........cooiiiiiioiiiiieeieie ettt e e e e 140
Figura 10.2 Estructura del Servidor SEMATOI0c.uiiiiiiiiiie ettt be e sbe e aee e 142
Figura 10.3 Implementacion de do_SEMWaIL...........euiieiiiiiiiiiiiiie e e s e e e e e s s e e e e e e e s enenrnees 142
Figura 10.4 Implementacion de do_SEMSIGNAl.........ccoiiiiiiiiiiiiii e e 143
Figura 10.5 COdigo fUENE A MAIN.Cuviiiiie i e e s e e e e e e s s s e e e e e e e e s e nnanreees 145
Figura 10.6 Cddigo fuente de main.c (CONtINUACION)ccoiiiiiieiiiiie ettt 146
Figura 10.7 Implementacion de 1a @StrUCIUIa COIAuuiiiiiiiiiiiiit e 148
Figura 10.8 prueba_SEmM_WAIL.Cccoiiiiiiiiiiiie ettt e et e e e b e e nene 149
Figura 10.9 prueba_SemM_SIgNAL.C ... 149
Figura 11.1 Diagrama de planifiCacCiOn.............ccciuiiiiiiee i cctre e e e s ee e e e e e s e sanbre e e e e e e e s e nrnreees 154
Figura 11.2 Diagrama de planificacion RR (RoUNd RODIN)ccoiiiiiiiiiiiiec e 157
Figura 11.3 Diagrama de planificacion MLFQcooiiiiiiiiiiie et 159
Figura 11.5 CAOdigo fuente de altAIOSEIVEL.Ccoiuiiiiiiiiiee e e 163
Figura 11.6 C6digo fuente de altaioKerNELC.........ocuuii i 163
Figura 11.4 COdigo fuente de altAaiOUSEN.Ccccuuviiiiiei et e e s et e e e e e e e e aenree s 163
Figura 11.7 COdigo fuente de altaCPUUSEL.Cuviiiiieiiiiiiiiiiie ettt e e e e e s e st e e e e e e e e arnreees 164
Figura 11.8 COdigo fuente de altaCPUSEIVEL.Cuveiiiiiiiiiiiiieeee ettt s e e e e e e e s et re e e e e e e e s neneeees 164
Figura 11.10 Cédigo fuente de /usr/Src/Kernel/proC.h 165
Figura 11.9 Codigo fuente de altaCpUKEINEL.C........uevi i e 165
Figura 11.11 Cédigo fuente de Jusr/src/kernel/table.C ... 166
Figura 11.12 Resultados altaiouser.c (16 Colas de planificacion)cccocuveeeiiiieeeniiiie e 166
Figura 11.13 Resultados altaiouser.c (8 Colas de planificacion)ccccccovvveeiiiiiee i 167
Figura 11.14 Resultados altaioserver.c (16 Colas de planificacion)ccccveeeiciiieeeniiie e 167

14

file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535335
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535339
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535340
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535341
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535342
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535343
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535344
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535345
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535346
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535352
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535356
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535358

Figura 11.15 Resultados altaioserver.c (8 Colas de planificacion).ccoceerieiiiiieiiie e 167

Figura 11.16 Resultados altaiokernel.c (16 Colas de planificacion)ccccccoovcviiieeeee i 167
Figura 11.17 Resultados altaiokernel.c (8 Colas de planificacion)cccccccovviiiiieee s 168
Figura 11.18 Resultados altacpuuser.c (16 Colas de planificacion)ccccccooeeuvviiieeee i 168
Figura 11.19 Resultados altacpuuser.c (8 Colas de planificacion)cccccceerieiiiiieiie e 168
Figura 11.20 Resultados altacpuserver.c (16 Colas de planificacion)cccoveerieieniienien e 168
Figura 11.21 Resultados altacpuserver.c (8 Colas de planificacion)cccevueeriiienieeiie e 169
Figura 11.22 Resultados altacpukernel.c (16 Colas de planificacion)cccccccvvieeieeiiiiciiieeee e 169
Figura 11.23 Resultados altacpukernel.c (8 Colas de planificacion).cccccccivieeieeiiiiiiiiieeee e, 169

15

16

indice de Tablas

Tabla 2.1 Conceptos Claves A& CONCUIMENCIAuuuiiieeiiiiiiieie e e e e s sece e e e e e s s st e e e e e s e s ae e e e e e s e annnreaeeeeeeas 29
Tabla 2.2 Técnicas de gestiOn d€ MEMOTIAeoiuuieiiiie e eiee ettt et st e e sabeesabe e s sbe e e sabeesaneeeaene 32
Tabla 2.3 Ejemplos de virtualizadores, simuladores Y €mMuladorescoooouuieeeieeeiniiiiiieeee e 36
Tabla 2.4 Tabla comparativa de los Sistemas Operativos INStruccionales............ccccovvveeeiiiieeeiniiiee e, 40
Tabla 3.1 Planificacién de 10s |aboratorios POr SEMANEAScccceiiiciiiieiiee et e e e e s s e e e e s snnrareeeeaes 55
Tabla 7.1 Direccionamiento CHS fiSICO.......uuiiiiiiiie i 80
Tabla 7.2 Direccionami€nto CHS IOQICO.........ccuuiiiieie e e e e e e e e s e st ee e e e e s e annnrraereeaes 80
Tabla 7.3 Formula de conversion de CHS @ LBA ... 82
Tabla 7.4 INT OXL3, AH = 0X00coeeeiiiiieie et e e e e e e e e e e e e et s e e e e e e e ea b aeseaeseesbabaseeeseessabanaeaeaseenes 82
Tabla 7.5 INT OXL3, AH S 0X02Z ... ccieeiiiiiei et e et e e e e e e e ettt s e e e e e e e ea b e eeeaeseesbabaseeeseessabanaeeaaseenes 83
Tabla 7.6 INT OXL13, AH = OX08uieiiiiiieee ittt e e ettt e e e e e s et e b e et e e e e e s anb b b e e e aeeeeeaannranneeaaens 84
Tabla 7.7 INT OXL13, AH = OXA2 ...ttt e ettt e e e e e s e bbb e e e e e e e e s aab b e e e e e e e e e e e annbrrneeeaeas 84
Tabla 10.1 Componentes A IMINIX 3........uuuuuuueuereruuereiereueununrerersrnrerereree.—.———.—————.—.———.—.—————.———————————————————. 138

17

18

1 Introduccidon

Las primeras computadoras que surgieron no poseian sistemas operativos, cada programa necesitaba la
especificacion completa del hardware y sus propios controladores de dispositivos periféricos para
funcionar correctamente y desempefiar sus tareas; ademas, la creciente complejidad del hardware y los
programas de usuarios crearon la necesidad de un software que se encargara de los inconvenientes
antes mencionados, en consecuencia surgieron los sistemas operativos. Los cuales se encargan, a groso
modo, de proporcionar a las aplicaciones una interfaz para manejar el hardware de un computador,
convirtiéndose asi en una herramienta por excelencia debido al uso masivo por parte de los usuarios de
los computadores. Es por eso que el disefio, desarrollo e investigacion de los sistemas operativos han

jugado un rol principal en Ciencias de la Computacion.

Hay que tomar en cuenta que, implementar un sistema operativo que permita manejar el hardware,
administrar los recursos computacionales de forma eficiente, habilitar la ejecucion de procesos o
aplicaciones independientes a su desarrollo como los programas de usuario, no es una tarea trivial. La
implementacién de un sistema operativo es una tarea sumamente complicada que requiere de ciertas
pericias, talentos y buenas practicas en el &rea de la programacion. Ademas, de una gran inversién en
capital humano y sobre ellos un excepcional conocimiento en el area. Dada la complejidad de los
sistemas operativos, estudiar el disefio e implementacién de los sistemas operativos modernos es una

tarea ardua y dificil, pero necesaria.

El conocimiento de los conceptos de sistemas operativos son considerados importantes en la mayoria de
los pensum académicos referentes a cualquier carrera profesional de computacion. En estos cursos se
imparte los conceptos béasicos de disefio, implementacién y funcionalidad de los mismos. Existen dos
enfoques al impartir dichos conocimientos, el enfoque teédrico-abstracto y el practico. El enfoque
netamente practico es considerado complejo debido a lo sefialado con anterioridad. Por ende, es
necesaria una herramienta que mitigue dicha complejidad. Es por esto que nacen lo sistemas operativos

instruccionales.

Un sistema operativo instruccional es una herramienta educativa que permite el estudio y comprensién de
forma sencilla el disefo, desarrollo e implementacion de los principales conceptos y funcionalidades de
un sistema operativo moderno. Este software es un sistema operativo sencillo y en la mayoria de las

veces incompleto, careciendo de ciertas piezas las cuales los estudiantes se encargan de implementar.

Los sistemas operativos instruccionales se desarrollan bajo dos paradigmas, realismo y simulacion. El
primero (realismo) nos acerca a lo moderno, pero también a su complejidad. ElI segundo nos aleja de la

realidad, pero nos afiade la sencillez y la facilidad durante el desarrollo de proyectos.

19

Esta investigacion pretende proponer un sistema operativo instruccional como apoyo a la ensefianza del
curso de Sistemas Operativos de la Universidad Central de Venezuela de la Facultad de Ciencias de la

Escuela de Computacion.

1.1 Planteamiento del problema

Los Sistemas Operativos constituyen un tdépico importante en la ensefianza en Ciencias de la
Computacion y acorde a la metodologia pedagdgica utilizada, impartir este conocimiento puede resultar
una tarea compleja. Esta dificultad recae en la abstraccion del contenido. Por ende, es necesaria una
herramienta pedagdgica que permita unificar los espacios tedricos-practicos para mitigar la complejidad
de instruir sobre este tdpico. Dicha herramienta también debe brindar un entorno que permita al
estudiante interactuar con los conceptos basicos de Sistemas Operativos. Como se dijo con anterioridad

esta pieza de software educativa se conoce como Sistemas Operativos Instruccionales.

En la actualidad, los cursos de Sistemas Operativos de la Universidad Central de Venezuela no cuentan
con una herramienta pedagdgica que unifique y permita llevar una planificacion consistente entre los
tépicos dictados en las clases de teoria y los desarrollados en los laboratorios. En sintesis, el problema
se refleja en la diacronia de la planificacion entre la teoria y la practica, es decir, no existe ninguna
metodologia que permita reforzar ambas dinamicas durante la ejecucién del curso. Es importante
destacar que durante los laboratorios y proyectos de la materia se utilizan distintas herramientas para
generar conocimiento, donde los estudiantes deben aprender y manejar mdltiples ambientes,
plataformas, arquitecturas, etc., lo que trae como consecuencia que el curso no se centre netamente en
explicar los tépicos de sistemas operativos, ya que debe invertir parte del tiempo en explicar el
funcionamiento de cada ambiente. En conversaciones con el grupo docente se ha establecido la
necesidad de utilizar herramientas con la finalidad de mejorar el desempefio estudiantil y la didactica de
los docentes. Con todos estos lineamientos discutidos surge la siguiente interrogante: ¢Es posible
incorporar una herramienta educativa que permita ser adaptada al curriculum académico de los

cursos de Sistemas Operativos para reforzar los tépicos dictados en las clases tedricas?

1.2 Objetivos

A continuacién se describen el objetivo general y los objetivos especificos planteados para este trabajo

especial de grado.

1.2.1 Objetivo general

Adaptar al Sistema Operativo Instruccional Minix versién 3 en cuanto al contenido y objetivos de los
cursos de Sistemas Operativos de la Escuela de Computacion en la Universidad Central de Venezuela,

con el fin de optimizar el proceso de aprendizaje de los estudiantes.

20

1.2.2 Objetivos especificos

e Definir la estructura de los laboratorios a impartir en el curso de SO.

e Adecuar el SOI Minix versién 3 a los laboratorios definidos con anterioridad.

e Determinar las actividades docentes a realizar en cada uno de los laboratorios soportados por el
SOl Minix version 3.

e Desarrollar las plantillas, solucién y documentacion de las actividades planteadas.

¢ Realizar pruebas de correctitud sobre el SOl Minix version 3 y sus componentes.

¢ Documentar el proceso de adecuacién de la herramienta.

1.3 Justificacion

Los Sistemas Operativos Instruccionales son ampliamente usados en varias universidades, como
Stanford, MIT, Berkeley, Harvard entre otras. Basados en este hecho surgen las preguntas: ¢ Por qué?,
esto se debe a que se ha comprobado la eficacia como herramienta pedagdgica, ya que permite a los
estudiantes implementar partes estratégicas de un sistema operativo, siendo una buena practica de
estudio; ¢Como? mejorando los aspectos didacticos relacionados a los cursos tradicionales de Sistemas
Operativos, ofreciendo a docentes y estudiantes una herramienta capaz de estructurar los aspectos
practicos relacionados al curso. Estas herramientas instruccionales permiten ensefiar los conceptos mas
importantes de los sistemas operativos mediante la modificacion de un pequefio sistema operativo.
Ademas, provee la unificacion de la practica en una sola herramienta. Esto se debe a que los sistemas
operativos instruccionales proveen de una serie proyectos que pretenden ensefiar cada topico relevante

del pensum de estudio del curso.

Especificamente, en la Universidad Central de Venezuela, en la materia Sistemas Operativos de la
Escuela de Computacion, no se cuenta con una herramienta educativa de este estilo. Asimismo, en sus
espacios practicos no existe una estructura lineal que permita mejorar la comprension del alumnado
sobre los aspectos basicos de sistemas operativos. Por todas las razones anteriormente expuestas, este
Trabajo Especial de Grado busca suplir este déficit. Para lograrlo se plantea adaptar un sistema operativo

instruccional que permita ser fuente generadora de conocimientos teéricos-practicos.

1.4 Distribucion del documento

El contenido de cada uno de los capitulos que integran este documento es el siguiente:

v/ Capitulo 1: Introduccién. Se esboza el contexto de la investigacién, permitiéndole al lector
ubicarse rapidamente en los temas a tratar y la finalidad de la misma. Asimismo se expone la
justificacion, objetivos y planteamiento del problema de esta investigacion.

v/ Capitulo 2: Marco teérico. Se introducen los principales conceptos asociados a sistemas

operativos. Ademas, en este capitulo se abarcan las definiciones de un sistema operativo

21

22

instruccional, las herramientas de virtualizacién, simulacién y emulacién; los sistemas operativos
instruccionales mas usados (1), y una tabla comparativa de los mismos. Luego se explica los
motivos por los cuales el sistema operativo Minix 3 fue elegido para ser adecuado al curso de
Sistemas Operativos de la UCV.

Capitulo 3: Adecuacion de Minix 3 a la UCV. En esta seccién seran descritos todos los
laboratorios propuestos para la adecuacion de Minix 3 al curso de Sistemas Operativos de la
Escuela de Computacién de la Universidad Central de Venezuela. Para cada laboratorio
propuesto se desarrollan los siguientes puntos: motivacion, objetivos, grupo docente, estudiantes,
entregables, duracién, terminando con la documentacién y ayuda. Luego se expone una simple
tabla con la planificacién de los laboratorios por semana propuesta por esta investigacion.
Capitulo 4: Herramientas de desarrollo. Se describen los sistemas operativos y aplicaciones
utilizadas para la adecuacion del SOI Minix 3 al curso de Sistemas Operativos de pregrado de la
Universidad Central de Venezuela. Para concluir este capitulo se muestra la metodologia
utilizada para el desarrollo de la herramienta educativa, especificando la misma por cada
laboratorio propuesto.

Capitulo 5: Instalacién de Minix y entorno de desarrollo. Este laboratorio esta disefiado para
sentar las bases de las herramientas necesarias para desarrollar a lo largo del curso todos los
laboratorios propuestos por el grupo docente. Este es un punto clave ya que permite engranar
todas las aplicaciones y el sistema operativo instruccional Minix 3 para facilitar en gran medida el
desarrollo de la implementacion de los laboratorios. Seran descritos los pasos que se dieron para
la instalacion de Minix version 3.1.6, asi como también para armar y configurar el entorno de
desarrollo.

Capitulo 6: Introduccion a Minix 3. Se realiza una breve descripcion del sistema operativo
Minix, resaltando puntos como su historia, estructura, caracteristicas, objetivos, ventajas,
desventajas, entre otros.

Capitulo 7: Proceso de arranque. En este capitulo se presenta los conceptos asociados al
proceso de arranque del computador. Ademas, se estudia a fondo los pasos del proceso de
arranque, desde la perspectiva del disefio en el sistema operativo minix version 3.1.6, también se
muestra una documentacién a fondo de programas involucrados para dicho proceso.

Capitulo 8: Implementacién de un intérprete de comandos simple. Para comprender la
importancia de estas llamadas se propone un laboratorio que implemente el uso de las mismas,
el cual se propone realizar un intérprete de comandos simple.

Capitulo 9: Implementacion de llamadas al sistema. La idea principal es comprender el
esquema de funcionamiento y pasos a seguir para implementar las posibles llamadas al sistema
en el sistema operativo Minix versién 3.1.6.

Capitulo 10: Implementacion de seméaforos. Se muestra los mecanismos de concurrencia y

sincronizacion usados por Minix version 3.1.6. Como caso de estudio se implementa semaforos
en Minix, explicando el disefio y pasos a seguir para obtener la solucion.

Capitulo 11: Modificacion del planificador de procesos. Se ensefia el disefio y funcionamiento
del planificador de la CPU (Central Processing Unit) en el sistema operativo Minix version 3.1.6.
También, se explica como modificar los elementos de disefio del planificador, lo cual permite
evaluar a través de ciertos parametros los ambientes generados, diagnosticando el rendimiento
de cada uno de estos ambientes.

Capitulo 12: Conclusién. En este capitulo se presenta las conclusiones encontradas durante el
desarrollo de este Trabajo Especial de Grado, indicando si se alcanzaron o no los objetivos
propuestos anteriormente descritos. Ademas, se indican de una serie de recomendaciones para
posibles trabajos futuros que se puedan iniciar a partir de esta investigacién y sus limitantes.
Capitulo 13: Referencias. Contiene el conjunto de fuentes utilizadas y/o consultadas para la

realizacion de este documento.

23

24

2 Marco tedrico

En este capitulo se pretende introducir los principales conceptos asociados a la investigacion, los cuales
permitirdn al lector ubicarse en el contexto deseado para un mayor entendimiento de los conocimientos y
de la importancia de este trabajo especial de grado. Basicamente se habla de los sistemas operativos y
de los sistemas operativos instruccionales; haciendo especial énfasis en el sistema operativo
instruccional Minix 3 debido a que es la base fundamental de la investigacion, destacando su historia,

objetivos, estructura, ventajas, desventajas, entre otros.

2.1 Sistema Operativo

Un Sistema Operativo (SO) es un programa que siempre esta en ejecucion, el cual administra el
hardware de una computadora con el objetivo de ser versatil, de facil uso, eficiente y tener la capacidad
para evolucionar (2); las preguntas que surgen luego de esa premisa es para quién y como hace ésta
administracion. Basicamente la administracion la hace para los usuarios finales del hardware (3).
Especificamente la hace para las aplicaciones que usan los usuarios, por eso es que también se dice que
un SO es una capa de abstraccién entre el hardware y el software (4). El usuario de dichas aplicaciones,
es decir, el usuario final, normalmente no se preocupa por los detalles del hardware del computador. Por
tanto, el usuario final ve un sistema de computacién en términos de un conjunto de aplicaciones (5). Para

tener una idea ilustrada puede ver graficamente en la Figura 2.1.

Usuario Usuario Usuario Usuario
1 2 3 ° ° n Usuarios
finales
Programas de aplicacion
Utilidades | Compiladores | Editores | Intreprete de comandos
Programas
. . del si
Sistema Operativo elsistema
Lenguaje de maquina
Hardware
Hardware del computdor

Figura 2.1 Capas de un sistema de computacion

Una de las principales tareas de un SO es proporcionar un conjunto de primitivas para ser utilizadas por

las aplicaciones. De forma resumida, estas primitivas proporcionan servicios en las siguientes areas:

e Ejecucion de programas: Se necesita realizar una serie de pasos para ejecutar un programa. Las

instrucciones y los datos se deben cargar en memoria principal. Los dispositivos de E/S y los
archivos se deben inicializar, y otros recursos deben prepararse. Los SO realizan estas labores

de planificacién para el usuario.

25

e Desarrollo de programas: proporciona una variedad de utilidades y servicios, tales como editores

y depuradores, para ayudar al programador en el desarrollo de programas.

e Acceso a dispositivos de E/S: proporciona una interfaz uniforme que oculta los detalles de forma

que los programadores y usuarios puedan acceder a dichos dispositivos utilizando lecturas y
escrituras sencillas.

e Acceso a archivos: se debe tener una compresién detallada no sélo de la naturaleza del

dispositivo de E/S, sino también de la estructura de los datos contenidos en los archivos del
sistema de almacenamiento.

e Acceso al sistema: Acceso al sistema y recursos, brindando proteccién a los recursos y datos,

evitando el uso no autorizado de los usuarios.

e Deteccién y respuesta a errores: Debe mantener un ambiente consistente al ocurrir cualquier

error. Algunas de las acciones tomadas pueden oscilar entre finalizar el programa que causé el
error hasta reintentar la operacién, o simplemente informar del error.
e Contabilidad: Un buen sistema operativo recolecta estadisticas de uso de los diferentes recursos

y monitorea los parametros de rendimiento.

2.2 Llamadas al sistema

La interfaz entre el sistema operativo y los programas de usuario esta definida por un conjunto de
“operaciones extendidas” ofrecidas por el sistema operativo. Estas operaciones se definen como
llamadas al sistema, en si, son mecanismos por el cual un proceso solicita un servicio del nucleo (2) (3).
Estas llamadas proveen funcionalidades adicionales a la aplicacién, las cuales solo pueden ser
ejecutadas en modo nucleo. Es decir, las funcionalidades de cierta manera permiten a las aplicaciones

realizar un nimero mayor de operaciones, ya que éstas sélo se ejecutan en modo usuario.

Por encima del sistema operativo esta el resto del software del sistema. Aqui se encuentra el intérprete
de comandos (también conocido como Shell), los sistemas de ventanas, los compiladores, los editores y
los deméas programas independientes de la aplicaciéon, como puede observarse en la Figura 2.1. Es
importante darse cuenta de que ciertamente estos programas no son parte del sistema operativo. Este es
un punto crucial, pero sutil. El sistema operativo es (usualmente) la porcion del software que se ejecuta
en modo nucleo o modo supervisor, en el cual se pueden ejecutar instrucciones privilegiadas y se puede
acceder a areas de memoria protegida y a los dispositivos externos. Estas instrucciones conmutan la
maquina del modo de usuario al modo nudcleo y transfiere el control al sistema operativo. Es importante
saber en su mayoria las CPUs tienen dos modos: modo nucleo para el SO, en el que permite todas las
instrucciones y el modo usuario. El modo usuario es denominado asi porque los programas de usuarios
se ejecutan tipicamente en este modo, es un modo que no tiene los privilegios del modo nucleo, con

restricciones para acceder a ciertas areas de memoria y ejecutar ciertas instrucciones.

26

2.3 Procesos e Hilos

Todas las computadoras modernas pueden realizar diferentes funcionalidades al mismo tiempo. Mientras
ejecuta un programa de usuario, una computadora también puede estar leyendo de un disco y enviando
texto a una pantalla o impresora. En un sistema de multiprogramacion, la CPU también cambia de un
programa a otro, ejecutando cada uno durante decenas de milisegundos. Si bien, estrictamente
hablando, en un instante dado la CPU esta ejecutando s6lo un programa (suponiendo que solo tiene un
procesador), en el curso de un segundo puede trabajar con varios programas, dando a los usuarios la
ilusion de paralelismo. A veces se usa el término de seudoparalelismo para referirse a esta rapida
conmutacion de la CPU entre programas, para distinguirla del verdadero paralelismo de hardware de los

sistemas multiprocesador (2) (3).

El concepto de proceso es fundamental en la estructura de los SO. Cada proceso tiene asociado un
espacio de direcciones, una lista de posiciones de memoria desde algin minimo hasta algiin maximo,
que el proceso puede leer y escribir. El espacio de direcciones contiene el programa ejecutable, los datos
del programa, y su pila. A cada proceso también se asocia un conjunto de registros, que incluyen el
contador del programa, el apuntador de la pila y otros registros de hardware. Asi, como todo la demas
informacién necesaria para ejecutar el programa. Este término de proceso tiene muchas definiciones en

las cuales tenemos:

e Un programa en ejecucion, que conceptualmente tiene su CPU virtual.

e Unainstancia de un programa ejecutandose en un procesador.

e Laentidad que se puede asignar o ejecutar en un procesador.

e Una unidad de actividad caracterizada por un solo hilo secuencial de ejecucion, un estado actual,

y un conjunto de recursos del sistema asociados.
Cada proceso tiene las siguientes dos caracteristicas:

e Propiedad de recursos: Un proceso incluye un espacio de direcciones virtuales para el manejo de

la imagen del proceso; la imagen de un proceso es la coleccién de programa, datos, pila y
atributos definidos en el bloque de control del proceso. En ciertas ocasiones un proceso se le
puede asignar control o propiedad de recursos tales como la memaoria principal, dispositivos E/S y
archivos. El sistema operativo realiza la funcion de proteccidon para evitar interferencias no
deseadas entre procesos en relacién con los recursos.

¢ Planificacién/ejecucién: Un proceso tiene un estado de ejecucion y una prioridad de activacion, la

cual es dependiente del algoritmo de planificacion del sistema operativo.

27

2.4 Exclusion mutua

Hay que denotar que el sistema operativo busca coordinar las diversas actividades que la

multiprogramacion *provee, lo que resulta ser una tarea sumamente dificil. Por ende el sistema operativo

debe lidiar y resolver las siguientes situaciones o problemas:

e |napropiada_sincronizacién: ocurre cuando existen fallas en el mecanismo de sefalizacion,

provocando que las sefales se pierdan o se reciban duplicadas.

e Violacién de la exclusion mutua: ocurren cuando programas intentan acceder simultaneamente a

recursos compartidos y dichos accesos no son controlados.

e Interbloqueos: es posible que dos o mas programas queden bloqueados esperandose entre si.

La concurrencia es fundamental en todas estas areas y en el disefio del sistema operativo. La

concurrencia abarca varios aspectos, entre los cuales estan la comunicacién entre procesos, la

comparticibn 0 competencia por recursos, Y la sincronizacion de actividades de mdltiples procesos. Hay

que tomar en cuenta que todos estos asuntos no solo suceden en el entorno del multiprocesamiento y el

procesamiento distribuido, sino también en sistemas monoprocesador multiprogramados. Los principales

conceptos de exclusion mutua son descritos en la Tabla 2.1 (2).

seccion critica

Seccion de cédigo dentro de un proceso que requiere acceso a recursos
compartidos y que no puede ser ejecutada mientras otro proceso esté en dicha

seccién de cédigo, es decir, sélo un proceso puede ejecutarla a la vez.

interbloqueo

Situacién en la cual dos 0 mas procesos son incapaces de actuar porque cada

uno esta esperando que alguno de los otros haga algo.

circulo vicioso

Situacion en la cual dos o mas procesos cambian continuamente su estado en

respuesta a cambios en los otros procesos, sin realizar ningun trabajo (til.

exclusién mutua

Hace referencia a la condicion que define el uso simultdneo de recursos
comunes, como variables globales, por fragmentos de cédigo conocidos como

secciones criticas.

condicion de carrera

Situacion en la cual mdltiples hilos o procesos leen y escriben un dato
compartido y el resultado final depende de la coordinacion relativa de sus

ejecuciones.

! Multiprogramacion: gestion de mdiltiples procesos dentro de un sistema monoprocesador.

28

Situacion en la cual un proceso preparado para avanzar es ignorado
inanicion indefinidamente por el planificador; aunque es capaz de avanzar, nunca se le

escoge.

Tabla 2.1 Conceptos claves de concurrencia

2.4.1 Semaforos

En esta seccion se describen los mecanismos usados por el sistema operativo y lenguajes de
programacion para proporcionar concurrencia. El primer avance fundamental en el tratamiento de los
problemas de programacion concurrente fue realizado por Dijkstra. El estaba involucrado en el disefio de
un sistema operativo representado como una coleccion de procesos secuenciales cooperantes, ademas,

con el desarrollo de mecanismos eficientes y fiables para dar soporte a la cooperacion.

Dijkstra plantea en su avance que dos 0 mas procesos pueden cooperar por medio de simples sefiales,
tales que un proceso pueda ser obligado a parar en un lugar especifico hasta que haya recibido una
sefial especifica. Cualquier requisito complejo de coordinacién puede ser satisfecho con la estructura de
sefiales apropiada. Para la sefializacion, se utilizan unas variables especiales llamadas semaforos. Para
transmitir una sefial via el semaforo S, el proceso ejecutara la primitiva semSignal(S). Para recibir una
sefial via el semaforo s, el proceso ejecutard la primitiva semWait(S); si la correspondiente sefial no se ha
transmitido todavia, el proceso se suspendera hasta que la transmisién tenga lugar. Para conseguir el
efecto deseado, el semaforo puede ser visto como una variable que contiene un valor entero sobre el

cual solo estan definidas tres operaciones:

e Un semaforo puede ser inicializado a un valor no negativo.

e La operacion semWait(S) decrementa el valor del seméforo. Si el valor pasa a ser negativo,
entonces el proceso que esti ejecutando semWait(S) se bloquea. En otro caso, el proceso
contindia su ejecucion.

e La operacién semSignal(S) incrementa el valor del seméforo. Si el valor es menor o igual que

cero, entonces se desbloquea uno de los procesos bloqueados en la operacion semWait(S).

2.5 Gestion de memoria

Mientras se analizan varios mecanismos y politicas asociados con la gestién de la memoria, es Uutil
mantener en mente los requisitos que la gestion de la memoria debe satisfacer. Se sugieren cinco

requisitos:

e Reubicacion.
e Proteccion.

e Comparticion.

29

e Organizacion l6gica.

e Organizacion fisica.
2.5.1 Reubicacion

En un sistema multiprogramado, la memoria principal disponible se comparte generalmente entre varios
procesos. Es una buena préactica poder intercambiar procesos en la memoria principal para maximizar la
utilizacion del procesador, proporcionando un gran namero de procesos para la ejecucion. Una vez que
un programa se ha llevado al disco, seria bastante limitante tener que colocarlo en la misma region de
memoria principal donde se hallaba anteriormente, cuando éste se trae de nuevo a la memoria. Es por
esto que nace la reubicacion, que hace referencia al hecho de poder localizar a los programas para su

ejecucion en diferentes zonas de memoria.

2.5.2 Proteccion

Cada proceso debe protegerse contra interferencias no deseadas por parte de otros procesos, sean
accidentales o intencionadas. Por tanto, los programas de otros procesos no deben ser capaces de
referenciar sin permiso posiciones de memoria de un proceso, tanto en modo lectura como escritura. Por
un lado, lograr los requisitos de la reubicacion incrementa la dificultad de satisfacer los requisitos de
proteccioén. Por tanto, todas las referencias de memoria generadas por un proceso deben comprobarse
en tiempo de ejecucion para poder asegurar que se refieren sélo al espacio de memoria asignado a dicho
proceso. Afortunadamente, los mecanismos que dan soporte a la reasignacién también dan soporte al

requisito de proteccion.

2.5.3 Comparticion

Cualquier mecanismo de proteccién debe tener la flexibilidad de permitir a varios procesos acceder a la
misma porcion de memoria principal. Por ejemplo, si varios procesos estan ejecutando el mismo
programa, es ventajoso permitir que cada proceso pueda acceder a la misma copia del programa en
lugar de tener su propia copia separada. Asi como también, los procesos que estén cooperando en la
misma tarea podrian necesitar compartir el acceso a la misma estructura de datos. Por tanto, el sistema
de gestion de la memoria debe permitir el acceso controlado a areas de memoria compartidas sin

comprometer la proteccién esencial.

2.5.4 Organizacién logica

Casi invariablemente, la memoria principal de un computador se organiza como un espacio de
almacenamiento lineal o unidimensional, compuesto por una secuencia de bytes o palabras. A nivel
fisico, la memoria secundaria esta organizada de forma similar. Mientras que esta organizacién es similar
al hardware real de la maquina, no se corresponde a la forma en la cual los programas se construyen

normalmente.

30

2.5.5 Organizacioén fisica

La memoria del computador se organiza en al menos dos niveles, conocidos como memoria principal y

memoria secundaria. La memoria principal proporciona acceso rapido a un coste relativamente alto.

Adicionalmente, la memaoria principal es volatil; es decir, no proporciona almacenamiento permanente. La

memoria secundaria es mas lenta, mas barata que la memoria principal y normalmente no es volatil.

2.5.6 Particionamiento de la memoria

La tarea de mover la informacion entre los dos niveles de la memoria deberia ser una responsabilidad del

sistema. Esta tarea es la esencia de la gestién de la memoria. Las principales técnicas de gestién de

memoria estan descritas en la Tabla 2.2 (2).

Técnica

Descripcion

Ventajas

Desventajas

Particionamiento

fijo

La memoria principal se divide en
particiones estéaticas. Un proceso se
puede cargar en una particién con

igual o superior tamafio.

Sencilla de implementar,
poca sobrecarga para el

sistema operativo.

Uso ineficiente de la
memoria, debido a la
fragmentacion

interna.

Particionamiento

Las particiones se crean de forma

dinamica, de tal forma que cada

No existe fragmentacion

interna, uso mas eficiente de

Uso ineficiente del
procesador, debido a
la necesidad de

compactacion para

dinamico proceso se carga en una particion del o)
_ memoria principal. evitar la
mismo tamafio que el proceso. _
fragmentacion
externa.
La memoria principal se divide en
marcos del mismo tamafio. Cada
proceso se divide en paginas del Una pequefia
Paginacion mismo tamafio que los marcos. Un No existe fragmentacion cantidad de
sencilla proceso se carga a través de la carga externa. fragmentacion

de todas sus péaginas en marcos
disponibles, no necesariamente

contiguos.

interna.

Segmentacién

sencilla

Cada proceso se divide en
segmentos. Un proceso se carga
cargando todos sus segmentos en

particiones dinamicas, no

necesariamente contiguas.

No existe fragmentacion
interna; mejora la utilizacion
de la memoria y reduce la
sobrecargada respecto al

particionamiento dindmico.

Fragmentacion

externa.

31

Exactamente igual que la paginacion
No existe fragmentacion
sencilla, excepto que no es necesario
externa; mayor grado de Sobrecarga por la
Paginacion con cargar todas las paginas de un
multiprogramacion; gran gestion compleja de
memoria virtual proceso. Las paginas no residentes
espacio de direcciones la memoria.
se traen bajo demanda de forma
virtuales.
automatica.
Exactamente igual que la No existe fragmentacion
segmentacion, excepto que no es interna; mayor grado de
Segmentacion Sobrecarga por la
necesario cargar todos los segmentos multiprogramacion; gran
con memoria gestion compleja de
de un proceso. Los segmentos no espacio de direcciones
virtual la memoria.
residentes se traen bajo demanda de virtuales; soporte a
forma automatica. proteccién y comparticion.

Tabla 2.2 Técnicas de gestion de memoria

2.6 Sistemas de archivos

Desde el punto de vista del usuario, una de las partes mas importantes de un sistema operativo es el

sistema de archivos. El sistema de archivos proporciona las abstracciones de recursos tipicamente

asociadas con el almacenamiento secundario. El sistema de archivos permite a los usuarios administrar

los archivos, los cuales tienen las siguientes propiedades:

Existencia a largo plazo: Los archivos se almacenan en disco u otro almacenamiento secundario

y no desaparece cuando un usuario se desconecta.

Compartible entre procesos: Los archivos tienen nombres y pueden tener permisos de acceso

asociados que permitan controlar la comparticion.

Estructura: Dependiendo del sistema de archivos, un archivo puede tener una estructura interna
que es conveniente para aplicaciones particulares. Adicionalmente, los archivos se pueden
organizar en estructuras jerarquicas o mas complejas para reflejar las relaciones entre los

mismos.

El sistema de archivos ademas de almacenar los datos organizados como archivos, también provee una

coleccion de funciones que se pueden llevar a cabo sobre los archivos. Algunas operaciones son las

siguientes:

32

Crear: Se define un nuevo archivo y se posiciona dentro de la estructura de archivos.
Borrar: Se elimina un archivo de la estructura de archivos y se destruye.
Abrir: Un archivo existente se declara «abierto» por un proceso, permitiendo al proceso realizar

funciones sobre dicho archivo.

e Cerrar: Un determinado proceso cierra un archivo, de forma que no puede volver a realizar
determinadas funciones sobre el mismo, a no ser que vuelva a abrirlo.

e Leer: Un proceso lee de un archivo todos los datos o una porcion de ellos.

e Escribir: Un proceso actualiza un archivo, bien afiadiendo nuevos datos que expanden el tamafio

del archivo, bien cambiando los valores de elementos de datos existentes en el archivo.

Tipicamente, un sistema de archivos mantiene un conjunto de atributos asociados al archivo. Estos

incluyen el propietario, tiempo de creacion, tiempo de Ultima modificacion, privilegios de acceso, etc.

2.7 Herramientas de ensefianza en Sistemas Operativos.

En algunas casas de estudios las clases de pregrado de sistemas operativos se han impartido
tradicionalmente usando sistemas operativos instruccionales. Estos sistemas operativos estan destinados
a ser simples y de facil entendimiento, a su vez ellos carecen intencionalmente de ciertas piezas que los

estudiantes deben implementar y les sirven como ejercicios (6).

Los sistemas operativos constituyen uno de los tépicos mas importantes y complejos de ensefar en
cualquier pensum de estudio en las Ciencias de la Computacién. Los conceptos y definiciones asociados
a su contenido representan un reto para la metodologia educativa a utilizar, cuyo objetivo primordial es
ofrecer al estudiante los conocimientos para comprender y manejar los principios basicos en los que se

fundamenta el disefio e implementacion de los sistemas operativos modernos (7).

Con la finalidad de mejorar el desempefio estudiantil y la pedagogia de un curso de pregrado de sistemas
operativos surge la necesidad de utilizar una herramienta educativa. Esta herramienta debe permitir a
cada uno de los distintos actores participar en un experiencia completa en el disefio, desarrollo y

evaluacion referente a los topicos primordiales dictados en los espacios tedricos-practicos del curso.

A la hora de ensefiar al estudiante los tépicos de los sistemas operativos, el instructor debe decidir qué
tipo de tareas realizaran los estudiantes. Estas asignaciones pueden ser puramente teéricas como
preguntas y respuestas sobre los temas. Alternativamente, un instructor puede optar por proveer tareas
practicas. Hay una serie de posibilidades para las asignaciones de programacion. Una de ellas involucra
los conceptos relacionados con los sistemas operativos sin tener que incluir la programaciéon de un
sistema operativo. Por ejemplo, los estudiantes podrian plantear una solucion al problema de la cena de
los fildsofos. Sin embargo, lo ideal seria que los estudiantes puedan tener asignaciones para modificar o
desarrollar un sistema operativo; la pregunta que surge es ¢Sobre cual sistema operativo deberian

trabajar los estudiantes?

La solucion obvia es crear un sistema operativo “pequefio” que posea las caracteristicas basicas

asociadas a las estructuras computacionales modernas, conceptos, disefios, ademas que sirva como

33

plataforma educativa, mas que como un fin totalmente funcional. A estos los llamaremos sistemas

operativos instruccionales (1).

Durante las dltimas dos décadas el uso de este material didactico se ha convertido en el medio de
concepcion, generacion y aceptacion de conocimiento sobre los diferentes paradigmas que sustentan a
los sistemas operativos modernos. Lo cual presenta una problematica mayor, como manejar el
crecimiento exponencial de estas piezas de software y como mantener las herramientas educativas
actualizadas para que puedan explicar los nuevos enfoques cientificos y tecnolégicos de la computacion,

por supuesto sin alterar ni romper los limites académicos del curso®.

2.8 ¢Qué es un Sistema Operativo Instruccional (SOI)?

Los cursos de pregrado de sistemas operativos generalmente se ensefian utilizando uno de dos
enfoques: abstracto o concreto. En el enfoque abstracto, los estudiantes aprenden los conceptos
subyacentes a la teoria de los sistemas operativos, y los aplican utilizando hilos a nivel de usuario en un
sistema operativo anfitrion. En el enfoque concreto, los estudiantes aplican los conceptos para trabajar
sobre un verdadero nicleo de sistema operativo. En la mas pura manifestacién del enfoque concreto, los

estudiantes ponen en practica los proyectos de sistemas operativos que se ejecutan en hardware real (8).

Un sistema operativo instruccional es un software que tiene como objetivo ensefiar los conceptos mas
importantes de sistemas operativos mediante el disefio e implementacién de las funciones que permiten
desempefiar el trabajo del mismo a través de un enfoque concreto (7) (6). Esto se logra mediante un
conjunto de asignaciones las cuales los estudiantes deben implementar para desarrollar o mejorar el
sistema operativo instruccional (1). Finalmente, se desea que estos sistemas operativos sean lo
suficientemente realistas como para mostrar cémo funcionan los sistemas operativos reales e igualmente
sean bastante simples para que los estudiantes puedan comprenderlo y modificarlo de manera

significativa sin mayores dificultades™.

Estos sistemas operativos instruccionales estdn destinados a ser utilizado en cursos de ensefianza de
sistemas operativos. Los objetivos y mecanismos planteados por estos sistemas operativos se basan en
un conjunto de asignaciones que permiten desarrollar o mejorar el sistema operativo instruccional.
Permitiendo obtener la comprension de la carga cognitiva de los aspectos teéricos en un ambiente o
entorno de programacién sencillo y amigable que garantice el desarrollo sustentable de conocimiento.
Por ejemplo, la asignacion de técnicas de programacion concurrente permitiria afianzar los puntos

primordiales asociados a la concurrencia de procesos, 0 en otros casos con un enfoque mas real

% “The NachOS Instructional Operating System” - http://techreports.lib.berkeley.edu/

34

http://techreports.lib.berkeley.edu/

podriamos modificar algin cédigo asociado al manejo de procesos en el nlcleo de nuestro sistema

operativo para verificar y comprender su comportamiento.

Durante las (ltimas dos décadas el desarrollo de los sistemas operativos ha aumentado generando un
extenso ndmero de variantes, ya sean tanto propietarias como de cédigo abierto. Lo que permite escoger
al mas adecuado dentro de un catalogo de posibilidades con la finalidad de estudiarlo, analizarlo y
modificarlo. Los proyectos reales de los sistemas operativos modernos, su complejidad y desarrollo son
tan avanzados que pueden suprimir el objeto mismo de estudio y convertir la experiencia de aprendizaje

en una pesadilla engorrosa de miles de lineas de cddigo fuente.

Antes de seleccionar un sistema operativo instruccional para el estudio o incluso para la creacién de uno
se esta en la obligacion de revisar un poco la historia y los proyectos correspondientes a este tipo de
software educativo. También se debe considerar ciertos aspectos que permitirdn tener una vision clara y
objetiva. Una de las problematicas en torno a estas herramientas parten sobre las plataformas
soportadas y a su vez sobre como lo hacen. Desconocer la interaccién existente entre el sistema
operativo y el hardware con el que se comunica puede originar un fuerte impacto sobre los estudiantes
durante la fase de obtenciéon y generaciéon de conocimiento; esto debido a que gran parte de la
comunicacién hacia los dispositivos se lleva a cabo a través de lenguaje ensamblador. Por ser un entorno
de programacién muy distinto a los usualmente utilizados puede causar en el estudiante desmotivacion al

momento de generar un proyecto de sistema operativo.

Entre los componentes de hardware el CPU se le otorga mayor importancia por ser el principal dispositivo
en el computador moderno, dentro de la alta gama de procesadores en el mercado el mas comdn entre
ellos es la familia de procesadores Intel x86 o0 x86-64, esta realidad hace necesario que los estudiantes
conozcan y dominen este tipo de arquitectura, pero presenta una desventaja debido a que dicho
procesador posee un amplio conjunto de instrucciones que le permiten mayor robustez, pero
inevitablemente mayor complejidad en su uso. Este hecho hace pensar en arquitecturas con menor
complejidad, como la ofrecida por los procesadores MIPS (Microprocessor without Interlocked Pipeline
Stages), cuya principal adversidad se presenta en la escasez de recursos y de herramientas suficientes

para su gestion (1).

Dependiendo del planteamiento seleccionado también se debe tomar en cuenta que tipo de interaccion
se le ofrecera al estudiante con respecto al hardware. Trabajar directamente con el hardware puede
acarrear ciertas desventajas tanto en el &mbito educativo como en la parte asociada a la programacion,
ademas, estos conceptos se encuentran fuera de los topicos béasicos de sistemas operativos. Una
solucién que permite evitar esta problematica es manejar emuladores, los cuales permiten establecer una

nueva capa de interaccién entre el sistema operativo y el hardware o arquitectura del computador.

35

2.9 Herramientas de virtualizacion, simulaciéon y emulacion

El hardware x86 actual esta disefiado originalmente para ejecutar un Unico sistema operativo y al menos
una aplicacion, pero la virtualizacion ha acabado con estas limitaciones haciendo posible la ejecucion
concurrente de varios sistemas operativos, y varias aplicaciones en el mismo computador, aumentando

con ello la utilizacion y la flexibilidad del hardware.

Basicamente, la virtualizacién permite transformar hardware en software. Utilizar software para
transformar o virtualizar los recursos de hardware de un computador x86, incluidos CPU, RAM, disco
duro, y controlador de red; para crear una maquina virtual completamente funcional que puede ejecutar

Su propio sistema operativo y aplicaciones de la misma forma que lo hace un computador “real”.

Un emulador es en si un programa que crea una capa extra entre una plataforma existente (plataforma
anfitrion) y la plataforma a ser reproducida (plataforma de objetivo)s. A menudo es confuso distinguir entre
un emulador y un simulador. Normalmente, un emulador se ejecuta en el hardware (aunque también se
puede ejecutar sobre software), mientras que un simulador se implementa en el software. Por ejemplo, un
emulador de router se utiliza para probar el rendimiento o errores en el hardware y software del router.
Los errores pueden incluir los tiempos de reloj, los problemas en la secuenciacion de instrucciones, y la
prueba de velocidad. Un simulador se implementa solamente en el software. Como resultado, no tendra
la capacidad de emular el entorno de hardware, tales como los tiempos de reloj, simuladores de las

pruebas de velocidad, etc. son relativamente lentos, ya que se ejecutan en el software”.

Ejemplos
virtualizador OpenVZ, VMWare, VirtualBox, Virtuozzo, etc.
simulador Simics, SPIM, etc.
emulador Bochs, DOSBox, E/OS (Emulator Operating System), Qemu, etc.

Tabla 2.3 Ejemplos de virtualizadores, simuladores y emuladores

2.10Sistemas Operativos Instruccionales

Varias universidades han desarrollado sus propias herramientas educativas, conocidas como sistemas
operativos instruccionales. Cada una de estas se han adecuado al enfoque u objetivos planteados por las
mismas. Es por ello que a lo largo del tiempo han ido creando, evolucionando o mejorando mas

herramientas de este estilo. Existen distintos proyectos los mas comunes se describen a continuacion:

3 “What is emulation?” - http://www.kb.nl/

4 “Router Simulator Vs. Emulator” - http://routersimulator.certexams.com/

36

http://www.kb.nl/
http://routersimulator.certexams.com/

2.10.1 OS/161

Fue desarrollado en la Universidad de Harvard por David Holland para ser utilizado como herramienta
educativa en los cursos de sistemas operativos de esta casa de estudios superiores. Los objetivos en su
desarrollo fueron proporcionar un entorno de ejecucion realista; facilitar la depuraciéon y mantener la
simplicidad. OS/161 hace el intento de simular un sistema operativo real, y al mismo tiempo ser lo
suficientemente simple para ser manejado por estudiantes de pregrado. Es intencionadamente similar a
BSD Unix en la organizacion y estructura. Viene con una docena o mas de los comandos basicos de Unix

y permite utilizar una interfaz para las llamadas al sistema parecida a Unix (9).

2.10.2 NachOS

Es un programa instruccional desarrollado por Christopher, Procter y Anderson en la Universidad de
California. NachOS es usado por Berkeley y numeras universidades (10). Su objetivo es proporcionar un
entorno para que los estudiantes de pregrado desarrollen un sistema operativo. Se provee a los
estudiantes un disefio basico, en este caso, de las piezas de trabajo suficientes para cargar y ejecutar un
simple programa de usuario (dicho programa es NachOS). A través de una serie de tareas, el estudiante
implementa la funcionalidad de multiprogramacion, memoria virtual, y un sistema de archivos. Aunque se
trabajan sobre una maquina simulada, la maquina se basa en un procesador real, asi que las cuestiones

que el estudiante debe resolver son realistas y representativas del desarrollo sistema operativo real (11).

NachOS simula un procesador real MIPS R2/3000. La primera version de NachOS se completd en enero
de 1992 y se utiliz6 como un proyecto de pregrado sistemas operativos en Berkeley. La versién 3.4 se
implement6 sélo en C++. La version 4.0 introduce instrucciones en C y fue finalizada en el afio 1996.
Posteriormente se implementé la versién 5.0j en Java, desarrollada en Berkeley por Hettena Dan y Rick
Cox. NachOS 5.0j es una reescritura casi total, con una estructura similar a la 4.0. Dicha version 5.0j fue

desarrollado en 2001°.

2.10.3 Minix

Fue desarrollado por Andrew Tanenbaum, es un sistema operativo instruccional famoso y conocido
debido a que fue objeto de inspiracion de Linus Torvalds para iniciar el sistema operativo Linux. Es un
clon del sistema operativo Unix. Es distribuido junto con su codigo fuente y desarrollado por el profesor
Andrew S. Tanenbaum en 1987. Gracias a su reducido tamafio, disefio basado en el paradigma del
microndcleo, y su amplia documentacion, resulta bastante apropiado para personas que desean instalar
un sistema operativo compatible con Unix en su maquina personal asi como aprender sobre su

funcionamiento interno.

>"A Guide to NachOS 5.0j" - http://www-inst.eecs.berkeley.edu/

37

http://www-inst.eecs.berkeley.edu/

2.10.4 GeekOS

Desarrollado en la Universidad de Maryland. El objetivo de GeekOS es ser una herramienta para
aprender acerca del funcionamiento del ndcleo. Desde la version 0.2.0, viene con un conjunto de
proyectos adecuados para su uso en un curso de pregrado sistemas operativos, o para el aprendizaje

autodirigido. GeekOS se ha utilizado en los cursos de varias universidades.

Sus objetivos principales son realismo, simplicidad y facil entendimiento. Posee las siguientes
caracteristicas técnicas, manejo de interrupciones, manejador de memoria, manejo de hilos de ntcleo por
slots de tiempo predefinidos con un esquema de planificacion estatico de prioridades, manejo de
variables de condicion para garantizar el procedimiento de sincronizacion de hilos y soporte a dispositivos

entrada/salida. Esta desarrollado bajo el lenguaje de programacién C (8).

2.10.530S

Es un esqueleto de un sistema operativo el cual tiene funciones al estilo Unix (ejemplo: fork, exec), con la
diferencia de que esta disefiando e implementado como exonlcleo (es decir, las funciones de Unix estan
implementadas en su mayoria como bibliotecas a nivel de usurario en lugar estar integradas en el
ndcleo). Es usado en MIT como codigo fuente para que los estudiantes desarrollen a partir del mismo su

sistema operativo® (12).

2.11Comparacion entre los Sistemas Operativos Instruccionales

Una vez presentado los conceptos, la finalidad, filosofia de los SOl y los distintos software de
virtualizacion, simulacién y emulacién; se tienen argumentos suficientes para establecer criterios
comparativos de estos sistemas. A partir de estos criterios se presentard un cuadro comparativo donde
se muestra los puntos claves de estos SOl de una manera concisa y precisa, permitiendo calificarlos de
manera cuantitativa, vea la Tabla 2.4. Para la Tabla 2.4 los atributos tomados a consideracion son los
siguientes: SOI (nombre del SOI), desarrollador, caracteristica principal, limitaciones, licencia y modo de
desarrollo (MDD), ultima version, programado en (lenguaje(s) utilizado(s) para su implementacion),
plataforma requerida (ambiente o arquitectura requerida para poder ejecutar el SOI) y plataforma destino
(arquitectura para la cual el SOI est4 disefiado, es la arquitectura y conjunto de instrucciones que conoce
y utiliza el SOI).

® “Operating System Engineering” - http:/pdos.csail.mit.edu/

38

http://pdos.csail.mit.edu/

6€

Ultima Plataforma
SOl Desarrollador Caracteristica Principal Limitaciones Lenguaje Plataforma Requerida
version Destino
Un simulador de arquitectura
Universidad de BSD-like, OS/161 intenta dar un sentido No se puede 1.14. MIPS, puede ser cualquiera,
Harvard. realista como sistema operativo, al mismo ejecutar septiem Todo escrito pero sus desarrolladores MIPS
0s/161
(Cambridge - tiempo ser lo suficientemente simple para directamente sobre bre de enC crearon System/161 para R2/2000
Massachusetts) repartir a los estudiantes el hardware. 2005 este fin, el cual necesita un
SO Unix-like
Se ejecuta como un MIPS
Universidad de
Nucleo monolitico. En las asignaciones se proceso de usuario Principalmente R2/3000, Sun
Berkeley 4.0 SunOS, Solaris, Linux,
NachOS estudian e implementan todas las areas en el sistema implementado SPARC, DEC
(Berkeley - 1996 NetBSD y FreeBSD
de los sistemas operativos modernos operativo. Lo que le en C++ Alpha,
California).
quita realismo. RS/6000
Cualquier plataforma que
Nicleo monolitico. En las asignaciones se | Se ejecuta como un
Universidad de soporte la maquina virtual de
NachOS estudian e implementan todas las areas proceso de usuario Implementado
Berkeley 5.0j Java. Se puede utilizar las MIPS
(version de los sistemas operativos modernos. en el sistema en Java
(Berkeley - 2001 aplicaciones Eclipse o R2/3000
en java) Java es mas simple que C++. Java es operativo. Lo que le
California). Netbeans para desarrollar los
relativamente portable quita realismo.
proyectos.
Unix-like, Est& basado en una estructura Debido a su
Directamente sobre el
Andrew de micronicleo. Es muy realista y pequefio tamafio el Intel 386 o
3.1.6 Principalmente hardware o usando un
Tanenbaum completo. Es extremadamente pequeiio, caédigo es denso, sin superior, pero
Minix febrero implementado emulador o maquina virtual
(Amsterdam - flexible, seguro y estable. También cuenta embargo, su no soporta
de 2010 enC como virtual VMWare en
Netherlands) con debugger. Tiene dos enfoques tanto documentacion es x86 64-bit.

de ensefianza como comercial

extensa

Windows, VirtualBox 0 Qemu

Sus caracteristicas principales son

Directamente sobre el

hardware o puede ejecutarse

No soporta
Universidad de realismo, simplicidad y facil entendimiento. 0.3.0 sobre un simulador,
paginacion con
GeekOS Maryland Su objetivo principal es servir como un Abril de recomiendan Bochs. Probado 1A-32
memoria virtual.
(Maryland) ejemplo sencillo, pero realista, de un 2005 sobre las plataformas
nucleo de sistema operativo. Linux/i386, FreeBSD,
Windows con cygwin y Unix.
Unix-like, exonucleo, es un esqueleto de Ultima
Massachusetts
un sistema operativo provisto por el MIT Poca informacion publicaci
Institute of Directamente sobre el
para los estudiantes de sus cursos para acerca de la 6n en
JOS Technology hardware o puede ejecutarse 1A-32
que los mismos desarrollen uno a partir de documentacién del diciembr
(Cambridge - sobre Bochs.
JOS. Muy realista y provee mecanismos SO e de
Massachusetts)
para su depuracion. 2007

Tabla 2.4 Tabla comparativa de los Sistemas Operativos Instruccionales

40

A la hora de evaluar un sistema operativo instruccional se tomaron en cuenta varios aspectos, como por
ejemplo realismo, simplicidad, documentacién, ambiente de depuracién, vigencia, en cuantas
universidades se usa, entre otros. Fueron en gran parte estos criterios los tabuladores a la hora de
evaluar una gama de sistemas operativos instruccionales, este estudio se realiz6 en una investigacion
previa (13), en la cual el sistema operativo instruccional Minix fue el que mejor se ajustaba al curso de

Sistemas Operativos de la Universidad Central de Venezuela.

¢Por qué utilizar Minix en la UCV? Para responder esta pregunta se tomaran en cuenta las

caracteristicas de este sistema operativo instruccional, las cuales seran presentadas a continuacion:

e Minix 3 es una herramienta educativa que cuenta con distintos niveles de documentacion, entre
los cuales resaltan:

o Posee una lista de correo activa donde se le permite a los usuarios emitir preguntas y
soluciones que se presentan sobre este sistema operativo, la cual es soportada por la
comunidad de desarrollo.

o Posee un sitio Web donde es alojado el proyecto, y ademas se encuentran disponibles
todas las versiones de Minix desde su lanzamiento.

o Posee un portal dedicado a manuales de referencia para usuarios y para desarrolladores,
el primero incluye la informacion necesaria para la instalacion, gestion e interaccién con
el sistema operativo. El segundo incluye el API (Application Programming Interface) e
informacién para desarrollar aplicaciones en dicho sistema operativo, asi como también,
informacion sobre su codigo fuente.

o Posee una publicacion bibliografica titulada “Operating System, Design and
Implementation” donde los principales autores de este SO, Andrew Tanenbaum y Albert
Woodhull, explican los principios basicos de los sistemas operativos modernos.
Asimismo, se tiene como caso de estudio a Minix 3, en donde se muestra y explica de
forma detallada su cédigo fuente, estructuras de datos y funcionamiento del sistema
operativo.

e Debido a su grupo de desarrolladores activos es una herramienta que posee actualizaciones
continuas, un ejemplo de esto es que su Ultima actualizaciéon fue publicada para 4 febrero de
2010. Lo cual refleja la continuidad del proyecto.

e Al ser un sistema operativo que tiene como plataforma destino 1A-32 es lo suficientemente
realista como para ser instalado sobre el hardware al desnudo. Teniendo en cuenta este
escenario se pretende proveer al estudiantado una experiencia béasica pero real, relacionada a
los principios concernientes a los sistemas operativos, a través de una herramienta que se puede
instalar sobre la una arquitectura popular (IA-32), sin necesidad de realizar programacion de

controladores.

41

42

Al ser un sistema operativo totalmente funcional, provee la ventaja de entender y modificar de
forma mas sencilla su cédigo fuente a diferencia de tener que desarrollar todo desde cero.
Permite trabajar sobre un entorno basico de desarrollo Unix-like, el cual puede instalarse sobre

herramientas de virtualizacién como VMware, Virtual Box, Qemu, etc.

3 Adecuacion de Minix 3 ala UCV

En este capitulo seran descritos todos los laboratorios propuestos para la adecuacién de Minix 3 al curso
de Sistemas Operativos de la Escuela de Computacién de la Universidad Central de Venezuela. Esta
seccién presenta el enunciado de los laboratorios propuestos. La implementacion de la solucion y la

documentacién de la misma seran explicadas con destalle en los capitulos posteriores.

3.1 Laboratorio 0 —Instalacién de Minix y entorno de desarrollo

El primer laboratorio esta disefiado para sentar las bases de las herramientas necesarias para desarrollar
a lo largo del curso todos los laboratorios propuestos por el grupo docente. Este es un punto clave ya que
permite engranar todas las aplicaciones y el SOI Minix 3 para facilitar en gran medida el desarrollo de la

implementacion de los laboratorios.

3.1.1 Motivacioén

Este laboratorio pretende introducir el sistema operativo instruccional Minix version 3.1.6, el cual sera la
herramienta educativa a utilizar a lo largo de los laboratorios docentes de la materia Sistemas Operativos.
Igualmente se desea familiarizar a los estudiantes con el entorno de desarrollo de Minix version 3.1.6. Es

importante sefalar que Minix es ser un sistema operativo Unix-like.

3.1.2 Objetivos

Los objetivos a alcanzar es dar a conocer las herramientas a utilizar en el manejo de los laboratorios,

para esto el estudiante debe aprender a instalarlas, configurarlas y desenvolverse en las mismas.

3.1.3 Grupo docente

Para cumplir los objetivos planteados en este laboratorio el grupo docente debe encargarse de las

siguientes asignaciones:

e Proveer a los estudiantes los archivos ejecutables necesarios para la instalacion del entorno de
desarrollo propuesto. Esto se logra por medio de una aplicacion para control de proyectos (wiki)
desde la cual los estudiantes podran descargarse los archivos mencionados y la imagen del
sistema operativo Minix version 3.1.6.

e Explicar la instalacion de cada una de las herramientas. Para esto se debe proveer a los
estudiantes de los parametros de configuracion y un conjunto de pasos que permitan conseguir el
entorno de programacion deseado. Esto se lograra mediante el apoyo de una serie de video
tutoriales realizados por esta investigacion.

e Ensefiar un conjunto de 6rdenes basicas para el manejo del intérprete de comandos del SOI
Minix version 3.1.6.

e El grupo docente debe explicar los requerimientos planteados para este laboratorio.

43

3.1.4 Estudiantes
El estudiante debera asistir a su clase de laboratorio correspondiente y realizar las actividades de

instalacién siguiendo las instrucciones del grupo docente y realizar las siguientes actividades

¢ Instalar la herramienta de virtualizacién VMWare Workstation version 6.5.1.
e Instalar el Sistema Operativo Instruccional Minix versién 3.1.6.
e Instalar el IDE Eclipse (classic) versién 3.5.0 para el desarrollo del SOI Minix version 3.1.6.

e Integrar el IDE Eclipse y el SOI Minix version 3.1.6.

3.1.5 Entregables

Para evaluar este primer laboratorio se requiere a los estudiantes que entreguen su primera maquina
virtual la cual contiene el sistema operativo Minix versién 3.1.6 con un programa simple que imprima por
salida estandar “Hola Mundo”.

3.1.6 Duracion

Este laboratorio se pretende impartir en 2 horas de clase equivalentes a una clase de laboratorios.

3.1.7 Documentacién y ayuda

Como se menciono con anterioridad tanto los estudiantes como el grupo docente podran apoyarse con

una aplicacion para control de proyecto y varios videos tutoriales.

3.2 Laboratorio 1 — Introducciéon a Minix 3

En este laboratorio se da a conocer el SOl Minix 3, asi como también, una introduccién de su historia, de

su estructura, de las principales caracteristicas, etc.

3.2.1 Motivacion

La motivacion recae en explicar de manera teérica los topicos referentes a Minix, para que el estudiante

conozca el sistema operativo y pueda desenvolverse con fluidez en el desarrollo de los laboratorios.

3.2.2 Objetivos

El objetivo a alcanzar en este laboratorio es mostrar a los estudiantes los conceptos asociados al SOI

Minix 3, para esto se hizo especial énfasis en su historia, su estructura, principales caracteristicas, etc.

3.2.3 Grupo docente

El grupo docente debe:

e Introducir los principales conceptos tedricos asociados al SOI, su objetivo, las ventajas,

desventajas, etc.

44

e Explicar el SOI Minix describiendo su estructura, de las principales caracteristicas y en donde
puede obtener informacién del mismo.

e El grupo docente debe explicar los requerimientos planteados por este laboratorio.

3.2.4 Estudiantes

El estudiante debe asistir a la clase de laboratorio y prestar la atencion necesaria para poder entregar los

requerimientos solicitados por el grupo docente.

3.2.5 Entregables

El estudiante debe entregar un informe con lo siguiente:

e Descripcion del Sistema Operativo Minix 3.

e La Historia de Minix.

e Estructura de Minix 3.

e Ventajas de la arquitectura.

e Desventajas de la arquitectura.

e Descripcion del proceso de instalacién de Minix 3.

¢ Requerimientos necesarios para la instalacién de Minix 3.

e Describa los comandos utilizados en clase, su sintaxis y funcionamiento.

3.2.6 Duracién

Este laboratorio se pretende impartir en 2 horas de clase equivalentes a una clase de laboratorios.

3.2.7 Documentacién y ayuda

El grupo docente y los estudiantes podran apoyarse con una aplicacién para control de proyecto la cual

contendréd parte de esta investigacion y el seminario referente a la misma.

3.3 Laboratorio 2 — Estudio del proceso de arranque

El proceso de arranque es el inicio de la ejecucién de cualquier sistema operativo, siendo este un tema
basico para iniciar el entendimiento del funcionamiento del mismo; es por esto que entre los primero
conocimientos que un estudiante de un curso de sistemas operativos debe adquirir es este proceso; ya

que garantiza un aprendizaje secuencial.

3.3.1 Motivacion

Como se menciono el proceso de arranque es uno del los topicos principales para la compresiéon del
funcionamiento de un sistema operativo moderno, es por ello que se decidié realizar un laboratorio

dedicado a este tema.

45

3.3.2 Objetivos

La tarea de este laboratorio es conocer a fondo como funciona el proceso de arranque de un SO real.
Ademas, al realizar este laboratorio el estudiante aprendera los pasos necesarios para la ejecucion de un

SO, en este caso Minix 3, tanto la parte de hardware como de software.

3.3.3 Grupo docente

En este laboratorio se debe explicar especificamente cuales son los pasos que sigue Minix 3 para poder
arrancar el SO. Explicando los pasos de hardware, luego los pasos de software. Se debe hacer especial

énfasis en las particiones, como también en los archivos masterboot.s y bootblock.s.

3.3.4 Estudiantes

El estudiante debe de asistir a clases y realizar las actividades propuestas por el grupo docente de
manera de alcanzar los objetivos planteados en este laboratorio. El grupo docente debe explicar los

requerimientos planteados por este laboratorio.

3.3.5 Entregables

El estudiante debe entregar un informe con las respuestas de las preguntas sefialadas. Para esto se le

solicita al estudiante la descripcion de:

e (Cual es el conjunto de paso que realiza un computador para poder ejecutar el SO instalado?
Describa cada paso con detalle.

e ¢ Qué papel desempefia la BIOS (Basic Input Output System) en este proceso?

e (Cuales son los principales dispositivos de almacenamiento que estan involucrados en este
proceso y cual es su estructura?

e ¢ Cuales son los modos de acceso a los discos e indique la razén de cada uno?

e Identifique cuales son los programas involucrados para llegar a la ejecucion de Minix 3.
Posteriormente, describa a groso modo el funcionamiento de cada uno y para finalizar describa

cada instruccion que ejecutan dichos programas.

3.3.6 Duracion

Este laboratorio se pretende impartir en 2 horas de clase equivalentes a una clase de laboratorios. Y se
plantea como tarea entregar el informe asociado al mismo dando un lapso de una semana.

3.3.7 Documentacion y ayuda

El grupo docente y los estudiantes podran apoyarse con una aplicacién para control de proyecto la cual

contendréd parte de esta investigacion y el seminario referente a la misma.

46

3.4 Laboratorio 3 —Implementacion de un intérprete de comandos

Un intérprete de comandos es una pieza de software que provee una interfaz para los usuarios de un
sistema operativo que proporciona acceso a los servicios del nucleo. Se plantea en este laboratorio una

implementacion sencilla de un intérprete de comandos.

3.4.1 Motivacion

Las llamadas al sistema juegan un rol importante en los programas de usuario, estas llamadas proveen
funcionalidades adicionales a las aplicaciones, las cuales solo pueden ser ejecutadas en modo nucleo.
Para comprender la importancia de estas llamadas se propone un laboratorio que implemente el uso de

las mismas, el cual propone realizar un intérprete de comandos simple.

3.4.2 Objetivos

El objetivo principal es proveer la oportunidad de aprender cémo utilizar las llamadas al sistema. Para
hacer esto, se debe implementar un intérprete de comandos de Unix. Un intérprete de comandos es
simplemente un programa que permite ejecutar otros programas. El programa resultante se parecera a

los intérpretes de comando de Unix/Linux.

3.4.3 Grupo docente

El grupo docente debe explicar cada una de las llamadas al sistema a utilizar para la implementacién de
un intérprete de comandos. Ademas, para ayudar al desarrollo del intérprete de comandos se provee un
codigo base a los estudiantes, esto ayuda a la implementacion de la solucién, ya que provee ciertas
funcionalidades basicas que el intérprete de comandos debe cumplir. En si el grupo docente debe realizar

las siguientes actividades:

e El grupo docente debe proporcionar el enunciado de los requerimientos de este laboratorio.
Ademas, debe aclarar cualquier duda que del mismo pueda surgir.

e Para la inicializacion de este laboratorio también debe proveer a los estudiantes de la plantilla
asociada, explicando como manipularla y dando una breve descripciébn de cada uno de los
archivos que la componen.

e Como ayuda se propone explicar las principales llamadas al sistema que deben utilizarse para la
implementacion del intérprete de comandos, para esto se explica la sintaxis y semantica de las
mismas, culminando con un c6digo de ejemplo.

e El grupo docente debe explicar los requerimientos planteados por este laboratorio.

3.4.4 Estudiantes

El estudiante debe de asistir a clases y realizar las actividades propuestas por el grupo docente de

manera de alcanzar los objetivos planteados en este laboratorio.

47

3.4.5 Entregables

El estudiante debe implementar su propio intérprete de comandos el cual debe soportar las siguientes

instrucciones:

e Para empezar el intérprete de comandos a implementar debe soportar el comando interno “exit”,
el cual terminara la ejecucion del intérprete de comandos.

o Conocimientos: funcionamiento de los comandos del intérprete.
o Llamadas al sistema: exit()
o Funciones de la biblioteca estandar: strcmp()

e Un comando sin argumentos. Ejemplo: Is. El intérprete de comandos debe bloquearse hasta que
el comando complete su ejecucién, si el cddigo de retorno es anormal, debe imprimir un mensaje
indicando el error. Los comandos se almacenan en /bin y /usr/bin (aunque si se utiliza execvp()
en lugar de execv(), la ubicacién de los comandos no importa).

o Conocimientos: bifurcacién, espera hasta que finalice el proceso hijo, la ejecucién
sincronica.
o Llamadas al sistema: fork(), execvp(), exit(), wait()
e Un comando con argumentos. Ejemplo: Is -|
o Conocimientos: parametros de linea de comandos. El argumento cero es el nombre del
comando, los siguientes argumentos siguen la secuencia.

e Un comando, con o sin argumentos, cuya salida se redirige a un archivo. Ejemplo: Is -I >

archivo.txt
o Conocimientos: Las operaciones de archivo, la redireccion de salida. Este toma la salida
del comando y lo pone en el archivo indicado.
o Llamadas al sistema: close(), dup(), open().
e Un comando, cuya entrada es redirigida a un archivo. Ejemplo: sort < archivo.txt
o Conocimientos: redireccién de entrada, las operaciones con archivos. Se utiliza el archivo
denominado como entrada al comando.
o Llamadas al sistema: close(), dup(), open()

e Un comando, con o0 sin argumentos, cuya resultado se redirecciona a la entrada de otro

comando. Ejemplo: Is -1 | sort
o Conceptos: Tuberias. La salida del primer comando es la entrada al segundo.

o Llamadas al sistema: pipe(), close(), dup()

El intérprete de comandos debe chequear y manejar correctamente todos los valores de retorno. Esto
significa que necesita leer las paginas del manual, debe averiguar los posibles valores devueltos, qué

errores se indican, y lo que debe hacer cuando llegue ese error.

48

Su intérprete de comandos debe soportar cualquier combinacién de estos caracteres en una sola linea,
siempre y cuando tenga sentido. Por ejemplo, "Is -l | sort > resultado.txt", en este caso debe ejecutar la
salida del primer comando en la entrada del segundo y redirigir la salida del segundo comando en

resultado.txt.
Una vez descrito el enunciado el estudiante debe entregar lo siguiente:

e El cddigo fuente totalmente funcional del intérprete de comandos con los requerimientos antes
mencionados.

¢ Uninforme de la solucién explicando el uso de las principales llamadas al sistema utilizadas.

3.4.6 Duracién

Este laboratorio se pretende impartir en 4 horas de clase equivalentes a dos clases de laboratorio. La
primera semana se explica el funcionamiento de las principales llamadas al sistema utilizadas para
desarrollar un intérprete de comandos. También debe explicarse como utilizar las plantillas provistas,
para finalizar se debe explicar el enunciado de los requerimientos, en este caso la implementacion del
intérprete de comandos. La segunda clase se debe aclarar ciertas dudas y apoyar a los estudiantes en
los inconvenientes que puedan surgir a raiz de la implementacién del intérprete de comandos. En la

siguiente semana se debe recibir el cédigo funcional del intérprete de comandos solicitado.

3.4.7 Documentacién y ayuda

El grupo docente y los estudiantes podran apoyarse con una aplicacion para control de proyecto la cual
contendra parte de esta investigacién, que provee la solucién de todos los laboratorios, y el seminario
referente a la misma. Ademas, existe un video desarrollado por esta investigacién que apoya de manera
audiovisual la implementacion del intérprete de comandos. A continuacion se describen los programas
que componen la plantilla. La plantilla o cédigo base creara una carpeta llamada intérprete de comandos,
que proporciona los siguientes archivos Makefile, shell.l y myshell.c. Las funciones de los mismos seran

explicadas a continuacion:

e Shell.l: ofrece un programa de captura por entrada estandar (la funcién getline()), que se puede
utilizar para controlar el flujo de entrada del usuario. No es necesario que modificar este archivo.
El getline() devuelve un arreglo de apuntadores a cadenas de caracteres (char **). Cada cadena
es una palabra que contiene letras, nimeros, punto (.), barra (/), o una cadena de caracteres que
contiene uno de los especiales caracteres: '<',>'y'|'.

e myshell.c: contiene un codigo esqueleto de un intérprete de comandos simple. En este momento
el intérprete de comandos lo Gnico que puede realizar es leer una linea a la vez por entrada

estandar. La implementacion de la solucion del intérprete sera desarrollada en este archivo.

49

e Makefile: contiene todo lo necesario para compilar Shell.l y myshell.c. Con el fin de compilar y

ejecutar el intérprete de comandos.

3.5 Laboratorio 4 — Implementaciéon de llamadas al sistema

Debido a que Minix 3 esta implementado con una arquitectura micronudcleo dividido en cuatro capas las
existen dos llamadas al sistema posibles a implementar en el SO, la primera la cual es atendida por el
proceso servidor indicado, dicha llamada es ejecutada en modo usuario debido a que los procesos
servidores se ejecutan en este modo. La segunda que es atendida igualmente por el proceso servidor
indicando, con la diferencia que dicho proceso redirecciona la llamada al ndcleo del SO, para que
finalmente se ejecute en modo nucleo. El grupo docente debe explicar los requerimientos planteados por

este laboratorio.

3.5.1 Motivacioén

Este es el primer laboratorio donde los estudiantes modificaran por primera vez parte del sistema
operativo, €s un paso importante en la generacion de conocimientos, ya que pocos estudiantes de un

curso de sistemas operativos tienen la oportunidad de modificar un sistema operativo real.

3.5.2 Objetivos

El objetivo principal de este laboratorio es explicar como implementar ambas llamadas al sistema
mencionadas con anterioridad a los estudiantes, para que los estudiantes aprendan como es el
funcionamiento interno de una llamada al sistema en el SOI Minix 3 version 3.1.6. En si, este laboratorio

tiene la finalidad de:

e Conocer las funcionalidades relacionadas a cada capa del SOl Minix versién 3.1.6.
e Conocer el funcionamiento de las llamadas al sistema del SOI Minix version 3.1.6.
¢ Implementar llamadas al sistema para la capa 3 de los procesos servidores.

e Implementar llamadas al sistema para la capa 1 de los procesos del nucleo.

3.5.3 Grupo docente

Debe explicar toda la teoria asociada a las capas y llamadas al sistema en Minix 3. Asi como también,
debe mostrar como implementar las llamadas al sistema mencionadas con anterioridad, siendo detallista
con el proceso y programas involucrados. El grupo docente debe explicar los requerimientos planteados

por este laboratorio.

3.5.4 Estudiantes

El estudiante debe de asistir a clases y realizar las actividades propuestas por el grupo docente de

manera de alcanzar los objetivos planteados en este laboratorio.

50

3.5.5 Entregables

El estudiante debe entregar una maquina virtual con las llamadas al sistema implementadas y un informe

con la solucién de las mismas.

3.5.6 Duracién

Este laboratorio se pretende impartir en 4 horas de clase equivalentes a dos clases de laboratorio. La
primera semana se explica cémo implementar las llamadas al sistema. La segunda clase se debe aclarar
ciertas dudas y apoyar a los estudiantes en los inconvenientes que puedan surgir a raiz de la

implementacién de dichas llamadas. En la siguiente semana se debe recibir los entregables planteados.

3.5.7 Documentacién y ayuda

El grupo docente y los estudiantes podran apoyarse con una aplicacién para control de proyecto la cual
contendrd parte de esta investigacion y el seminario referente a la misma. Ademas, existe un video
desarrollado por esta investigacion que apoya de manera audiovisual la implementacion de ambas

llamadas al sistema.

3.6 Laboratorio 5 - Implementacion de semaforos

Un tépico interesante y comuin en sistemas operativos es la sincronizacién entre procesos, es por ello
que se decidié dedicar todo un laboratorio para adquirir y practicar los conocimientos adquiridos en esta
area. Es importante sefialar que el método para la sincronizaciéon en Minix 3 es el pase de mensaje. Es

por esto que se propone como laboratorio la implementacién de la estructura de dato semaforo.

3.6.1 Motivacion

Un tépico interesante y comun en sistemas operativos es la sincronizacién entre procesos, es por ello
que se decidié dedicar todo un laboratorio para adquirir y practicar los conocimientos adquiridos en esta

area.

3.6.2 Objetivos

Los objetivos planteados para este laboratorio son los siguientes:

e Conocer los mecanismos de concurrencia y sincronizacion utilizados por el sistema operativo
instruccional Minix versién 3.1.6.

e Entender la solucion propuesta por el grupo de desarrollo de Minix version 3 para la
implementacion de semaforos.

e Implementar semaforos para el sistema operativo instruccional Minix version 3.1.6.

51

3.6.3 Grupo docente

Explicar como los mecanismos de concurrencia y sincronizacion son implementados por Minix 3. Ademas
debe mostrar el funcionamiento de un proceso servidor, haciendo énfasis en el pase de mensajes.
También debe esbozar cdmo implementar semaforos en Minix 3, mostrando los pasos a seguir para
dicha implementacion; para esto debe proveer a los estudiantes la solucién de semaforos en cédigo
pseudoformal, tal y como se muestra en el capitulo 7. El grupo docente debe explicar los requerimientos

planteados por este laboratorio.

3.6.4 Estudiantes

El estudiante debe de asistir a clases y realizar las actividades propuestas por el grupo docente de

manera de alcanzar los objetivos planteados en este laboratorio.

3.6.5 Entregables

El estudiante debe entregar una maquina virtual con la estructura de datos seméforo implementada,
implementar un problema clasico de sincronizacion y un informe con la solucion de lo anterior

mencionado. La estructura de datos seméforo debe soportar las siguientes operaciones:

e Inicializacion
e Wait
e Signal

3.6.6 Duracién

Este laboratorio se pretende impartir en 6 horas de clase equivalentes a tres clases de laboratorio. La
primera semana se explica los mecanismos de sincronizacion usados por Minix 3, asi como también, el
funcionamiento de un proceso servidor. Ademas, se explicara la solucion planteada por esta investigacion
en cbdigo pseudoformal. La segunda y tercera clase son utilizadas para aclarar ciertas dudas y apoyar a
los estudiantes en los inconvenientes que puedan surgir a raiz de la implementacién. En la ultima

semana se debe recibir los entregables planteados.

3.6.7 Documentacion y ayuda

El grupo docente y los estudiantes podran apoyarse con una aplicacion para control de proyecto la cual
contendra parte de esta investigaciéon y el seminario referente a la misma. Ademas, existe un video
desarrollado por esta investigacion que apoya de manera audiovisual la implementacién de todo el

proceso de implementacion de los seméforos.

52

3.7 Laboratorio 6 — Modificacion del planificador de procesos

Este laboratorio pretende dar a conocer el algoritmo de planificacion de corto plazo utilizado por el
sistema operativo instruccional Minix version 3.1.6. Ademas de apoyar los conocimientos adquiridos en
teoria, este laboratorio permite constatar que es importante disefiar un buen algoritmo de planificacion ya

gue del mismo va a depender el uso optimo del procesador.

3.7.1 Motivacion

Una de las principales funcionalidades de un SO es gestionar la ejecucion de procesos, es por esto que

se desea que los estudiantes conozcan la importancia de esta funcion.

3.7.2 Objetivos

Los objetivos planteados para este laboratorio son los siguientes:

e Conocer los conceptos relacionados a la planificacion de procesos en los Sistemas Operativos.

e Conocer los algoritmos de planificacion de corto plazo en los Sistemas Operativos.

e Conocer el algoritmo de planificacién de corto plazo utilizado por el Sistema Operativo Instruccional
Minix version 3.1.6.

e Moadificar el algoritmo de planificacién de corto plazo utilizado por el Sistema Operativo Instruccional

Minix versién 3.1.6.

3.7.3 Grupo docente

El grupo docente debe explicar el disefio del algoritmo de planificacion de Minix 3, para luego hacer
referencia a las porciones de cédigo donde esta implementado dicho algoritmo. El grupo docente debe

explicar los requerimientos planteados por este laboratorio.

3.7.4 Estudiantes

El estudiante debe de asistir a clases y realizar las actividades propuestas por el grupo docente de

manera de alcanzar los objetivos planteados en este laboratorio.

3.7.5 Entregables

El estudiante debe entregar lo siguiente:

¢ Una magquina virtual donde se encuentre las diferentes imagenes del ndcleo de Minix versiéon 3.1.6
donde se genero el ambiente de pruebas para analizar el rendimiento del planificador de corto plazo
del sistema operativo instruccional Minix versién 3.1.6.

e Un informe describiendo de forma detallada la implementacion del ambiente de pruebas sobre el

planificador de corto plazo del SOl Minix 3 y su respectivo andlisis sobre los resultados obtenidos.

53

3.7.6 Duracién

Este laboratorio se pretende impartir en 4 horas de clase equivalentes a dos clases de laboratorio. La
primera semana se explica el algoritmo de planificacion de Minix 3 y los requerimientos funcionales del
actual laboratorio. La segunda clase es utilizada para aclarar ciertas dudas y apoyar a los estudiantes en
los inconvenientes que puedan surgir a raiz de la modificacion. En la semana siguiente se debe recibir los

entregables planteados.

3.7.7 Documentacion y ayuda

El grupo docente y los estudiantes podran apoyarse con una aplicacién para control de proyecto la cual
contendrd parte de esta investigacion y el seminario referente a la misma. Ademas, existe un video
desarrollado por esta investigacién que apoya de manera audiovisual la modificacion del algoritmo de

planificacién.

Para poder determinar el funcionamiento del planificador de corto plazo del Sistema Operativo
Instruccional Minix versién 3.1.6 debe recordar que debido a la estructura de disefio de Minix los
procesos de capas inferiores poseen mayor prioridad que aquellos en capas superiores, por lo tanto, se
debe asegurar la ejecuciones de programas en la capa de usuarios, en la capa de servidores y en la capa

del nacleo. El ambiente de pruebas a realizar es el siguiente:

e Implementar en el espacio de usuario dos programas que generen alta carga de CPU y alta carga de
peticiones de entrada/salida.

e Implementar en el espacio de servidores dos programas que generen alta carga de CPU y alta carga
de peticiones de entrada/salida.

e Implementar en el espacio de nucleo dos programas que generen alta carga de CPU y alta carga de

peticiones de entrada/salida.

Nota: Debe apoyarse en el Laboratorio 4 para generar las llamadas al sistema que permitan ejecutar

programas en la capa 3 y capa 1 respectivamente.

Ademas, el ambiente de pruebas a realizar debe calcularse los tiempos de ejecucién de cada uno de los
programas anteriormente propuestos utilizando el planificador de corto plazo de Minix definido con 16

colas y luego este debe modificarse con 8 colas y ejecutar nuevamente las pruebas.

54

3.8 La planificacion de los laboratorios

Para resumir la planificacion planteada por esta investigacion, la cual esta disefiada para un semestre de

16 semanas vea la siguiente:

semana 1l Laboratorio O

semana 2 Laboratorio 1

semana 3 Laboratorio 2

semana 4 .
Laboratorio 3

semana 5

semana 6 .
Laboratorio 4

semana 7

semana 8

semana 9 Laboratorio 5

semana 10

semana 11)
Laboratorio 6

semana 12

Tabla 3.1 Planificacion de los laboratorios por semanas

55

56

4 Herramientas de desarrollo

El presente capitulo realiza una descripcién los sistemas operativos y aplicaciones utilizadas para la
adecuacion del SOI Minix 3 al curso de Sistemas Operativos de pregrado de la Universidad Central de
Venezuela. Los principales sistemas operativos y aplicaciones utilizadas son el SOl Minix 3, las
aplicaciones usadas fueron VMware Workstation, el IDE (entornos de desarrollo integrados) eclipse y el
software de captura de video de pantalla Camtasia Studio. Para concluir este capitulo se muestra la
metodologia utilizada para el desarrollo de la herramienta educativa, especificando la misma por cada

laboratorio propuesto.

4.1 Lenguaje de programacion C

El leguaje de programacién C es un lenguaje de programacion desarrollado entre 1969 y 1973 por Dennis
Ritchie en los Laboratorios Telefénicos Bell para su uso con el Unix sistema operativo. El origen de C
esta estrechamente ligado al desarrollo del sistema operativo Unix, ya que originalmente estaba
implementado en lenguaje ensamblador para luego ser reescrito casi todo en C. La mayoria de los
sistemas operativos estadn escritos bajo este lenguaje ya que permite un control a muy bajo nivel, los
compiladores suelen ofrecer extensiones al lenguaje que posibilitan mezclar cédigo en ensamblador con

cédigo C’.
4.2 VMware Workstation

VMware es un sistema de virtualizacion por software. Un sistema virtual por software es un programa que
simula un sistema fisico (un computador, un hardware) con unas caracteristicas de hardware
determinadas. Cuando se ejecuta el programa (simulador), proporciona un ambiente de ejecucién similar
a todos los efectos a un computador fisico (excepto en el puro acceso fisico al hardware simulado),
puede simular la CPU (una o mas), BIOS, tarjeta grafica, memoria RAM, tarjeta de red, sistema de
sonido, conexién USB, disco duro (puede ser mas de uno también), etc. VMware Workstation se ejecuta

en Microsoft Windows, Linux y Mac OS X.

VMware Workstation permite a los usuarios ejecutar varias instancias de x86 o x86-64. VMware inserta
directamente una capa de software en el hardware del computador o en el sistema operativo host. Esta
capa de software crea maquinas virtuales y contiene un monitor de maquina virtual que asigna recursos
de hardware de forma dinamica, para poder ejecutar varios sistemas operativos de forma “simultanea” en

un unico computador fisico de manera transparente.

" “Programming in C” - http://www.cs.cf.ac.uk

57

http://www.cs.cf.ac.uk/

Ademas, VMware ofrece una sélida plataforma de virtualizacion que puede ampliarse por cientos de
dispositivos de almacenamiento y computadores fisicos interconectados para formar una infraestructura
virtual completa. Es software propietario pero existen versiones gratuitas como VMware Player. VMware
Workstation 7.0.1 fue publicado el 29 de enero de 2010 y VMware Player 3.0.0 fue publicado el 4 de
diciembre de 20092,

En nuestra investigacion se utiliz6 VMWare debido a que:

e Es una herramienta ampliamente utilizada en los laboratorios docentes de la Escuela de
Computacion.

e Su instalacion, configuraciéon y manejo de maquinas virtuales es muy sencilla e intuitiva para los
usuarios.

e Se puede obtener facilmente a través del Centro de Computacion.

e Es una aplicacion multiplataforma.

4.3 IDE eclipse

Eclipse es un entorno de desarrollo integrado de cddigo abierto multiplataforma. Estd escrito en su
mayoria en Java y se puede utilizar para desarrollar aplicaciones en Java. Ademas, por medio de
diversos plugins también se puede desarrollar en otros lenguajes de programacion como Ada, C, C++,
COBOL, Perl, PHP, Python, Ruby (incluyendo Ruby on Rails framework), Scala y Scheme.

La base de cdédigo inicial se originé a partir de VisualAge. En su forma predeterminada, es para los
desarrolladores de Java, que consiste en las herramientas de desarrollo de Java (JDT). Los usuarios
pueden ampliar su capacidad mediante la instalacién de plugins escritos para la plataforma de software
Eclipse, tales como kits de herramientas de desarrollo para otros lenguajes de programacion, y puede
escribir y contribuir con sus propios plugin. Distribuido bajo los términos de la Licencia Publica de Eclipse,
Eclipse es un software libre y de codigo abierto. La ultima version liberada es la 3.6.1 Helios, el 24 de

septiembre de 2010, la cual puede descargarse desde su pagina web principalg.
En nuestra investigacion se utilizé el IDE eclipse debido a que:

e Es una aplicacion multiplataforma.
e Al igual que VMware los estudiantes de la Escuela de Computacion estan familiarizados con el

IDE debido a que en varias materias del pensum es utilizado como herramienta de desarrollo.

8 “\WMware” - http://www.vmware.com/

% “aclipse” - http://www.eclipse.org/

58

http://www.vmware.com/
http://www.eclipse.org/

e Su instalacién, configuracién e instalacion de plugins es sumamente sencillo en gran parte a su
menu de instalacion.

e Se pueda descargar gratuitamente desde su pagina web principal.

4.4 Camtasia Studio

Camtasia Studio es un software de captura de video de pantalla, publicado por TechSmith. Puede
ejecutarse sobre los sistemas operativos Windows y Mac OS X. La licencia es propietaria. Cantacsia
permite crear screencasts, los screencasts ayudan a demostrar y ensefiar el manejo de un software. La
creacion de un screencast ayuda a los desarrolladores de software a mostrar su trabajo, es una manera
muy facil de ensefiar los conocimientos a través de un video. Es una herramienta (til tanto para los
usuarios comunes de software, asi como también, para ayudar a informar de errores o para mostrar a
otros como se realiza una determinada tarea en un entorno de software especifico. Los screencasts son
herramientas excelentes para aprender a usar las computadoras y/o aplicaciones, y muchos tutoriales
hoy en dia se encuentran con esta tecnologia, que permite ensefiar a los usuarios desde la comodidad

de su hogar, estudio o trabajo.

Teniendo en cuenta el alto costo de los instructores/profesores y la basica instrucciéon que se proporciona
en computacioén, probablemente los screencasting se conviertan en una técnica muy popular para impartir

conocimientos de alta calidad a un bajo costo.

Una desventaja es que la mayoria de los programas screencasting comerciales estan realizados para
Microsoft Windows, lo cual es una limitante para realizar videos de aplicaciones OpenGL, aunque Demo

Builder, Fraps, y Guncam Growler puede hacer frente a esto.

Una de las ventajas de Camtasia es que el tiene una interfaz muy intuitiva. También permite editar los
videos grabados minimizando el tiempo invertido para la grabacion y proporcionando una alta tolerancia a
errores por parte del usuario. Provee la facilidad de insertar audio aun cuando el video ya ha sido
grabado desligando lo visual de lo auditivo. Para el usuario también esta disponible una gama de
herramientas de presentacion y edicién de videos. Para utilizar Camtasia el usuario define el area de la
pantalla o la ventana que se va a capturar toda la pantalla o se puede grabar en su lugar. Esto se
establece antes de empezar la grabacion. Es posible grabar audio desde un micréfono o los altavoces y

Camtasia Studio le permite colocar imagenes de la webcam en la pantalla.

4.5 Metodologia

Sera descrita la metodologia utilizada para el desarrollo de los proyectos propuestos anteriormente. Se

utilizara la siguiente metodologia de adecuacion de software (29).

59

4.5.1 Evaluaciony Eleccion

En este paso inicial, se parte de la existencia de mdltiples alternativas de software (NachOS, PintOS,
GeekOS, Minix, xv6 y OS/161) para resolver el problema planteado. Lo cual hace referencia a la existen
distintas alternativas que encajan con la solucién que se desea tener. Considerando que estas piezas de
software pueden cumplir o no todos los requisitos funcionales, es de vital importancia evaluar cual se
adapta mejor al curriculum académico de los cursos de Sistemas Operativos de la Escuela de
Computacién, ya que habra menos esfuerzo y tiempo de adecuacion. Esta parte del proceso ya fue
desarrollada durante la elaboracién de este seminario y el SOl seleccionado fue Minix 3, como se

menciond y justificd con anterioridad.

45.2 Proceso de desarrollo

El objetivo de esta fase en si constituye en obtener una version del producto, que sea estable y funcional,
a pesar de que sea una version incompleta. En este caso, se tomoé los requerimientos necesarios para
instalar Minix 3; se documento este proceso indicando los procedimientos necesarios para instalacion,
configuracién y manejo de la herramienta educativa. Los cuales pueden observarse en el marco teérico
de este documento. Otro objetivo de esta fase es evaluar los posibles laboratorios que se pueden
desarrollar a partir de este SOI, los cuales ya fueron descritos anteriormente. Estos laboratorios seran
llamados lista de requisitos. En cada iteracion de esta metodologia se generd una version instalable,
hasta que los objetivos fueron cubiertos. Esta fase estd compuesta por las siguientes etapas: Este

esquema de planificacién se puede apreciar de mejor manera en la Figura 4.1

60

Evaluacion y
Eleccion

Y

Proceso de
desarrollo

/

Lista de Requisitos

Laboratorio a desarrollar

» Planificacin Implementacion de la
Eleccion solucion
de
Siexisten mas Requisitos
requisitos
Instalacién JRPPPTTILD Desarrollo
.

-""

“““ .z
.,“ Depuracién de errores
Generar una version Y
intalable

Pruebas T
Cédigo ejecutable estable Cédigo ejecutable

Figura 4.1 Metodologia de desarrollo de software

45.3 lIteraciones

Esta fase comienza con la eleccién de uno o mas objetivos, y estos deben dirigirse hacia un mismo
requerimiento funcional. Las iteraciones se proponen en periodos de 7 a 12 dias. Las primeras
iteraciones se dedican principalmente en el conocimiento de parte de los desarrolladores sobre la
herramienta a utilizar como disefio, arquitectura, codigo fuente y estructuras de datos. Al culminar una
iteracién, no siempre se genera una nueva version. Una vez dominado la parte tedrica de Minix 3, en las
primeras iteraciones. Se procede a la escogencia de un proyecto de laboratorio, para dar soluciéon y

documentar el procedimiento. Durante una iteracion se realizan las siguientes actividades:

e Planificacion: se analizan los requerimientos escogidos de cada proyecto de laboratorio, en base
a la complejidad de las tareas planteadas.

e Desarrollo: esta actividad consiste en la modificacion y/o desarrollo del codigo fuente. Se analizan
los requerimientos, se identifican los componentes que estan involucrados en la obtencion de la
solucién. Posteriormente se implementa la solucién planteada. Por dltimo, se realizan pruebas
concernientes sobre la correctitud de los cambios aplicados.

e Pruebas: estas se pueden realizar en un primer nivel sobre los requerimientos involucrados en la

iteracion y un segundo nivel sobre el funcionamiento del laboratorio.

61

e Instalacion: durante esta actividad se establecen un conjunto de tareas que permitan a nivel de

usuario interactuar con la aplicacion. Esta versién incluye al sistema y sus nuevos componentes.

Ahora se procedera a describir las iteraciones realizadas para alcanzar los objetivos especificos

propuestos:

454 Ilteracion 1

En esta iteracién se empleo para estudiar y entender toda la documentacion referente a Minix 3, la cual
dur6 10 dias.

e Planificacién: se decidi6 utilizar las fuentes mas confiables para la investigacion las cuales fueron
la Pagina web de Minix (14) y el Libro oficial (15).

e Desarrollo: en la pagina web se pudo obtener la imagen de Minix versién 3.1.6, ademas de los
reguerimientos necesarios para instalar Minix. También, se encontro informacion de como instalar
Minix y el entorno de desarrollo para la implementacion de los laboratorios. En el libro se
encontré toda la informacién de la estructura y funcionamiento de Minix 3, asi como también,
gran parte de la documentacion del cadigo fuente.

e Pruebas: para esta iteracion no aplican las pruebas.

e Instalacion: con la informacion obtenida se generé la primera version instalable de Minix 3.

4.5.5 Iteracion 2y Iteracion 3

En esta iteracién se procedié a la realizacién del laboratorio del gestor de arranque de Minix 3, cada

iteracion dur6 12 dias.

Planificacién: los requerimientos para esta iteracion son:
o Documentar todo el proceso de arranque de un sistema operativo.
o Identificar segun lo anterior las piezas claves en Minix que desarrollan esa tarea.
o Formular el laboratorio y realizar la solucién del mismo.

e Desarrollo: para el desarrollo de este laboratorio se hizo una documentacién minuciosa del
proceso que realiza Minix para poder ejecutar el nicleo. Ademas, se describié a fondo como
funcionan los archivos masterboot.s y bootblock.s. Para culminar se planteé como laboratorio una
serie de preguntas que los estudiantes debe responder para entregar un informe asociado.

e Pruebas: para esta iteracidn no aplican las pruebas.

¢ Instalacion: no aplica instalacion para esta iteracion.

62

456 Iteracion 4

Se planted la realizacion de un laboratorio que deba implementar un intérprete de comandos simple, la

cual duré 10 dias.

e Planificacion: los requerimientos para esta iteracion son:

o Documentar las principales llamadas al sistema que ofrece Minix 3 que dan soporte a la
implementacién de un intérprete de comandos simple.
o Realizar el enunciado del laboratorio.

e Desarrollo: Se implemento un intérprete de comandos simple, y se documento las principales
llamadas al sistema que dan soporte a la implementacién de uno, con eso se hace referencia a la
sintaxis y semantica de las mismas. Se redacto el enunciado asociado al laboratorio. Para
culminar se documenté todo el proceso de implementacion de la solucion.

e Pruebas: Se compiléd el programa myshell.c para probar la implementacién del intérprete de
comandos y se realizaron las pruebas necesarias para verificar su correcto funcionamiento.

e Instalacion: para esta iteracién no aplica instalacion.

457 lteracién 5

Se sugiri6 la realizacién del laboratorio de llamadas al sistema Minix 3, la cual duré 12 dias.

e Planificacion: los requerimientos para esta iteracion son:

o Documentar los tipos de llamadas al sistema en Minix 3, como es su funcionamiento y
cudles son las caracteristicas de las mismas. Ademas, documentar cémo se implementas
dichas llamadas.

o Identificar cudles son los programas involucrados en la implementacién de llamadas al
sistema.

o Implementar las llamadas al sistema en Minix, y realizar el enunciado del laboratorio.

e Desarrollo: Se implemento los dos tipos posibles de llamadas al sistema en Minix 3 con ayuda del
libro oficial. Ademas, se realiz6 el enunciado del laboratorio correspondiente. Concluyendo con
toda la documentacién, paso por paso, de la solucién.

e Pruebas: Se recompil6 el nacleo y se probo el correcto funcionamiento de las llamadas.

e Instalacion: como se menciond se genero un nuevo release de Minix 3 con las llamadas al

sistema implementadas.

4.5.8 lteracion 6y Iteracion 7

Para este laboratorio se quiso modificar el nicleo para que diera soporte a semaforos, cada iteracion

duré 12 dias.

63

4.5.9

Planificacién: los requerimientos para esta iteracién son:

o Identificar una manera de implementar semaforos en Minix 3 y realizarla.

o Realizar el enunciado del laboratorio.

o Documentar todo el proceso de implementacion de la solucién.
Desarrollo: Se modificé el nicleo de Minix y un proceso servidor para que pudiera soportar
semaforos, en especial implementar las principales primitivas que permiten manipularlos. Se
redacto el enunciado del laboratorio y todo el proceso de implementacion.
Pruebas: Se compilé el nucleo para probar la implementacion realizada y se realizaron las
pruebas necesarias para verificar su correcto funcionamiento. Se hicieron dos archivos de prueba
para verificar la implementacion.

Instalacién: se recompild el nacleo y se verifico que arrojara una nueva version.

Iteracion 8

Para este laboratorio se planteé modificar el algoritmo de planificacion de Minix 3, la cual duré 12 dias.

64

Planificacién: los requerimientos para esta iteracion son:

o Identificar los archivos involucrados en la implementacién de dicho algoritmo.
o Realizar el enunciado del laboratorio.

o Documentar todo el proceso de implementacion de la solucién.

Desarrollo: Se identifico y modifico los archivos que implementan el algoritmo de planificacion de

Minix 3. Y realizo el enunciado del laboratorio.

Pruebas: Se compilé el nlcleo para probar los cambios realizados y se realizaron las pruebas

necesarias, para verificar las modificaciones realizadas.

Instalacién: se recompil6 el nacleo y se verifico que arrojara una nueva version.

5 Instalacion de Minix y entorno de desarrollo

Este laboratorio esta esbozado para sentar las bases de las herramientas necesarias para desarrollar a lo
largo del curso todos los laboratorios propuestos por el grupo docente. Este es un punto clave ya que
permite engranar todas las aplicaciones y el SOl Minix 3 para un facilitar en gran medida el desarrollo de
la implementacién de los laboratorios. Seran descritos los pasos que se dieron para la instalacién de

Minix version 3.1.6, asi como también para armar y configurar el entorno de desarrollo.

5.1 Instalacion de Minix

Para la instalacion de Minix version 3.1.6 se utilizaron los siguientes programas:

e Laimagen de Minix version 3.1.6

e El sistema de virtualizacion VMware Workstation versién 6.5.1

5.1.1 Configuraciéon de la maquina virtual

Se debe crear una maquina virtual en VMware siguiendo la configuracion tipica configurando las

siguientes caracteristicas:

e Indicarle a la maquina que debe iniciar desde la imagen .iso de Minix version 3.1.6
e La memoria RAM (Random Access Memory)debe ser de al menos 16 MB, 600 MB como minimo

de disco duro y un procesador Pentium o compatible.

5.1.2 Instalacion de Minix version 3.1.6

A continuacion, se exponen los pasos a seguir para la instalacion de Minix 3.1.6, es importante destacar
que este procedimiento esta mejor explicado en los videos tutoriales realizados por esta investigacion.
Asumiendo que el proceso de configuraciéon de su maquina virtual se ha llevado a cabo de manera
satisfactoria. Con esto se supone que usted ha creado al menos una particiéon en su disco duro donde

residira la imagen del SO. Asi que los siguientes pasos describiran la instalacién estandar de Minix 3:

e Se debe configurar la BIOS (Basic Input Ouput System) para que la unidad de CD-ROM sea el
primer dispositivo arrancable del sistema.

e Introduzca en la unidad de CD-ROM el Live CD de Minix o en su defecto utilizar la imagen iso
descargada desde la pagina Web. Todo eso con la finalidad de que al momento de arranque la
BIOS pueda cargar el SO desde esta unidad.

e Si la ejecucién del disco de instalacion hasta ahora ha sido efectiva entonces se presentara la
consola de comandos esperando que introduzcamos un nombre de usuario, y colocamos al
usuario “root”. Debe recordar que en los SO derivados de Unix este es el “superusuario”.

e Alingresar al sistema se introduce el comando “setup”, para iniciar la instalacién de Minix 3.

65

5.2

Seguidamente al ejecutar el comando “setup” el sistema preguntara sobre cual es la
configuracién del teclado, coléquela segun sea la misma.

El sistema preguntara sobre el modo de instalaciéon que se desea llevar a cabo, es decir, una
instalacién estandar o avanzada, se seleccionara la primera con presionar la tecla de “enter”.

El sistema hara un chequeo sobre los dispositivos de almacenamiento que el sistema ha
detectado y pedira que seleccione que dispositivo se utilizara.

Se debe escoger en cual region del disco se alojara a Minix 3, inmediatamente dara un mensaje
informativo, el cual indica que a partir de este paso el proceso de instalacién se llevara a cabo y
no hay oportunidad de redimirse; Por supuesto se elige aceptar.

Luego, se preguntara la manera en la que se va a instalar, seleccionara la opciéon completa o full
del sistema.

En los siguientes pasos se preguntara el tamafio del directorio /home que es aquella particién
donde se encuentran los archivos de los usuarios del sistema.

Ahora se requerira el tamafio de bloque que desea manejar y muestra que la opcion que por
defecto es de 4 KB (Kilobyte) y la cual es la que se usara.

Ahora el sistema empezara a copiar los resultados de la instalacién al disco.

Luego solicitara la informacion sobre tarjeta de red que posee nuestro equipo. En caso de poseer
unan tarjeta de red sea soportada por Minix, el programa de instalaciéon preguntara qué tipo de
configuracién se va a manejar sea modo estatico o a través de un servidor DHCP (Dynamic Host
Configuration Protocol).

Al culminar estos pasos se nos llevara nuevamente al intérprete de comandos y debe ejecutar el

comando “reboot”, “shutdown” o “halt” para salir del programa de instalacion.

Instalacion del entorno de desarrollo

Para este paso es indispensable obtener el ejecutable de eclipse classic 3.5.0, posteriormente debe

instalarlo. Luego instalar los paquetes necesarios para desarrollar en el lenguaje C y para poder realizar

la conexién SSH (Secure Shell) con Minix. Por dltimo, debe instalarle un paquete a Minix que de soporte

a la conexiébn SSH. Todos estos pasos son descritos en el video tutorial de instalacion de Minix

desarrollado por esta investigacion.

66

6 Introduccion a Minix 3

En este laboratorio se da a conocer el SOl Minix 3, asi como también, una introduccién de su historia, de

su estructura, de las principales caracteristicas, entre otros.

6.1 Sistema Operativo Minix

Minix es un sistema operativo, distribuido conjuntamente con su codigo fuente y desarrollado por Andrew
Tanenbaum. La Gltima version oficial de Minix es la 3.1.8 que se puede obtener directamente desde su

pagina Web oficial™®

En esta seccidn y las posteriores se pretende dar un eshozo acerca del funcionamiento interno de Minix
3. Se explicara el disefio y la arquitectura de Minix 3, dicha informacién sera (til para la comprension de

los capitulos posteriores.

Esta ultima version de Minix puede ser definida, como un nuevo SO de cédigo abierto, cuya finalidad
principal es ofrecer alta confiabilidad, flexibilidad y seguridad. Esta basada en las versiones anteriores de
Minix, sin embargo, posee diferencias significativas. Minix 1 y Minix 2 fueron concebidas como
herramientas de ensefianza. Minix 3 afiade nuevos objetivos con la finalidad de ser utilizado como un SO
en computadoras con recursos limitados, embebidos y para aplicaciones que requieren alta confiabilidad
en sus ambientes de ejecucién. Actualmente Minix 3 se distribuye con una licencia similar a BSD, lo que

permite su estudio y modificacion.

6.1.1 La Historia de Minix

En los inicios del SO Unix especificamente en su version 6, las universidades adoptaron esta pieza de
software como herramienta educativa en sus cursos de SO debido a que podia obtener su cddigo fuente.
Debido al auge que empez0 a tener Unix, éste se convirtié en un software comercial que podria generar
ganancias a sus desarrolladores, en su caso a AT&T. Por lo que en su siguiente version su licencia fue
modificada, limitando el acceso a su cédigo fuente. Esta medida desfavorecio6 a las universidades debido
a que no podian utilizar la Ultima versibn como herramienta de estudio en los cursos de Sistemas
Operativos, ocasionando que las dinamicas pedagdgicas de los mismos fuesen orientadas méas a los

espacios tedricos-abstractos de la materia (15).

En busqueda de una solucién a la situacidon anterior, surge un proyecto que plantea la necesidad en
desarrollar una herramienta educativa capaz de generar conocimientos de disefio e implementacion en

SO, la cual se conoce como SOI (Sistemas Operativos Instruccionales). Este proyecto bandera se

1% “Minix 3” - jError! Referencia de hipervinculo no valida.

67

conocié como Minix, desarrollado por Andrew Tanenbaum, quien escribié un SO completo desde cero,
que posee una interfaz de usuario similar a Unix, pero con una estructura diferente para evitar problemas

relacionados a las licencias de software.

Debido al enfoque de disefio de Minix, es decir, de caracter pedagégico, su autor y creador no permitia
gue las modificaciones al mismo fuesen drasticas, motivado a que podria acarrear complicaciones en el

sistema. Ademas, podria impedir el estudio y comprension durante un semestre.

Minix 3 es conocido en los ambientes académicos computacionales por ser desarrollado por uno de los
principales investigadores de los SO. A su vez, es famoso debido a que del mismo surge uno de los
proyectos de SO mas populares de las ultimas dos décadas conocido como Linux, que fue desarrollado

por Linus Torvalds.

El nombre de Minix viene de un juego de palabras que su autor llama como mini-Unix, es decir, es un SO
lo suficientemente pequefio que puede ser estudiado y comprendido por cualquiera que se lo proponga

sin necesidad de poseer un amplio conocimientos en computacion.

6.1.2 Versiones de Minix

El SO Minix 1 en su inicio desarrollado por Andrew Tanenbaum, fue implementado para ejemplificar los
principios explicados en su libro “Sistemas Operativos: Disefio e Implementacion” publicado en el afio
1987. En este se puede conseguir una parte del cédigo fuente del nicleo, el controlador de memoria y el

sistema de archivos (15).

Esta version de Minix 1 fue desarrollada para trabajar sobre las arquitecturas IBM PC e IBM PC/AT que
eran las plataformas mas comunes para la época. Minix fue actualizado para ofrecer soporte al
MicroChannel IBM/PS2 y también a las arquitecturas Motorola 68000 y SPARC. Debido a la popularidad
del proyecto surgié una modificacion no oficial de Minix que fue adaptado para las arquitecturas

compatibles con Intel 80386, National Semiconductor NS32532, ARM y procesadores INMOS Transputer.

Minix 2 fue lanzado oficialmente en el afio 1997, ofreciendo compatibilidad con las arquitecturas x86 y
SPARC. Al igual que su version anterior este lanzamiento posee una publicacién bibliogréfica escrita por
Andrew Tanenbaum y Albert Woodhull. Minix 2 afiadi6 compatibilidad con POSIX, soporte para
arquitecturas Intel 80386. También aparecieron modificaciones no oficiales de Minix 2 dandole soporte a

arquitecturas basadas en el 68020 ISICAD Prisma 7000 y las basadas en Hitachi SH3.

Minix-vmd es una variante de Minix 2 para procesadores compatibles con la arquitectura Intel IA-32 que
fue creado por dos investigadores de la Universidad Vrije de Amsterdam, que afiadi6 mddulos de

memoria virtual y a su vez soporte para el sistema grafico X Window.

68

Minix 3 fue anunciado publicamente en el afio 2005 por Andrew Tanenbaum y al igual que sus
antecesores posee una publicacidn bibliografica “Operating Systems: Design and Implementation” en su
tercera edicién. Esta nueva version fue completamente redisefiada para ser utilizada como un SO para
computadoras con recursos de hardware limitados y para aplicaciones que requieren de un ambiente de
alta confiabilidad (15).

Actualmente Minix 3 soporta solo arquitecturas derivadas a la Intel 1A-32 y se encuentra disponible en
Live CD que es una caracteristicas bastante comun hoy dia que permite utilizar el SO sin necesidad de

ser instalado en la maquina real.

6.1.3 Acercade Minix 3

Minix 3 es un SO de cdédigo abierto cuya principal caracteristica de disefio es la de ser un sistema
altamente confiable, flexible y seguro, como se mencion6 con anterioridad. Esta versién de Minix se
puede considerar pequefa, debido a que la porcidn de cédigo que se ejecuta en modo ndcleo posee un
promedio de 6000 lineas de cédigo fuente, y aquellas piezas que se ejecutan en el modo usuario se

dividen en pequefios médulos, aislados unos de otros, es decir, su ejecucion es mutuamente excluyente.

Para entender el concepto anterior observe la siguiente situacion, si cada controlador de un dispositivo se
ejecuta como proceso independiente entonces al ocurrir un fallo en su ambiente de ejecucién este
proceso tendra un fallo y tendra que levantarse nuevamente. Pero sin comprometer la integridad del
sistema. Esto ocurre debido a que el codigo fuente del controlador no se encuentra incluido dentro del
nacleo debido al esquema micronicleo que utiliza Minix 3. Normalmente el codigo fuente de los
controladores son desarrollados por terceros que desconocen en su totalidad el disefio, implementacion y

desarrollo del SO en cuestion, por ejemplo OS X, Linux o Microsoft Windows (15).

De hecho, la mayoria de las veces cuando un controlador falla se sustituye automaticamente sin requerir
la intervencién del usuario, sin necesidad de reiniciar el sistema, y sin afectar los programas en ejecucion.
Debido a esta caracteristica (pequefa cantidad de codigo del nucleo), se mejoran en gran medida la

fiabilidad del sistema.

Uno de los principales objetivos de Minix 3 es la fiabilidad. A continuacién se discuten algunos de los
principios mas importantes que mejoran la fiabilidad de Minix 3. Al ser mejorada la fiabilidad
intrinsecamente se mejora la seguridad, ya que la mayoria de las fallas de seguridad se deben a que los

atacantes explotan los errores en el cadigo.

6.1.4 ¢Es Minix 3 un SO confiable?

Uno de los principales objetivos de MINIX 3 es la confiablidad. A continuacion se discuten algunos de los

principios mas importantes que mejoran la confiablidad de MINIX 3. Estos principios también mejoran la

69

seguridad, ya que la mayoria de las fallas de seguridad se deben a los atacantes que explotan los errores

en el cddigo, al ser mejorada la confiablidad intrinsecamente se mejora la seguridad. Algunas de las

medidas para garantizar la confiablidad son las siguientes (15):

70

Reducir el tamafio del ndcleo: algunos SO que poseen nucleos monoliticos por ejemplo, BSD,
GNU/Linux y Microsoft Windows. Estos poseen niicleos que estan escritos por millones de lineas
de cddigo fuente, para verificar la correctitud del mismo el procedimiento seria engorroso. Para
solucionar esto Minix 3 tiene aproximadamente 6000 lineas de codigo fuente del niicleo que son
ejecutables.

Enjaular los posibles errores: en los SO comerciales que poseen nucleos monoliticos, los
controladores de los dispositivos del computador residen en el nucleo del sistema. Lo anterior
conlleva a que en la base del sistema en su punto més crudo de ejecucion es instalado cédigo
fuente que son desarrollados por los fabricantes de los dispositivos. De los cuales no se puede
medir su calidad ya que estos son ajenos al desarrollo del SO. Lo anterior es solventado en Minix
3 porque cada controlador de dispositivo es ejecutado en el SO como un proceso independiente
de modo usuario, es decir, se garantiza de que en caso de que el cddigo pueda contener un error
este no podra afectar el sistema.

Limitar el acceso a memoria por medio de los controladores: En los SO monoliticos, un
controlador puede escribir cualquier palabra en memoria, alguna de estas palabras pueden ser
erréneas. En Minix 3 el sistema de archivos o el controlador le pide al nicleo escribir a través del
descriptor, lo que hace imposible que escriban a las direcciones fuera del bufer.

Tolerancia a bucles infinitos: si un proceso durante su ejecucién entra en un bucle infinito, el
planificador gradualmente ira reduciendo su prioridad hasta que se convierta en un proceso
inactivo o IDLE (proceso con menor prioridad). Eventualmente el servidor reencarnacion se
percatara que el proceso no responde a los mensajes y podra ser reiniciado.

Restringir el acceso a las funciones del nicleo: Los controladores de dispositivos obtienen los
servicios del nucleo a través de la realizacién de llamadas del nacleo. El ndcleo de Minix 3 tiene
un mapa de bits para cada controlador que especifica la llamada a realizar y verifica si ésta
autorizada.

Servidor reencarnacion: un proceso especial, denominado servidor reencarnacién, de forma
periddica verifica cada controlador. Si el controlador muere o no responde correctamente a las
peticiones, el servidor reencarnacién autométicamente lo sustituye por una copia nueva. La
deteccion y el reemplazo de los controladores que no funcionan son automaticos, sin intervencién

del usuario.

6.1.5 Mejoras sobre Minix 3

Minix 3 posee varias mejoras con respecto a su version anterior Minix 2 y entre ellas podemos nombrar

las siguientes (15):

¢ Instalacion del SO a través de un Live CD.

e Soporte al sistema X Window.

e Soporte de 4 GB de memoria principal.

e Inclusién de un servidor de informacién para procedimientos de depuracion.

e El servidor reencarnacion.

e El nucleo ha sido reescrito, optimizado y depurado a 6000 lineas de cédigo fuente.

e Cada controlador de dispositivo es ejecutado como un proceso de usuario exceptuando el
manejador del reloj del procesador.

e Mecanismo de comunicacién no blogueantes, es decir, asincrénicos.

e El planificador del procesador ha sido modificado.

6.1.6 Objetivos de Minix 3

En secciones anteriores se comentd que las versiones anteriores a Minix 3 fueron desarrolladas con un
enfoque puramente educativo siendo conocido mas como un SOI que como uno comercial. Sin embargo,
Minix 3 tiene ambos enfoques, el educativo y el comercial; esto ocasiono grandes expectativas debido a

que este SO fue lanzado para satisfacer las expectativas en los siguientes mercados (14):

e Ofrecer un ambiente de ejecucion para aquellas aplicaciones que requieren alta confiabilidad.

e Ofrecer un SO para los proyectos de OLPC (One Laptop per Children) y también para su
homologo el proyecto Magallanes.

e Ser utilizado como SO para sistemas embebidos.

e Como herramienta educativa, a pesar de que esta apuntandose a convertirse en un SO comercial
el tamafio de nlcleo es lo suficientemente pequefio para ser utilizado como herramienta

educativa en las instituciones académicas.

6.1.7 Estructura de Minix 3

El SO Minix 3 fue implementado con una arquitectura microndcleo dividido en cuatro capas. Existen al
menos cinco maneras en las que su nicleo puede ser estructurado, tales como: monolitico, en capas,
maquina virtual, exonucleos y arquitectura cliente/servidor (15). Minix 3 combina la estructura basada en
capas en conjunto con la arquitectura cliente/servidor. La arquitectura basada en capas divide el sistema
en una serie de niveles que implementan funciones especificas. Por lo tanto, es habitual que las capas
mas altas dependan de los servicios ofrecidos por otras capas de nivel inferior. Minix 3 tiene cuatro

capas, cada una con una funcién especifica y bien definida (15).

71

Acorde a las estructuras micronlcleo gran parte de las funcionalidades importantes del SO son
implementados como servidores que son ejecutados por separado. Entre los servicios fundamentales que
provee la estructura micronicleo son la administracion del espacio de direcciones, la administracién de

hilos, comunicacion entre procesos y la administracion de los temporizadores del sistema.

El SO Minix implementa una arquitectura microndcleo separada en capas como se muestra en la Figura
6.1. Ademas, como se ha comentado con anterioridad, Minix 3 esta estructurado en cuatro capas, para
visualizar cada una vea la Figura 6.1 donde se detallan. Como puede observarse la Unica capa que se

ejecuta en modo nucleo es la capa 1.

-
A Init Proceso de Proceso de Procesos de
Usuario Usuario Usuario

Manejador de Sistemade | Servidor | Servidor Procesos \ Modo
3 procesos archivos info de red Servidor Usuario
5 Controlador | Controlador | Controlador Controladores

de disco de tty de Ethernet de dispositivos
- " Tarea del Tarea del . Modo

1 Ndcleo " reloj | sistema | NUc© Ncleo

Figura 6.1 Estructura de Minix 3

Capa 1 (El nucleo): Esta capa provee los servicios de mas bajo nivel que son necesarios para la
ejecucion del sistema. Entre ellos se incluyen la gestién de interrupciones, planificacién y comunicacion.
La parte que ofrece servicios de mas bajo nivel de esta capa, que trata con interrupciones y otros
aspectos muy dependientes del hardware, esta escrita en lenguaje ensamblador, mientras que el resto de

funcionalidades estan escritas en C. Esta capa se encarga de lo siguiente:

e Gestionar las interrupciones.

e Salvar y restaurar registros.

e Planificar procesos.

e Ofrecer servicios a la capa superior.

e Funciones de comunicacion y mensajes.

Capa 2 (Controladores de dispositivos): En esta capa se encuentra el cédigo que se encarga de las
tareas de entrada/salida y da soporte a ciertas tareas que no pueden realizarse a nivel de usuario. Como
por ejemplo el controlador de disco, controlador de tty y controlador de Ethernet, etc. Ademas, en esta
capa se encuentran los controladores de dispositivos, para dar soporte a periféricos como discos duros,

teclados, impresoras, lectores de CD-ROM.

72

Capa 3 (Servidores): Esta capa ofrece servicios que son utilizados por los programas que se ejecutan
en la capa superior. Los procesos en esta capa pueden acceder a los servicios de la capa dos
(controladores de dispositivos) pero los programas de la capa cuatro no tienen acceso directo a los
procesos de la capa dos. Ejemplos de algunos de estos servicios incluyen: manejador de procesos,

sistema de archivos, servidor info, servidor de red, etc.

Capa 4 (Procesos de usuario): Esta capa comprende la seccion de usuario de Minix 3 en la que son
ejecutados los programas de usuario. Estos programas utilizan los servicios que ofrecen las capas de
nivel inferior. Los programas que se encuentran habitualmente en esta capa incluyen demonios de varios
tipos, terminales, intérprete de comandos y cualquier otro programa que el usuario quiera ejecutar. Los
proceso de esta capa tienen el nivel mas bajo de privilegios para acceder a los recursos y normalmente
acceden a ellos a través de los servicios que ofrecen las capas inferiores. Por ejemplo, un usuario podria
ejecutar la orden traceroute, que necesita usar el controlador de red. La orden traceroute no invoca
directamente al controlador de red. En su lugar, pasa a través del servidor de archivos; debido a que el
intérprete de comandos estd en la capa 4 y no puede comunicarse directamente con la capa 2, en su

lugar solicita el servicio a través de los servidores (en este caso el servidor de archivos).

6.1.8 Ventajas de la arquitectura

Algunos de los beneficios mas importantes de esta arquitectura de capas se describen en detalle a

continuacion (15):

e Modularidad: el sistema esta bien estructurado y la relacién entre los diferentes componentes
esta bien definida.

e Seguridad: la combinacién de la estructura en capas y micronucleo facilita la incorporacion de
mecanismos de seguridad. Las capas dos y tres se ejecutan en espacio de usuario, mientras que
tan solo la capa uno se ejecuta en modo nucleo, que posee todos los privilegios necesarios para
acceder a cualquier parte del sistema.

e Extensible: para poder tener un sistema funcional, es necesaria la configuracién del nicleo, asi
como la de los servicios clave que son necesarios para comenzar. Todas las demas funciones
pueden ser afiadidas cuando sean necesarias. Esto hace mas sencillo ampliar o especializar la
funcién del sistema.

e Rendimiento y estabilidad: muchos problemas que provocan inestabilidad en un computador
son resultado de controladores y programas mal disefiados. La arquitectura micronudcleo permite
a estos programas ser ejecutados e implementados independientemente de los componentes
principales del SO, lo que significa que un fallo en cualquiera de los controladores de dispositivo

no es catastrofico para el sistema; puede mantenerse en ejecucion, pese a los errores.

73

6.1.9 Desventajas de la arquitectura

Existen varios puntos que son considerados desfavorables para la estructura de la arquitectura, los

cuales son descritos a continuacion:

e Complejidad: la arquitectura de Minix tiene una estructura complicada, lo que dificulta, en primer
lugar, su disefio y ademas, su evolucion. A pesar de las posibles ventajas de un disefio modular a
la hora de adaptar un software a un nuevo entorno, en Minix 3 la modularidad no es total,
existiendo muchas dependencias entre sus distintas partes. La industria de la informatica esta
entre las mas cambiantes dentro de la economia mundial y por lo tanto sufre una necesidad real
de adaptarse a los nuevos desarrollos tanto hardware como software, aspecto en el que Minix no
se ha mostrado demasiado apropiado.

e Comunicaciones y envio de mensajes: este tipo de estructura necesita una arquitectura rapida
y eficiente de comunicaciones para asegurar la maxima velocidad en la comunicacion entre los
distintos procesos que se ejecutan en su espacio individual de direcciones, asi como con
variados niveles de seguridad. Una mala implementacion de las comunicaciones tendra un gran

impacto en el rendimiento del sistema (15).

6.1.10 ¢DoOnde se puede obtener Minix 3?

El SO Minix 3 es distribuido en su pagina Web oficial’* donde se publican todas las versiones de Minix
incluyendo la que actualmente se encuentra en la fase de desarrollo. Para la fecha, la Gltima versién

estable es Minix 3.1.8 y la que se encuentra actualmente en la fase de desarrollo seria la Minix 3.1.9 (14).

Ademas, este SO como fue comentado en las secciones anteriores posee una publicacion bibliografica
escrita por el creador de Minix, en este caso Andrew Tanenbaum con el nombre de “Operating Systems:
Implementation and Design, The Minix 3rd Edition” y con la compra del mismo se entrega un CD-ROM

con la versién Minix 3.1.0.

6.1.11 Requerimientos necesarios para la instalacion de Minix 3.

Al igual que sus competidores, Minix 3 posee soporte para un tipo de hardware y entre ellos listamos los

siguientes:

e CPU: Esta desarrollado para trabajar sobre la familia de procesadores x86 de 32 bits.
¢ Memoria: La instalacién estandar o por defecto de Minix 3 requiere al menos 28 Mb (Megabyte)

de RAM (Memoria de Acceso Aleatorio) y en instalaciones mas avanzadas podria tan solo usar 8

1 “Minix 3” - http://www.minix3.org/

74

http://www.minix3.org/

Mb de RAM aunque para llevar a cabo el procedimiento de compilacién del nucleo lo mas
recomendable es tener 64 MB.

Disco duro: Actualmente Minix 3 da soporte a dispositivos IDE y serial-ATA. El SO requiere de
una particion primaria y al menos 260 Mb libres en el disco duro, en caso de que se desee
obtener el cédigo fuente completo de Minix 3 se debe manejar un espacio de al menos 1 GB.

Tarjetas de red: Minix 3 posee un escaso soporte con respecto a estos dispositivos.

75

76

7 Estudio del proceso de arranque

En este capitulo se muestra detalladamente el proceso relacionado al arranque del computador,
incluyendo las partes relacionadas, dispositivos y sus especificaciones. Luego, se muestra la secuencia
de programas involucrados para el proceso de arranque del SO Minix 3, entre ellos se explica el
comportamiento del codigo masterboot.s y bootblock.s. También se expone los tipos de

direccionamientos de discos duros y la estructura légica de los mismos para que el SO puede arrancar.

Se mostrara paso por paso el proceso de arranque de un SO. Uno de los principales actores en éste
proceso es la BIOS (Basic Input Output System) siendo un dispositivo indispensable, es por ello que se

estudia las principales interrupciones utilizadas y las estructuras de datos que esta emplea.

7.1 BIOS (Basic Input Output System)

La BIOS es una coleccidn de rutinas y datos que el fabricante del computador proporciona para manejar
los dispositivos que componen al equipo, este cédigo es almacenado en una memoria ROM (Read Only
Memory). Anteriormente la BIOS era almacenada en dispositivos de memoria con tecnologia ROM o
EPROM (Erasable Programmable Read-Only Memory) pero actualmente se implementan sobre
memorias de clase EEPROM (Electrically-Erasable Programmable Read-Only Memory) mejor conocida

como memoria flash.

Normalmente una vez que la maquina es encendida las rutinas de la BIOS ocupan generalmente un
espacio de 256 bytes en memoria RAM, donde contiene detalles sobre el estado de Blog Num, el bufer

de teclado, etc. La BIOS podemos dividirla en tres partes (16):

e Setup: es una utilidad del BIOS que puede utilizarse para modificar datos de configuracién del
sistema, tal como la cadena de discos de arranque.

e Rutinas de servicios: son un conjunto de llamadas que le permiten a las aplicaciones o al

programador interactuar con los dispositivos del computador.

e Secuencia de arranque: es una secuencia donde se comprueban los componentes del sistema,

inicializa las estructuras de datos para poder cargar un SO en el computador.

7.2 Dispositivos de Almacenamiento

Las unidades de almacenamiento de datos son dispositivos capaces de leer o escribir datos en medios o
soportes de almacenamiento, son normalmente conocidos como la memoria secundaria de los

computadores.

En su mayoria las unidades de almacenamiento méas comunes son los discos magnéticos todos ellos son

formateados o estructurados de forma similar y estan divididos en areas denominadas como (17) (18):

77

7.2.1

Sectores: Las pistas se subdivide en varias secciones. Cada seccion se llama sector. Los
sectores son las unidades mas pequefias de almacenamiento en un disco duro. Cada sector
contiene el mismo numero de bits de datos (tipicamente 512 bytes) codificados en el material
magnético.

Pistas: Cada superficie se compone de una coleccién de anillos concéntricos llamados pistas,
que son delgadas tiras circulares de cinta magnética en la superficie del plato; las cuales
contienen realmente los datos.

Cilindros: es el conjunto de pistas de todas las superficies que son equidistantes del centro del
eje.

Cabecera: Los datos se escriben y se leen desde la superficie de un plato con un dispositivo
llamado cabecera. Naturalmente, un disco tiene dos caras y por lo tanto dos superficies en las

que los datos podrian ser manipulados, por lo general hay 2 cabezas por plato.

Unidad de disquete (Floppy).

Es un tipo de disco de almacenamiento magnético pequefio, flexible y barato (17). Existen disquetes de

varias capacidades, el mas comun es el de 3,5 pulgadas, el cual permite almacenar hasta 1,44 MB. Es

una unidad obsoleta, reemplazada por las unidades flash USB, discos duros externos, discos 6pticos,

tarjetas de memoria y redes informaticas. A pesar de ser una unidad obsoleta, abarca los conceptos

relacionados a las unidades de almacenamiento més complejas, ayudando a entender los conceptos de

forma sencilla. Es importante destacar que para acceder a esta unidad en cédigo ensamblador el registro

dl debe poseer el valor 0x00 o 0x01, el cual hace referencia a la primera o segunda unidad de disquete

posible en una maquina. Para entender mejor la geometria de un disquete vea la Figura 7.1.

78

=

Il Sector
[] Pista

Figura 7.1 Geometria de un disquete

7.3 Unidad de disco duro.

Son caracterizados por poseer uno o mas platos rigidos girando sobre un eje (18). Los discos duros
tienen una gran capacidad de almacenamiento de informacion. El disco duro almacena casi toda la
informacion que manejamos al trabajar con una computadora. En él se aloja, por ejemplo, el SO que
permite arrancar la maquina, los programas, archivos de texto, imagenes, videos, etc. Dicha unidad
puede ser interna (fija) o externa (portatil). Un disco duro esta formado por varios discos apilados sobre
los que se mueve una pequefia cabeza magnética que graba y lee la informacion. Es importante destacar
que para acceder a esta unidad en cédigo ensamblador el registro dl debe poseer el valor 0x80, 0x81,
0x82 o0 0x83, el cual hace referencia las posibles unidades de disco duro en una maquina. Para entender

mejor la geometria de un disco duro vea la Figura 7.2.

Cabecera 0 >

| Cabecera 1 > @

-
L
Il Sector

j' Plato
[Pista

B Cilindro

Figura 7.2 Geometria de un disco duro

79

7.4 Modos de direccionamiento de sectores

Existen dos métodos principales que permiten direccionar y acceder a los bloques fisicos de un disco

duro, ellos son CHS y LBA, los cuales seran explicados a continuacion.

7.4.1 CHS (Cylinder Head Sector)

El modo CHS es el modo tradicional de acceso a los discos. Este método permite acceder a los bloques
a través de una tripla que se define por el cilindro, cabeza y sector. Existen dos tipos de direccionamiento
CHS fisico y el direccionamiento CHS ldgico. El direccionamiento CHS fisico solo puede direccionar

504MB (16). Para entender esta premisa vea la Tabla 7.1.

Bits Valor méximo Rango Total
teorico = 2" permitido utilizable
Cilindro 10 1024 0-1023 1.024
Cabeza 4 16 0-15 16
Sector 6 64 1-63 63

Tabla 7.1 Direccionamiento CHS fisico

Estos ndmeros nos conducen a un total maximo de 1024 * 16 * 63 = 1.032.192 sectores, como en todos
los discos duros cada sector es de 512 bytes, el resultado final es de 528.482.304bytes (528 MB). Este
seria el maximo espacio de disco direccionable mediante los servicios de la interrupcion 0x13 estandar

BIOS, también conocida como int 13 (posteriormente se explicara dicha interrupcién).

Este modo se amplié posteriormente para dar soporte hasta 8.064 MB exactamente con lo que
comunmente se conoce como el direccionamiento CHS ldgico. Debido a que dichos valores son
I6gicos, los verdaderos valores correspondientes a la geometria real, son asunto exclusivamente del

controlador de la unidad (16).La nomenclatura usada por este método se puede visualizar en Tabla 7.2.

Bits Valor méximo Rango Total utilizable
teodrico = 2" permitido
Cilindro 10 1024 0-1023 1.024
Cabeza 8 256 0-255 256
Sector 6 64 1-63 63

Tabla 7.2 Direccionamiento CHS légico

Los valores anteriores arrojan un total de 1024 * 256 * 63 = 16.515.072 sectores a direccionar. Los
servicios de la BIOS podian direccionar un méximo de 1024 * 256 * 63 * 512 = 8.455.716.864Bytes,
8.455GB. Este es el limite tedrico del direccionamiento CHS directo o de la interrupciéon 0x13 de la BIOS

estandar.

80

Debido a esta limitante se buscd una solucién que permitiera utilizar disco de mayor capacidad a la
soportada de 8.45 GB que tedéricamente podia proporcionar la BIOS estandar. Una de las soluciones
provisionales fue la ECHS extended cylinder head sector, la ATA Specification (hasta 137 GB)", etc. Sin
embargo, los alcances de las mismas no daban abasto al creciente aumento en la capacidad de los

discos duros.

7.4.2 LBA (Logical Block Addressing)

Debido a que la capacidad de los discos fue creciendo con el tiempo, como se mencioné anteriormente,
se hizo necesario sobrepasar también el limite de los 137 GB de la interrupcion 0x13 de la BIOS que
permite el método CHS. Para esto se ide6 un sistema denominado LBA que disefia un sistema distinto

para direccionar los sectores.

LBA, hoy en dia es el esquema comun utilizado para especificar la ubicacion de los bloques de datos
almacenados en la memoria secundaria, tales como los sistemas de discos duros. LBA fue desarrollada
por primera vez para las unidades de disco duro SCSI.LBA es un esquema simple de direccionamiento
lineal; los bloques son ubicados mediante un indice, el primer bloque es LBA=0, el segundo LBA=1, y asi
sucesivamente. El esquema de LBA sustituye a los regimenes anteriores, que expone los detalles fisicos

del dispositivo de almacenamiento para el software del o

El direccionamiento LBA en las unidades ATA puede ser de 28 bits o de 48 bits, lo que resulta en limites
de 128 GB (2”28 sectores * 512 bytes por sector) y 128 PB (Petabyte) (2°48 * 512 bytes por sector).
Desde luego, las BIOS que detectan el modo LBA también disponen de la traduccion adecuada para
solventar las limitaciones de la combinacién BIOS/ATA (saltar la limitacién de 8.455 GB). Debido a que la
interrupcion 0x13 no sabe nada sobre direccionamientos LBA, es la traduccién la que resuelve dicho

inconveniente.

Por supuesto todas las nuevas unidades de disco soportan LBA, y cuando esta circunstancia se presenta
la BIOS la auto-detectada, estableciendo automaticamente el modo de direccionamiento y habilita la
traduccién correspondiente. Las direcciones de CHS se pueden convertir en direcciones LBA utilizando la

siguiente formula™*:

12«B|OS Disk Access” - http://oss.sgi.com/
13 “48-bit LBA Technology” - http://www.48bitlba.com/

““_BA and CHS format, LBA mapping” - http://www.boot-us.com

81

http://oss.sgi.com/
http://www.48bitlba.com/
http://www.boot-us.com/

férmula LBA = ((C * Num_Head) + H) *Num_Sec)+ S -1

C = nUmero de cilindros

H = ndmero de cabecera

S = nimero de sector

leyenda , P
LBA = es la direccion logica del bloque

Num_Head = es el nUmero de cabecera por cilindro

Num_Sec = es el nUmero de sectores por pista
Tabla 7.3 Férmula de conversion de CHS a LBA

7.5 Interrupcion 0x13 de la BIOS

La interrupcién int 0x13 permite acceder directamente al disco duro utilizando cualquier lenguaje de
programacion de bajo nivel'®. INT es una instruccién x86 que provoca una interrupcion de software. La
BIOS generalmente establece un manejador de interrupciones de modo real, este vector es el que
proporciona la lectura y escritura de los sectores de disco duro o disquete utilizando la nhomenclatura
CHS. Para tener una vision clara, se explicard en qué consiste el modo real. El modo real de direcciones
(a menudo llamado simplemente "modo real”) es el modo que adopta el procesador inmediatamente
después de la iniciacion. En modo real la memoria es limitada a 1 MB, ademas, no ofrece soporte para la
proteccion de memoria, multitarea, o los niveles de privilegio de cddigo. A continuacion sera explicada la

interrupcién 0x13 con los pardmetros mas comunes utilizados para el proceso de arranque del SO.

7.5.1 INT Ox13, AH =0x00

Reinicia el sistema de disco o disquete, ya que restablece el disco duro o el controlador de disco o
disquete, obligando a la recalibracion de la cabeza para la lectura/escritura (19). Para ver la

especificacion de esta interrupcién ver la Tabla 7.4.

AH = 0x00
Entrada] N]
DL = dispositivo asociado
) AH = estatus
Salida _ -]
CF = encendida si existe un error, sino apagada
Tabla 7.4 INT 0x13, AH = 0x00
movb dl, #0x80 Idl = 0x80 hace referencia al primer disco duro
movb ah, #0x00 lah = 0x00
nt 0x13 Irealiza la llamada a la interrupcidn, para reiniciar el controlador del primer disco duro

Figura 7.3 Cédigo de INT 0x13, AH = 0x00

1 “Interrupts Page” - http://sps.nus.edu.sg

82

http://sps.nus.edu.sg/

7.5.2 INT 0x13, AH = 0x02

Lee uno o mas sectores de un disco duro o disquete para cargarlos en la memoria principal (19).Para ver

las especificaciones de esta interrupcion ver la Tabla 7.5.

AH = 0x02

AL = ndmero de sectores a leer (debe ser distinto de cero)

CH = tiene los ocho bits menos significativos del ndmero de
cilindro, recuerde que en CHS el nimero de cilindro se representa
con 10 bits.

CL = nimero de sector en los bits 0-5 (total de 6 bits), los dos bits

mas significativos del cilindro en los bits 6-7 (solo aplica en discos

Entrada duros). Ejemplo del registro cx:
CX = CH CL
Cilindro [0-9] bits 76543210| 98
sector [0-5] bits 543210

DH = ndmero de la cabecera

DL = dispositivo asociado

ES:BX = buffer, posicion de memoria donde son copiados los

sectores

AH = estatus de la operacién

Salida AL = nimero de sectores leidos

CF = encendida si existe un error, sino apagada
Tabla 7.5 INT 0x13, AH = 0x02

mov ax, #0x0201 ICédigo para leer, Unicamente un sector; ah = 0x02 y al = 0x01

lel cilindro = 263 y el sector =5

movb ch, #0x07 Ich[0..7] = bits menos significativos del cilindro

movb cl, #0x85 Icl[0..5] = sector, cl[6..7] = dos bits mas significativos del cilindro

movb dh, #0x0A Idh = 0x0A, indica que va a leer de la cabecera 10

movb dI, #0x80 Idl = 0x80 hace referencia al primer disco duro

movb es, #0x06

movb bx, #0x00 Ibuffer = 0x0600, posicion de memoria donde son copiados los sectores
int 0x13 Irealiza la llamada a la interrupcién

Figura 7.4 Cédigo de INT 0x13, AH = 0x02

7.5.3 INT 0x13, AH = 0x08

Obtiene los parametros del dispositivo. Ofrece la informacion de los parametros de la unidad de disco,

tales como el nimero de cabezas, pistas y sectores por pista (19), vea la Tabla 7.6.

83

AH = 0x08

Entrada
DL = dispositivo asociado
AH = estatus
CF = encendida si existe un error, sino apagada
Ambos CH = tiene los ocho bits mas bajo del nimero de cilindro
para CL = numero de sector en los bits 0-5 (total de 6bits), los dos
ambos bits mas altos del cilindro en los bits 6-7 (solo aplica en discos
duros).
Salida
DH = ndmero de la cabecera
disco DL = numero del disco asociado
Solo BL = tipo de dispositivo
aplica DL = ndmero del disquete asociado
para ES: DI = Apuntador a la tabla de pardmetros de la unidad de
disquete | disquete

Tabla 7.6 INT 0x13, AH = 0x08

movb dI, #0x80
ovb ah, #0x08
int 0x13

Idl = 0x80 hace referencia al primer disco duro
lah = 0x08, indica la llamada
Irealiza la lamada a la interrupcién

Figura 7.5 Codigo de INT 0x13, AH = 0x08

7.5.4 INT Ox13, AH = 0x42

Lectura extendida de sectores del disco. Permite leer los sectores que se encuentran sobre los 8.45 GB

que permite el direccionamiento légico de CHS (19). Para ver las especificacion de esta interrupcion ver

la Tabla 7.7.
AH = 0x00
Entrada DL = dispositivo asociado
DS:SI = direccion que apunta al paquete de direccién de disco
CF = encendida si existe un error, sino apagada
Salida]
AH = cadigo de error

84

Tabla 7.7 INT 0x13, AH = 0x42

movb dl, #0x80 Idl = 0x80 hace referencia al primer disco duro

movb ah, #0x42 lah = 0x42, indica la llamada

movb ds, #0x08

movb si, #0x00 lbuffer = 0x0600, apunta a la direccion del paquete de direccidn de disco
int 0x13 Irealiza la llamada a la interrupcién

Figura 7.6 Cadigo de INT 0x13, AH = 0x42

7.6 Secuencia de arranque

¢,Como inicia un SO? Se utilizard un primer enfoque resumido para poder entender como inicia un SO y
luego se explicara de forma detallada el proceso. En la mayoria de las computadoras modernas existen
varios dispositivos a partir de los cuales se puede iniciar el proceso de arranque del SO, es por ello que
existe una jerarquia de arranque. Tipicamente, se intenta arrancar desde la unidad de disquete, si este
intento no es exitoso, se intenta arrancar desde la unidad de CD-ROM. Si desde la unidad de CD-ROM
es fallido, se intenta arrancar desde la unidad de disco duro. El orden de esta jerarquia puede ser
configurable a través del setup de la BIOS, como se menciond anteriormente. Adicionalmente otros
dispositivos también brindan soporte a este proceso de inicio, especialmente los de almacenamiento

removible (17).

Suponga que la computadora es encendida, si el dispositivo de arranque es un disquete, el hardware lee
el primer sector de la primera pista del disco, lo carga en memoria y ejecuta el cédigo encontrado alli. En
el disquete, este primer sector contiene el programa bootstrap. Este programa es muy pequefio, ya que
tiene que entrar en un sector (512 bytes). El bootstrap carga un programa mas grande, llamado boot,
posteriormente éste Ultimo es el encargado de cargar el SO. Para entender mejor este escenario vea la
Figura 7.7 donde aparece el disefio mencionado donde el primer sector contiene el bootblock y el disco

no esta particionado.

Figura 7.7 Estructura de un disquete.

85

En contraste, el disco duro requiere un paso intermedio. Un disco duro esta dividido en particiones, y el
primer sector de un disco duro contiene un programa pequefio y la tabla de particiones del disco.
Colectivamente estas dos piezas son llamadas MBR (Master Boot Record). El hardware lee el primer
sector de la primera pista del primer cilindro del disco duro y lo carga en memoria. Este programa es
ejecutado para leer la tabla de particiones y seleccionar la particién activa (17). La particiéon activa tiene
un programa bootstrap en su primer sector, el cual es cargado y ejecutado para encontrar e iniciar una
copia del boot en la particion, exactamente como se hace cuando se arranca desde un disquete. Para

entender mejor este escenario ver la Figura 7.1.

Figura 7.8 Estructura de un disco duro

En cualquier caso, una vez cargado el boot de Minix 3, éste busca un archivo multipartes ya sea en el
disco (disquete) o particion (disco duro) y carga las partes individuales en las posiciones apropiadas de la
memoria. Esta es la boot image, para visualizarla mejor ver la Figura 7.9. La parte mas importante son el
nacleo (el cual incluye el reloj y la tarea del sistema), el manejador de proceso y el sistema de archivo.
Adicionalmente algunos driver deberian ser cargados en la boot image. Esto incluye el servidor

reencarnacion, el disco RAM, la consola e init.

86

Limite de la memoria
Memoria habilitada para los
programas de usuario
3549K
Init
3537K
Driver del disco
3489K
Driver de log
3416K
Driver de memoria
3403K
Driver de la consola
3375K
Servidor rencarnacion
- - 3236K
Sistema de archivos
1093K
Manejador de procesos
1024K
Memoria de solo lectura 'y
memoria para los
adaptadores de E/S
640K
Boot monitor
590K
Memoria habilitada para los
programas de usuario
55K
Tareas del sistema
Reloj
Kernel
ffffffffffffffffffff 2K inicio del kernel
Usado por la BIOS
1K
Vector de interrupciones
0

Figura 7.9 Diseiio de la memoria RAM luego de que Minix ha sido cargado desde el disco

Rutinas

Masterboot y tabla de

particiones masterboot.s

ler sector del disco

disco duro

ler sector de la
particion activa

Bootblock bootblock.s

disquete

A 4

Boot monitor (boot
secundario)

Directorio raiz

Sistema Operativo Minix:
kernel, MM, FS init

Directorio /minix

Figura 7.10 Proceso de arranque de Minix 3

La secuencia de este proceso de arranque puede ser facilmente entendido viendo la Figura 7.10 donde
ademas puede apreciarse donde son almacenados los ejecutables dependiendo del dispositivo de
almacenamiento. Como se aprecia se empieza por la ROM que solo almacena a la BIOS, sus estructuras
de datos y rutinas. Por otra parte, como puede observarse un disquete solo puede almacenar a bootblock
y boot. EI CD-ROM puede almacenar al bootblock, boot y SO. Por ultimo el un disco duro puede

almacenar a todos los programas mencionados anteriormente.

Ahora se explicarda el proceso con una vision mas detallada del mismo. Cuando el sistema esta
inicializado, el hardware (realmente, un programa en la ROM) lee el primer sector del disco de arranque,
lo copia para cargarlo en memoria y ejecuta el cdédigo encontrado alli. En un disco no particionado, como
un disquete, en el primer sector esta el bootblock el cual carga el programa boot, como lo muestra la
Figura 7.7. El disco duro siempre esta particionado, y el programa ubicado en el primer sector (llamado
masterboot en el sistema Minix) primero se traslada asimismo a otra region de memoria, luego lee la
tabla de particiones, recuerde que viene cargada con €l desde el primer sector. Posteriormente, carga y
ejecuta el primer sector de la particién activa, como se muestra en la Figura 7.8. Normalmente una y solo
una particiébn esta marcada como activa. Una particibn de Minix 3 tiene la misma estructura de un
disquete, con un codigo bootblock que carga el programa boot. El c6digo bootblock es el mismo para un

disco particionado o un disco sin particion, para entender mejor como un disco duro esta particionado en

88

Minix vea la Figura 7.11. Cuando el programa masterboot se traslada asimismo el bootblock puede ser
escrito en memoria y ejecutado en la misma direccion de memoria donde originalmente el masterboot fue

cargado, mas adelante sera explicado con mayor detalle (15).

sectorde | 8 Sl oo
RYl| sectorde o «< o
arranque | § a2 S Minix
il arranquel S| S
maestro 3 S)
1S == !
4 '
| (.
sectorde o = ..
o S Minix
arranque2 S 8 !
Q 1
< :
= .
1 %
sectorde o«
28! Minix
arranque3 3 (3
Q '
Q '
v '
2 o
sector de of = ..
af 8¢ Minix
arranque4 ¥R 8 !
g .
<Q :

Figura 7.11 Estructura de un disco particionado

La situacion real puede ser un poco mas complicada de lo que muestra la Figura 7.11, en la cual se
puede visualizar que en el primer sector fisico del disco duro se encuentra el MBR, y el disco esta
particionado alojando a cuatro sistemas operativos (20). Cada particion como tiene su bootstrap o
cargador primario llamado bootblock.s en el caso de Minix. También, tiene su cargador secundario o boot

monitor que puede estar disperso en varios bloques llamados boot.

Se dice que puede ser mas complicada la situaciébn debido a que una particibn puede contener
subparticiénes. En tal caso el primer sector de la particion sera otro masterboot record conteniendo la
tabla de particiones para las subparticiones. No obstante, tarde o temprano se transferira el control a un
sector de arranque, el primer sector de un dispositivo que no tiene mas subdivisiones. En un disquete el
primer sector siempre es el sector de arranque. En un disquete el primer sector siempre es un sector de

arranque. Minix permite una forma de subdivision de un disquete, pero no se brindara esa informacion

aqui.

El sector de arranque de Minix se modifica en el momento en que se escribe en el disco a través de un
comando, el programa alojado en este sector (bootblock) es el encargado de encontrar un programa
llamado boot en su particién o subparticién. Una vez encontrado debe cargar en memoria los sectores
gue comprenden a éste (boot) y darle el control, para que sea luego el boot pueda cargar al SO
finalmente. Esta introduccién es necesaria porque antes de que se cargue el SO no es posible usar el

directorio y nombres de archivo para encontrar un archivo. Se utiliza un programa especial llamado

89

installboot para realizar la introduccion y la escritura del sector de arranque. Boot es el cargador
secundario para Minix, pero puede hacer mas que simplemente cargar el SO, ya que es un programa

monitor que permite al usuario modificar, establecer y guardar diversos parametros.

Boot examina el segundo sector de su particién en busca de un conjunto de paradmetros que usara. Minix,
al igual que el UNIX estandar, reserva el primer bloque de 1 KB de todos los dispositivos de disco como
bloque de arranque, pero el cargador de arranque en ROM o el sector maestro de arranque solo carga un
sector de 512 bytes, asi que hay 512 bytes disponibles para guardar ajustes. Estos controlan la operacion
de arranque, y también se pasan al SO mismo. Los ajustes por omision presentan un mend con una sola
opcion, iniciar Minix, pero es posible modificarlos de modo que presenten un mend mas complejo que
permita la iniciacion de otros sistemas operativos (cargando y ejecutando sectores de arranque de otras
particiones), o iniciar Minix con diversas opciones. También podemos modificar los ajustes por omision de

modo que pasen por alto el menu e inicien Minix de inmediato.

Boot no es parte del SO, pero es lo suficientemente inteligente para usar la estructura de datos del
sistema de archivo y encontrar la imagen real de SO. La imagen de Minix cargada por boot no es mas
que una concatenacion de los archivos individuales producidos por el compilador cuando compila los
programas del ndcleo, el administrador de memoria y el sistema de archivos. A partir de la informacion
contenida en la cabecera de cada parte, boot determina cuanto espacio debe reservar para datos no
inicializados después de cargar el cédigo ejecutable y los datos inicializados de cada parte, con objeto de

que la siguiente parte pueda cargarse en la direccién correcta.

Para saber de forma detallada como se inicia un SO, se presenta a continuacion los pasos que sigue este
proceso. Cada fabricante de placa base o tarjetas madres disponen de su propia BIOS, a pesar de
posibles diferencias entre ellas, existe un procedimientos o patron de arranque comun. La secuencia de

arranque es la siguiente (20):

e La fuente de poder lleva a cabo una auto-prueba. Cuando los niveles de voltaje son aceptables,
la fuente de poder envia la sefial Power Good al procesador, hasta que el mismo comience a
iniciar. El tiempo provisto para este paso es de 0,1 y 0,5 segundos.

e EIl procesador Intel ha sido disefiado para que siempre al iniciar ejecute el cddigo que se
encuentre en la posicion de memoria OxFFFFO. Sin embargo, antes de eso debe cagar en
memoria las instrucciones que va a ejecutar. Es por ello que el procesador carga en la posicion
OxFFFFO el programa de arranque de la BIOS, que son 16 bytes y esta en el tope de la memoria
ROM o EPROM de la misma, especificamente en la posicion de memoria OXFOOOFFFO.

e Cualquier error que se producen en este punto del proceso de arranque se informara por medio

de "codigos bip" porque el subsistema de video ain no se ha inicializado.

90

Se busca el adaptador de video, razén por la cual esta informacion se muestra por pantalla antes
que la informacién de arranque. La rutina de inicio de la BIOS escanea las direcciones
0xC0000000 hasta la 0OxC7800000 para encontrar la ROM de video.
Para determinar si se trata de un inicio en caliente (cuando se reinicia la computadora) o en frio
(cuando se enciende por primera vez) la rutina de inicio de la BIOS comprueba si el valor de dos
bytes situados en posicién de memoria 0x00000472. Cualquier valor distinto de 0x1234 indica
que se trata de un arranque en frio.
La BIOS busca y ejecuta otras ROM BIOS en los adaptadores de dispositivo. Normalmente los
discos duros IDE/ATA tienen su BIOS en la direccion 0xC800.
Se establece el ambiente Post-PC realizando un conjunto de pruebas POST (Power On Self
Test). EI POST se puede dividir en tres componentes:

o La BIOS realiza un inventario de los dispositivos existentes, entre ellos el teclado y los

puertos seriales y paralelo.
o Prueba de memoria, prueba los chips de memoria y muestra una suma continua de
memoria instalada.

o Laidentificacion del BIOS, muestra la versién del BIOS, el fabricante y la fecha.
La BIOS muestra en forma de tabla un resumen de la configuracién del sistema. Esta tabla indica
los problemas surgidos en el arranque, si los hubiese. Los errores que se producen durante el
POST se pueden clasificar como grave o0 no graves. En un error no grave generalmente se
muestra un mensaje de error en la pantalla y permite que el sistema siga el proceso de arranque.
En un error grave, en cambio, detiene el proceso de arranque del computador y es generalmente
denotado por una serie de cédigos de pitido.
Si la BIOS soporta el estandar "Plug and Play (PnP)", detecta y asigna recursos a los dispositivos
PnP. Muestra un mensaje por cada uno que encuentra.
La BIOS comienza a buscar un dispositivo desde el que arrancar el sistema. Normalmente
comenzando por los disquetes, los discos duros y los CD, dependiendo de como se ha
parametrizado la cadena de arranque en el programa de configuracién de la BIOS. Entonces
carga en memoria el primer sector del dispositivo en la direccion 0x00007C000. A continuacion,
la BIOS comprueba que los ultimos dos octetos del sector son 0xAA55. Si no lo son, significa que
el primer sector del disquete o disco duro no es un sector de arranque.
En un disco duro el MBR ocupa el sector de la primera en el cilindro 0, cabeza 0, sector 1. Es 512
bytes de tamafio. Si este sector se encuentra, se carga en memoria en la direccion 0x00007C00
y se prueba para identificar si posee la firma valida. Una firma vélida seria el valor 0xX55AA en los
Ultimos dos bytes del sector. Al carecer de un MBR o una firma valida el proceso de arranque se

detiene con un mensaje de error.

91

Luego de estos pasos el proceso de arranque de Minix 3 es el mismo descrito en la Figura 7.10. En la

siguiente seccion se muestra en detalle los programas involucrados en el proceso de arranque de Minix

7.7 Masterboot

Como se menciond anteriormente el MBR (Master Boot Record) estd compuesto por un programa
pequefio contenido en el primer sector de un disco duro y la tabla de particiones. Este programa es el
encargado de cargar la particion activa. Esta estructurado de la siguiente forma los primeros 446 bytes
estan destinados al programa, y si es el caso un poco de relleno; a partir de alli se encuentra a la tabla de
particiones la cual ocupa 64 bytes, conteniendo 4 registros de 16 bytes, los cuales definen entradas a la
tabla de particiones. En ellos se almacena toda la informacion béasica sobre la particion. Para finalizar, los
2 ultimos bytes representan a la firma o nUmero magico, el cual indique si el dispositivo es de arranque.

Para entender mejor la estructura ver la Figura 7.12 y la Figura 7.13.

446 o
Caddigo del gestor de arranque
bytes
16 bytes Primera particién
512 . .z
16 bytes Segunda particion
bytes | 64 bytes .
16 bytes Tercera particion
16 bytes Cuarta particién

2 bytes Firma de unidad arrancable = Ox55AA
Figura 7.12 Primer sector fisico del disco duro

Define si la particion esta activa, verificando que el
1 byte bit 7 tenga el valor 1. En otras palabras (0x00 =
Inactiva; 80h = Activa)

3 bytes | CHS de inicio

1 byte Tipo de particion
16 bytes 3 bytes | CHS final

LBA = en formato little-endian, indica el nUmero
4 bytes
del sector de arranque (contando desde 0)

Tamafo en sectores = en formato little-endian,

4 bytes | indica el tamafio de la particion representado en

sectores
Figura 7.13 Disefo de una entrada de la tabla de particion

Se muestra la forma en que se guarda las triplas de CHS de inicio y de CHS final, el primer bytes de los

tres contiene el nimero de la cabecera. Los dos siguientes se muestran en la Figura 7.14.

92

Estructura de la tripla CHS
716|543]2]1]o0
bits del 7-0 de cabecera
g8 |lo|s|a|3]2]1]0
Segundo byte bits 9-8
cilindro
7]e6|s5|a|3]2]1]o0
bits 7-0 del cilindro

Figura 7.14 Estructura de la tripla CHS

Primer byte

bits 5-0 del sector

Tercer byte

El tipo de particion define el formato que tiene una particién para que el SO pueda gestionar los datos

contenidos en su interior. Una vez comprendida la secuencia de arranque y los principales programas de

Minix involucrados en este proceso se presentard ahora el cddigo de los mismos, empezando en esta

seccién con el masterboot.s. Primero se mostrara los pasos que sigue el masterboot.s y luego el cédigo

fuente del mismo.

Una vez cargado el primer sector en la posicién 0x7C00 (recuerde que la BIOS es quien lo
carga), el masterboot.s se copia asimismo a la posicién desde la posicién 0x7C00 a la 0x0600 y
saltar a esta Ultima posicion. Esto es realizado por seguridad, ya que el préximo cdodigo
(bootblock.s) seré cargado en la posicion 0x7C00 nuevamente por la BIO0053.
Busca el dispositivo donde esta alojado el bootstrap, para esto verifica el dispositivo en el registro
dl. De ser un disquete, carga el primer sector del mismo y le sede el control. Si en un disco duro,
busca en la tabla de particiones la particion activa, y almacena la direccion en los registros de
donde comienza dicha particion en el disco duro.
o Se leen las caracteristicas de la unidad elegida (cabeza, cilindro y sector si se trata de un
disco duro).
o Se carga el primer sector fisico de la unidad.
= Sj existe error, se reintenta la lectura del primer sector tres veces. Si falla, se
muestra un mensaje en pantalla: “Error de lectura”; quedandose en un bucle
infinito.
= Si la lectura tiene éxito, el siguiente paso consiste en comprobar si es de
arranque:
e Si no estd la firma de arranque, se muestra un mensaje en pantalla:
“Unidad no arrancable” y se queda en un bucle infinito.
e Siestalafirma, se continGa con el programa.

Se salta al cédigo cargado (bootstrap).

La primera instruccién de este codigo fuente es cargada en memoria principal con un desplazamiento de

93

0x7C00.La variable LOADOFF=0x7CO00 indica la primera posicién de memoria donde sera cargado el
programa masterboot. La variable BUFFER=0x0600 indica la siguiente posicion donde el programa

masterboot sera copiado debido a que debe darle espacio en memoria para cargar el bootblock.

LOADOFF=0x7C00 !En el espacio de memoria 0x0000:0x7C00 el codigo sera cargado.
BUFFER=0x0600 linicia el primer espacio de memoria libre.

PART_TABLE=446 IUbicacion de la tabla de particiones. (Revisar estructura del Master Boot Record).
PENTRYSIZE=16 ICada entrada en la tabla de particiones es de 16Bytes de tamafio.

MAGIC=510 IUbicacion de la firma OxAASS identifica si un dispositivo es arrancable o no.

Para identificar a los discos duros se utiliza la siguiente notacién: hd0 identifica al primer dispositivo y hd1
identifica a la primera particion primaria del primer dispositivo. Como solo se pueden manejar 4
particiones primarias entonces podemos decir que hd[1-4] identifican a las particiones primarias del
primer dispositivo. hd5 identifica al segundo dispositivo. Si las particiones de un dispositivo han sido

subparticionadas entonces hdla seria la primera subparticion de la primera particion del primer disco.

bootind=0 IBoot indicator.

sysind=4 ISystem indicator. Indica el tipo de particidn si es primaria o légica.

lowsec=8 ILogical first sector. Direccidn légica del primer sector, es decir, LBA.

text lInicia el conjunto de instrucciones relacionadas a la ejecucién del cédigo fuente.
master: ICreacion del entorno de trabajo.

XOr ax, ax linicializa el registro ax=0.

mov ds, ax IAsigna al registro ds el valor de ax=0.

mov es, ax lAsigna al registro es el valor de ax=0.

cli IEsta instruccion me permite deshabilitar las interrupciones enel procesador.

mov ss, ax IAsigna al registro ss el valor de ax=0.

mov sp, #LOADOFF !Desplazamiento de la pila.

sti IEsta instruccién me permite habilitar las interrupciones en elprocesador.
mov si, sp IAsigna al registro si el valor de sp = #LOADOFF = 0x7C00. Se llama a la instruccidn ret después de bootstrap
push si ISe apila el valor contenido en el registro si. Para almacenar la informacién de retorno.

mov di, #BUFFER ISe asigna al registro di = #BUFFER = 0x0600.

mov cx, #512/2 ISe asigna al registro cx = 256.

cld ILimpia las banderas.

rep movs !Esta instruccion se va encargar de copiar tantas palabras de2Bytes como lo indique el registro cx iniciando !desde la direccion
ds=0x0000:si=0x7C00 hacia es=0x0000:di=0x0600.

jmpf BUFFER+migrate, 0 IEsta instruccion es para al ya ser copiado esta seccion de cédigo a su nueva locaciéon en memoria

Iprincipal, este retoma su ejecucién en la etiqueta migrate

94

migrate:

findactive:
testb dI, dl IActiva la bandera si el pardmetro es negativo.
jns nextdisk Verifica el estado de la bandera sign o signo, y realiza el salto si esta se encuentra activada.

mov si, HBUFFER+PART_TABLE !Le asigna a si la ubicacidn de la tabla de particiones.
find:

cmpb sysind(si), #0 !Se verifica el tipo de particidn es igual a cero, y si lo es entonces significa que la particion esta vacia.

jz nextpart IEn caso de que la particion este vacia, este salta a la etiqueta nextpart para verificar la siguiente particién.
testb bootind(si), #0x80 1Al verificar que la particién no estd vacia, ahora verifica si la particién se encuentra activa.

jz nextpart IEn caso de que la particion no este activa, este salta a la etiqueta nextpart para verificar la siguiente particion.
loadpart:

call load ISe realiza la llamada a load para cargar el bootstrap (sea el bootblock o un nuevo masterboot).

jcerrorl IEn caso de errores.

bootstrap:

ret ICuando retorna de la llamada load, le cede el control al bootstrap.

nextpart:

add si, #PENTRYSIZE !Se le afiaden 16bytes a si para acceder ala siguiente entrada de la tabla de particiones.

cmp si, HBUFFER+PART_TABLE+4*PENTRYSIZE IVerifica si ya se revisaron todas las entradas 4 de la tabla de particiones.
jb find IEn caso de existir una entrada valida, salta a find.
call print ISe llama a print para comentar que no existe ninguna particion.

.ascii "No active partition\0"

jmp reboot

nextdisk: INo existen particiones activas en esta unidad arrancable entonces intenta con la siguiente
incb dl lincrementa el valor del registro dl que contiene la siguiente unidad arrancable.

testb dl, dl ISi el parametro dl es negativo entonces se activa la bandera de signo.

js nexthd ISi dl es negativo entonces se realiza un salto a la etiqueta nexthd.

int Ox11 ILee la configuracion de los dispositivos y el bit 6-7 tiene el nimero de unidades arrancables.
shl ax, #1 IRealiza un desplazamiento a la izquierda.

shl ax, #1 IRealiza un desplazamiento a la izquierda.

andb ah, #0x03 ISe aplica una mdscara al registro ah para extraer los bits 6-7.

cmpb dl, ah ISi el valor de dl es menor o igual a los obtenido en ah por la interrupcidn 0x11 entonces la unidad existe.
ja nextdisk IEn otro caso intenta con hd0

call load0 1Si fallg, préximo disco por favor

jc nextdisk It failed, next disk please

ret 1Jump to the next master bootstrap

nexthd:

call load0 ILee el bootstrap alojado en el disco duro.

errorl:

jcerror IEn caso de error.éNo existe el disco?

ret

95

loadO: ICarga el sector 0 del dispositivo actual, sea un bootstrap de disquete o un master bootstrap de disco duro.
mov si, #HBUFFER+zero-lowsec !si = donde lowsec(si) es cero
load: ICargar el sector lowsec(si) desde el dispositivo actual. Los nimero de cabeza, sector y cilindro son ignorados

Ipara favorecer de manera absoluta el comienzo de la particion.

mov di, #3 ITres reintentos para comprobar si hay disquete

retry:

push dx IGrabar cédigo de la unidad

push es

push di ILa préxima llamada destruye es y di

movb ah, #0x08 1Cédigo para los pardmetros de la unidad

int 0x13

pop di

pop es

andb cl, #Ox3F Icl = max sector number (1-origin) se lee los Ultimos 6 bits que tiene el nimero de sectores incb dh

Idh = 1 + max head number (0-origin) indice de la cabecera de la unidad, se le suma 1 porque empieza en 0

movb al, cl lal = cl = sectors per track, asigna el nimero de sectores
mulb dh Idh = cabeceras, ax = cabeceras* sectores
mov bx, ax Ibx = sectores por cilindros = cabeceras * sectores

mov ax, lowsec+0(si) !ax = le asigna el LBA los dos primeros bytes

mov dx, lowsec+2(si) !dx:ax = sector within drive, dx = le asigna el LBA los dos ultimos bytes

cmp dx, #[1024*255%63-255]>>16 INear 8G limit?

jae bigdisk

div bx lax = cilindro, dx = sector sin cilindro, ax = tiene el cilindro de la particion, dx = sector
xchg ax, dx lax = sector sin cilindro, dx = cilindro

movb ch, dl Ich = ch = 8 bits inferiores de cilindro

divb cl lal = cabeza, ah = sector (0-origen)

xorb dl, dl IDesplazamiento de los bits 8-9 del cilindro en dI
shrdx, #1

shr dx, #1 1dI[6..7] = cilindro superior

orb dl, ah 1dI[0..5] = sector (0-origen)

movb cl, dl Icl[0..5] = sector, cl[6..7] = cilindro superior

incb cl Icl[0..5] = sector (1-origen)

pop dx IRestablecer cddigo de la unidad en dI

movb dh, al Idh = al = cabecera

mov bx, #LOADOFF les:bx = donde se carga el sector

mov ax, #0x0201 1Cédigo para leer, unicamente un sector

int 0x13 ILlamar a la BIOS para una lectura

jmp rdeval IEvaluar los resultados de la lectura
bigdisk:

mov bx, dx Ibx:ax = dx:ax = NUmero de sectores a leer
pop dx IRestaura el valor de la unidad en dl

96

push si

IGuarda si

mov si, #BUFFER+ext_rw Isi = extendida lectura/escritura usando como parametro el paquete

mov 8(si), ax
mov 10(si), bx
movb ah, #0x42
int 0x13

pop si

Isalta a rdeval
rdeval:

jnc rdok

cmpb ah, #0x80
je rdbad

dec di

jl rdbad

xorb ah, ah

int 0x13
jncretry
rdbad:

stc

ret

rdok:

INUmero de inicio del bloque = bx:ax

ILlamada a la lectura extendida

IRestaura si para apuntar a la tabla de particién

ISi la lectura fue exitosa

ITiempo de espera agotado? (dispositivo disquete vacio)

INUmero de reintentos vencidos

IReinicia

lintentar de nuevo

IEstablecer la bandera carry

cmp LOADOFF+MAGIC, #0xAA55

jne nosig
ret
nosig:

call print

IError si la firma es incorrecta

IRetorna con la bandera carry limpia

.ascii "Not bootable\0"

jmp reboot

1Un error de lectura se produjo

error:

mov si, #LOADOFF+errno+1

prnum:
movb al, ah

andb al, #0xOF
cmpb al, #10 |A-F?
jb digit 10-9!

addb al, #7 I'A" - "'
digit:

addb (si), al

dec si

movb cl, #4

shrb ah, cl

INUmero de error en ah

linferiores 4 bits

IModificar '0' en el string

IPréximos 4 bits

97

.jnz prnum

call print

.ascii "Read error "
errno:

.ascii "00\0"

ljmp reboot
reboot:

call print

IDe Nuevo si el digito es> 0

.ascii ". Hit any key to reboot.\0"

xorb ah, ah

int 0x16

call print

.ascii "\r\n\0"
int 0x19

IPrint a message.
print:

pop si

prnext:

lodsb

testb al, al

jz prdone

movb ah, #OxOE
mov bx, #0x0001
int 0x10

jmp prnext
prdone:

imp (si)

.data

IEsperar a que se oprima una tecla

Isi = siguiente String 'call print'

lal = *si++ es el caracter a imprimir

ILa marca de nulo sefiala el fin

limpresion de caracteres en el modo de teletipo

IPagina 0, color de primer plano

IContinuar después de la cadena

|Extendida lectura/escritura usando como parametro el paquete

ext_rw:

.datal 0x10
.datal0

.data2 1

.data2 LOADOFF
.data2 0

.data4 0

zero:

.data4 0

ITamafio del paquete r/w

IReservado

IBloques para la transferencia (sélo uno)
IBuffer direccién de desplazamiento
IBuffer direccién de desplazamiento

INUmero inferior de inicio del bloque 32 bits

INUmero superiorde inicio del bloque 32 bits

98

7.8 Bootblock

En esta seccion seran explicados los principales registros utilizados por el codigo fuente del programa

bootblock.s:

Registro |Bits | Descripcion

DS 16 Data Segment, nimero apunta a los datos activos del segmento.

BP 16 Base pointer, utilizado para pasar datos desde y hacia la pila.

SP 16 Stack pointer, nimero que indica el desplazamiento que esta utilizando la pila.
ES 16 Extra Segment, nUmero que apunta a la participacion activa del segmento extra.
Sl 16 Source index, utilizado por las operaciones de cadena en las fuentes.

DI 16 Destination index, utilizado por las operaciones de cadena como destinos.
Registro | Bits | Descripcion

AX 16 |Accumulator Register, utilizado para los célculos y para la E/S.

BX 16 |Base Register, registro que solo puede ser utilizado como un indice.

CX 16 |Count Register, registro utilizado para instrucciones de ciclos.

DX 16 |Data Register, utilizado para la E/S, multiplicar y dividir.

Algunos datos con los que vienen configurados los registros.

Registro |Bits |Descripcion de la funcion o parametros de inicio que ellos poseen

DL 16 Registro de datos, contiene el dispositivo donde serd cargado el boot secundario. Discos duros =
0x80, 0x81, 0x82, 0x83; Disquete = 0x00, 0x01.

es:bx 32 Es utilizado como buffer, representa la direccion de memoria donde seran almacenados los datos
gue se estan leyendo.

es:si 32 Representa la direccion donde empieza la entrada a la tabla de particiones, si es un disco duro

En la siguiente seccion de cédigo se definen un conjunto de variables globales que son de gran utilidad

para el manejo del cargador.

99

Variable Valor Descripcion

LOADOFF |0x7CO00 |Al ser leido el primer sector de la unidad arrancable, dicha informacion es cargada en la
regiéon 0x0000:0x7C00 de la memoria principal.

BOOTSEG |0x1000 |Al obtenerse el boot secundario este sera cargado a partir de dicha de direccién de memoria.

BOOTOFF |0x0030 |Desplazamiento del boot secundario por encima de la cabecera.

BUFFER 0x0600 | Direccion donde comienza los sectores de memoria libres.

LOWSEC 8 Desplazamiento del primer sector l6gico en la tabla de particiones LBA

device 0 Informacion sobre el dispositivo de arranque.

lowsec 2 Desplazamiento de la particion dentro de la unidad, es la LBA del sector de inicio de la
particion.

secpceyl 6 El nimero de sectores por cilindro, nimero de cabezas * sectores.

Al culminar la inicializacion de variables se presenta la seccién de codigo referente a las instrucciones en

ensamblador para iniciar el procedimiento de arranque. En esta seccion se prepara la memoria principal

para que esta pueda alojar el cddigo obtenido en la unidad arrancable, al final se realiza una verificacion

acorde a los valores del registro “dl” para verificar la naturaleza del dispositivo, en caso de ser un

disquete este se dirigira a la etiqueta floppy dentro del cédigo sino seguira su orden secuencial, es decir,

accede a la etiquete winchester. Para entender de primer plano vea los pasos que sigue el cddigo

bootblock.s:

e Creacion del entorno de trabajo: inicializa ds=ss=ax=0, sp=bp=0x7C00.

e Se comprueba si se va a cargar de disco duro o de floppy.

(@]

Si es un disco duro, se obtienen los pardmetros de la unidad y salta a cargar el boot

secundario.

Si es un floppy, hay que determinar qué tipo de unidad se trata. El proceso que se sigue

es sencillo, se tiene una variable que contiene los parametros de las distintas unidades
posibles (3.5” alta densidad, 3.5” baja densidad, 5.25” alta densidad y 5.25” baja

densidad) y se lee el dltimo sector de la primera pista, si falla la prueba se sigue con la

siguiente unidad y asi sucesivamente. Cuando se determina el tipo de unidad, se salta a

cargar el boot secundario (monitor).

e El monitor se empieza a cargar en la posicién 0x1000:0x0000. Se entra en un proceso iterativo:

Mientras queden sectores por leer del monitor:

100

o]

Cargar el sector especificado en la posicion de memoria es:bx.

o Se madifica la proxima posicién de memoria: es:bx+512
o Si existe error, mostrarlo en pantalla y quedarse en un bucle infinito.
e Cuando estan todos los sectores del monitor cargados en memoria, se salta a la posicién de

memoria adecuada (0x1000:0x0000) para ceder el control al monitor.

LOADOFF = 0x7C00 !0x0000:LOADOFFposicion de memoria donde es cargado este codigo
BOOTSEG = 0x1000 !Donde el boot secundario (monitor) se empieza a cargar, la posicién es 0x1000:0x0000.

BOOTOFF = 0x0030 !Desplazamiento del boot secundario por encima de la cabecera

BUFFER= 0x0600 IDireccion donde comienza la memoria libre

LOWSEC=8 IDesplazamiento del primer sector ldgico en la tabla de particiones = LBA
device=0 IEl dispositivo de arranque

lowsec=2 IDesplazamiento de la particion dentro de la unidad, utilizado para obtener valor de la pila
secpcyl =6 ISectores por cilindro = cabezas * sectores

.text

lInicio del procedimiento de arranque

boot: ICreacidn del entorno de trabajo: inicializa ds=ss=ax=0, sp=bp=0x7C00
Xorax, ax lax = 0x0000, El vector de segmento

movds, ax Ids = Segmento de datos - apunta a los datos activos del segmento

cli lingnora las interrupciones mientras inicializa la pila

movss, ax Iss = ds = vector segment (ss APUNTA AL SEGMENTO DE LA PILA)

movsp, #HLOADOFF !Lugar usual para la pila del bootstrap - sp = indica el desplazamiento de la pila = 0x7C00

sti Ihabilita las interrupciones

push ax

push ax IApila un cero en lowsec(bp), para almacenar luego a la direccién del primer sector de la particién
push dx IApila el dispositivo de arranque almacenado en dl sera = device(bp)

movbp, sp lActualiza el marco de la pila

push es

push si IApila a es:si = entrada a la tabla de particiones

movdi, #LOADOFF+sectors Ichar *di = sectors; | di = Destination Index - utilizado por las operaciones de cadena como destino
testb dl, di 1Si el dispositivo es un disco dl >= 0x80, activa la bandera sign

jgefloppy ISi no es negativo, entonces el dispositivo es un diskette y salta a floppy

winchester:

10btiene el desplazamiento del primer sector de la particion de arranque desde la tabla de particion
ILa tabla se encuentra en es:si, el parametro lowsec en desplazamiento LOWSEC.

ILos 4 bytes en es:si+LOWSEC son copiados en la direccion bp+lowsec

101

eseg leseg usa el registro es (en vez de ds) como el registro segmento

lesax, LOWSEC(si) les:ax = LOWSEC+2(si):LOWSEC(si) | LES para cargar el registro extra segment, lee a LBA
movlowsec+0(bp), ax IApilar los 16 bits inferiores del primer sector de la particion
movlowsec+2(bp), es IApilar los 16 bits superiores del primer sector de la particion

ISi el dispositivo es un disco duro, obtiene los paramertos de la unidad.

ISi es un diskette el nimero de sectores se conocen y estan escritos en un arreglo llamado 'sectors'

movb ah, #0x08 IEl nimero de la funcién que lee los parametros del disco es ah = 0x08
int 0x13 Idl contiene aun el dispositivo
ILa funcidn (int 0x13) retorna el maximo nimero de sectores en los bits 0-6 de cl y el maximo nimero de !cabeceras en dh. Sin embargo,

suma una confusion, debido a que el maximo nimero de cabeceras tiene el Isiguiente formato 0-origen, en consecuencia se debe sumar 1

al resultado

andb cl, #Ox3F Icl = maximo numero de sectores (1-origen)

movb (di), cl IEn (di) se almacena el nimero de sector por pistas
incb dh Idh = 1 + maximo nimero de cabeceras (0-origen)

jmploadboot

IFloppy:
IEjecuta 3 tests de lectura para determinar el tipo de unidad. Prueba para cada tipo de disquete mediante la lectura del ultimo sector de la
primera pista. Si esto falla, intenta un tipo que tenga menos sectores. Por lo tanto comenzamos con !1.44M (18 sectores) luego ;con 1.2M

(15 sectores) y finaliza con 720K/360K (ambos con 9 sectores). Usa el arreglo sectors

next:

incdi ISiguiente nimero de sectores por pista (si es necesario)

floppy:

xorb ah, ah IResetea el dispositivo especificado por dl con la llamada a int 0x13, ah=0x00

int 0x13

movb cl, (di) Icl = numero del dltimo sector por pista

cmpb cl, #9 INo hay necesidad de hacer la prueba con los ultimos tipos de diskette 720K/360K
je success

lintenta leer el Gltimo sector en la pista 0

moves, lowsec(bp) les = vector de segmento (lowsec = 0)
movbx, #BUFFER les:bx buffer = 0x0000:0x0600
movax, #0x0201 ILee un sector con la llamada a int 0x13 ah=0x02. dicha funcidn lee sectores desde el dispositivo

lespecificado y los copia a memoria

xorb ch, ch IPista 0, ultimo sector

xorb dh, dh lUnidad dl, cabecera O

intOx13

jcnext IError, intenta con el siguiente tipo de diskette
success:

102

movb dh, #2 ICarga numero de cabezas para multiplicar(en diskette siempre es 2), el nimero de sectores esta atn en cl
loadboot:
ICarga el cddigo del boot secundario desde el dispositivo de arranque
movb al, (di) lal = (di) = sectores por pista
mulb dh Idh = cabezas, ax = cabezas * sectores

movsecpcyl(bp), ax !Sectores por cilindro = cabezas * sectores

movax, #BOOTSEG !Segmento para cargar dentro el cddigo del boot secundario
moves, ax
xorbx, bx ILoad first sector at es:bx = BOOTSEG:0x0000

movsi, #. OADOFF+addresses IComienzo de la direccién del cédigo del boot

load:

movax, 1(si) I0btiene el préximo nimero de sector: 16 bits inferiores
movb dI, 3(si) IBits 16-23 para tu disco de 8GB

xorb dh, dh ldx:ax = sector sin la particion

addax, lowsec+0(bp)

adcdx, lowsec+2(bp) !dx:ax = sector dentro de la unidad | Suma con acarreo

cmpdx, #[1024*255*%63-255]>>16 ICerca del limite de 8G?

jaebigdisk IEl salto se realiza si cf esta desactivada

divsecpcyl(bp) lax = cilindro, dx = sector dentro del cilindro

xchg ax, dx lax = sector dentro del cilindro, dx = cilindro | xchg intercambia el contenido de los registros
movb ch, dl Ich = 8 bits inferiores del cilindro

divb (di) lal = cabecera, ah = sector (0-origin)

xorb dl, dl IDesplazar los bits 8-9 del cilindro en dI

shrdx, #1 ldesplaza todos los bits (tantas posiciones como lo indique el inmediato) hacia la derecha e inserta cero en la izquierda
shrdx, #1 1dI[6..7] = cilindro superior

orbdl, ah 1dI[0..5] = sector (0-origin)

movb cl, dl 1cl[0..5] = sector, cl[6..7] = cilindro superior

incb cl Icl[0..5] = sector (1-origin)

movb dh, al Idh = al = cabecera

movb dI, device(bp) !dl = dispositivo para leer

movb al, (di) ISectores por pista — Nimero de sector (0-origen)

subb al, ah I= Sectores que restan en la pista

cmpb al, (si) ICompara con el nimero de sectores a leer

jberead INo puede leer después del final del cilindro?

movb al, (si) I(si) < Sectores que restan en la pista

read:

push ax IApila al = sectores para leer

movb ah, #0x02 1Cédigo para leer del disco !ah = 0x02 Lee sectores de un dispositivo, al = contador de sectores a leer, ch = pista, Icl =

sector, dh = cabecera, dl = dispositivo, ES:BX = buffer
int 0x13 ICall the BIOS for a read

Popcx IRestore al in cl

103

jmprdeval

bigdisk:

movb cl, (si) INUmero de sectores a leer

push si IApila a si

movsi, #LOADOFF+ext_rw Isi = si = extendida lectura/escritura usando como parametro el paquete
movb 2(si), cl IRellena # bloques para la transferencia

mové(si), bx IDirection del Buffer

mov8(si), ax INUmero de inicio del bloque = bx:ax

mov10(si), dx

movb dl, device(bp) !dl = dispositivo a leer

movb ah, #0x42 ILectura extendida

int 0x13 IAH = 0x42 ndmero de la funcidén para la lectura extendida
popsi IRestaurar si para que apunte a la direccion del arreglo
ljmp rdeval

rdeval:

jcerror ISi ocurrio un error salta a error

movb al, cl IRestarura al = rectores a leer

addb bh, al Ibx += 2 * al * 256 (suma los bytes leidos)

addb bh, al les:bx = donde el siguiente sector debe ser copiado

ISi se afiade a 2 bh, es equivalente a la adicion de 512 a bx (recuerde que un sector = 512 bytes).

add1(si), ax IActualizar la direccion del sector a leer

adcb 3(si), ah INo olvidar los bits 16-23 (sumar ah =0)

subb (si), al IDecrementar el contador de sector por sectores leidos
jnzload ISino todos los sectores han sido leidos

addsi, #4 ISiguiente par (direccién, contador)

cmpb ah, (si) ICuando no hay sectores a lee

jnzload ILee el siguiente trozo del cddigo del boot secundario
done:

ILlama al boot secundario, asumiendo una cabecera larga a.out (48 bytes).
ILa cabecera a.out es normalmente pequeiia (32 bytes), pero el boot
Isecundario tiene dos puntos de entrada: Uno es el desplazamiento 0, para

lla cabecera larga, y el otro es el ;desplazamiento 16 para la cabeceracorta.

IdI=Dispositivo Boot.

les:si= Entrada de la tabla de particion si es el disco duro.

popsi IRestablecer es:si = entrada en la tabla de particién
popes Idl esta aln cargado
jmpf BOOTOFF, BOOTSEG ISaltar al sector del boot (saltando a la cabecera), aqui es donde al fin le sede el control a boothead.s

IRead error: imprimir mensaje, bucle infinito | cuando ocurre algun error
error:

movsi, #LOADOFF+errno+1

104

prnum:

movb al, ah

INUmero de error en ah

andb al, #0xOF !4 bits inferiores

cmpb al, #10!A-F?

jbdigit!0-9!

addb al, #7 I'A"- "'

digit:

addb (si), al
decsi

movb cl, #4
shrb ah, cl

jnzprnum

IModificar '0' en string

IProximos 4 bits

IDe nuevo si digit >0

movsi, #LOADOFF+rderr!String a imprimir

print:

lodsb

testbal, al

hang:

jzhang

movb ah, #OxOE
movbx, #0x0001
int0x10
jmpprint

.data

rderr:
.ascii"Read error "
errno:

.ascii"00 \0"

errend:

lal = *si++ es el caracter a ser imprimido

Ibyte null marca que indica fin

IManejador siempre esperando CTRL-ALT-DEL
lImprimir caracter en modo teletype
IPagina 0, color de primer plano

ILlama a BIOS VIDEO_IO

IVarios sectores por pista dependiendo del tipo de disquete 1.44M, 1.2M and 360K/720

sectors:

.datal18, 15, 9!Numero de sectores por disco

IComandos extendicos de lectura/escritura que requiren un paquete de parametros

ext_rw:
.datal0x10
.datal0

.data20

.data20
.data2BOOTSEG
.data40

.data40

.align2

addresses:

ITamafio del paquete r/w

IReservado

IBloques para la transferencia

IBuffer direccién de desplazamiento

IBuffer direccién del segmento

INUmero inferior de inicio del bloque 32 bits

INUmero superior de inicio del bloque 32 bits

IEl espacio ocupado luego de este cédigo es para las direcciones de disco para unprograma de boot

Isecundario (en el peor de los casos, cuando el archivo esta fragmentado). Esto deberia ser suficiente.

105

106

8 Implementacion de un intérprete de comandos

Un intérprete de comandos es un software que proporciona una interfaz para los usuarios de un sistema
operativo, el cual provee acceso a los servicios del ndcleo. El nombre intérprete de comandos viene dado
por el hecho de ser una capa externa (interfaz) entre el usuario y sistema operativo (funcionamiento

interno del nucleo).

El intérprete de Minix3 no es parte del SO, pero utiliza fuertemente muchas de las caracteristicas del SO,
por lo cual es un buen ejemplo de uso de las llamadas al sistema. Si el usuario escribe cualquier orden
vdlida, el intérprete de comandos crea un proceso hijo y el cual es el que ejecuta el programa para
satisfacer la orden recibida. Mientras el hijo esta corriendo, el intérprete de comandos espera a que
termine. Cuando el hijo termina, el intérprete de comandos pone el prompt y nuevamente queda

esperando un mandato en la entrada estdndar (la terminal en este caso).

Para completar este laboratorio los estudiantes deben implementar un programa intérprete de comandos.
El programa resultante es muy parecido a los intérpretes de comando de Unix/Linux. Para la

implementacién de este laboratorio, se utilizara un codigo plantilla que consiste en tres archivos:

e Shell.l: ofrece un programa de captura por entrada estandar (la funcién getline()), que se puede
utilizar para controlar el flujo de entrada del usuario.
e myshell.c: contiene un cédigo esqueleto de un intérprete de comandos simple.

o Makefile: contiene todo lo necesario para compilar Shell.l y myshell.c.

La solucion debe satisfacer los requerimientos mencionados en el capitulo Adecuacion de Minix 3 a la
UCV, como se alli se menciona la solucibn debe ser implementada en myshell.c, la cual puede
observarse a continuacién en la Figura 8.1. Cabe destacar que existe también para este laboratorio un
video tutorial el cual utiliza como solucién el cédigo que se muestra a continuacién. Para dicha

implementacion se usaron las siguientes llamadas al sistema:

e Fork

e Execvp
e Wait

o Exit

e Close

e Dup

e Pipe

107

#tinclude <unistd.h>
ttinclude <stdio.h>

#include <sys/types.h>
#include <fcntl.h>

#include <unistd.h>
#include <sys/types.h>
#include <errno.h>
#include <string.h>
#include <sys/wait.h>
#include <stdlib.h>
#include <sys/select.h>

/* Funcion que permite obtener la cadena introducida
* en la consola

*/

extern char **getline(void);
char **args;

pid_t pid,childpid;

int logArch,logPipe,logFuente;
char *archivo,*archivol;

int file;

int i,inicio,fin;

char *ejecutar[100];

int logError;

/* Dicha funcion solo le asigna
* el valor de args a ejecutar
*/

void cambiar(void){

intj,k;

k=0;

for(j = inicio; j < fin ; j++) {
if(args[j]!'=NULL){

ejecutar[k++]=args[j];

}

}

ejecutar[k++] = NULL ;

}

/* Una vez obtenida la cadena desde la consola
* se busca el primer comando valido a ejecutar,
* si activan las banderas si existe un caracter
*'>'0'|" para poder trabajarlos de manera
* especial
*/

int obtenerinstruccion(void){

for(i = inicio; args[i] '= NULL ; i++) {

if(stremp(args[i],">") == O)}{
if(args[i+1]!= NULL){
archivo = args[i+1];
logArch=1;
break;
Jelse{
printf("Error en sixtaxis: no se esperaba nueva linea\n");
logError=1;
break;
}
}else if(strcmp(argsli],"<") == 0){
if(args[i+1]!= NULL)K{
archivol = args[i+1];
logFuente=1;
break;

108

lelse{
printf("Error en sixtaxis: no se esperaba nueva linea\n");
logError=1;
break;
}
lelse if(strcmp(args[i],"|") == O}
if(args[i+1]'= NULL){

logPipe=1;
break;
lelse{
printf("Error en sixtaxis: no se esperaba nueva linea\n");
logError=1;
break;
}
}
}
if(logError){
return O;
lelse{
fin=i;
return 1;
}

}

/* Ya obtenida la instruccion a ejecutar

* se realiza un fork y luego un excec

* para poder ejecutar el comando obtenido.
* Esta funcion es recursiva para poder ejecutar
* tantas instrucciones como el comando lo
* amerite

*/
int Ejecutar(void){

int status,hacer,j;

pid_t pid;

int fd[2];

hacer=obtenerlnstruccion();

if(hacer){
switch(pid = fork()){
case -1:
perror("fork error");
break;
case 0:
cambiar();
if(logPipe==1){
pipe(fd);
if((childpid = fork()) == -1){
perror("fork");
exit(1);
}
if(childpid == 0){
close(fd[0]);
dup2(fd[1],1);
close(fd[1]);
execvp(ejecutar[0], ejecutar);
lelse{
close(fd[1]);
dup2(fd[0],0);
close(fd[0]);
inicio=fin;
inicio++;
hacer=obtenerlnstruccion();
cambiar();

109

if(logArch){
file = open(archivo, O_CREAT | O_RDWR);

close(1);
dup(file);
close(file);
}
execvp(ejecutar[0], ejecutar);
}
lelse{

if(logArch){
file = open(archivo, O_CREAT | O_RDWR);
close(1);
dup(file);
close(file);
}
if(logFuente){
file = open(archivol,0_RDONLY);

close(0);
dup2(file,0);
close(file);
}
execvp(ejecutar[0], ejecutar);
/* Sino se puedo ejecutar el comando con
* |a instuccion anterior se usa lo siguiente
*/
execve(strcat ("/usr/bin/",ejecutar[0]), ejecutar, ejecutar);
if(execvp(ejecutar(0], ejecutar) == -1){
printf("******* Error: comando no encontrado *******\n"),
exit(0);
}
}
default:
if ((pid = wait(&status)) == -1){
perror("wait error");
lelse{
if(WIFSIGNALED(status) != 0){
}else if(WIFEXITED(status) != 0){
lelse{
}
}
}
inicio=fin;
if(logPipe==1){
logPipe=0;
inicio++;
hacer=obtenerinstruccion();
inicio=fin;
inicio++;
}
if(logArch==1){
logArch=0;
inicio+=2;

110

if(logFuente==1){

logArch=0;
inicio+=2;
}
if(args[inicio]l=NULL){
Ejecutar();
return 1;
}
return O;
}
return O;
}

/* cilo infinito a la espera de comandos
* a ejecutar, sale del ciclo si el usuario
* intenta ejecutar "exit" o "quit"

*/

void main(void) {

while(1) {
logArch =0;
logPipe =0;
logError = 0;
inicio =0;
logFuente = 0;
fin=0;

printf("MiShell-$ ");
args = getline();
if(args[0]==NULL){

continue;

}

if(strcmp(args[0],"exit") == 0 | | strcmp(args[0], "quit") == 0)}{
printf("Saliendo del Shell..\n");

sleep(1);
exit(0);

}

Ejecutar();

Figura 8.1 Codigo fuente de un Shell simple

111

112

9 Implementacion de llamadas al sistema

Una llamada al sistema es la forma en la cual un proceso requiere de un servicio al nicleo (al cual
generalmente no tiene permisos para ejecutar). Las llamadas al sistema proporcionan la interfaz entre un
proceso y el SO. La mayoria de las operaciones para interactuar con el sistema requieren permisos, los
cuales no estan disponibles para un proceso en la capa de usuario. Por ejemplo, realizar una operacion
de E/S (Entrada/Salida) con un dispositivo en el sistema, o cualquier otra forma de comunicacion con

otros procesos se requiere del uso de las llamadas al sistema (2).

Existe la posibilidad de que el uso inadecuado de la llamada al sistema pueda afectar la ejecucion del
SO. El disefio de la arquitectura del microprocesador en practicamente todos los sistemas modernos (con
excepcion de algunos sistemas embebidos) ofrece modos de ejecucién de la CPU (Unidad Central de
Procesamiento). Esto ofrece niveles de privilegio, uno de ellos es el modo usuario, donde las aplicaciones
tienen limitaciones en el espacio de direcciones debido a que no pueden acceder o modificar otras
aplicaciones en ejecucion, ni al propio SO. También impide el acceso directo de las aplicaciones hacia los
dispositivos del computador. Pero las aplicaciones, obviamente, necesitan estas habilidades, por lo tanto,
las llamadas al sistema ofrecen estos servicios a través del SO. El SO tiene més privilegios y se ejecuta
en modo protegido, esto permite a las aplicaciones solicitar servicios mediante las llamadas al sistema,

que a menudo se implementan a través de las interrupciones.

En general, se ofrece una biblioteca que se define entre los programas de usuarios y el SO. Existe una
confusion entre los términos llamada al sistema y las funciones de la biblioteca estandar C. Hay que tener

claro que en las llamadas al sistema se transfiere el control al nucleo.

9.1 Llamadas al sistema en Minix 3

El SO Minix 3 esta basado la estructura micronucleo (a diferencia de la estructura monolitica la cual es
mas comun). Teniendo este tipo de nucleo significa que es menor el codigo que se ejecuta en el modo
privilegiado de la CPU (también se conoce como modo nicleo). La mayoria del cédigo se ejecuta con
menos privilegios (en espacio de usuario). Ademas, Minix 3 esta disefiado en capas, como se explico en

el capitulo 2, estas capas pueden verse en la Figura 6.1.

El microndcleo maneja las comunicaciones entre los procesos, realiza la planificacién de los mismos,
maneja interrupciones y provee algunos mecanismos basicos para la administracion de procesos. El
manejo de sistemas de archivo, funciones de red, administracion de procesos y demas servicios a

usuarios, son provistos por servidores especializados fuera del micronucleo.

113

La comunicacién entre los diferentes componentes es a través de pase de mensajes. Una ventaja de este
enfoque es que la parte del SO que se ejecuta en modo privilegiado es minima, por lo tanto, mas faciles
de mantener libre de errores. Los errores en la parte del SO que se ejecuta en el espacio de usuario no

tiene la capacidad afectar la estabilidad del sistema.

Una desventaja de este enfoque es que hay una reduccion del rendimiento debido a que el pase de
mensajes implica una sobrecarga, relacionada a la construccion, copia y envio. En caso de un nucleo
monolitico sélo tiene un espacio de direcciones, esto implica que cualquier porcién de cddigo interna al
nacleo puede obtener el control del SO, es decir, como estas porciones son ejecutadas en modo
privilegiado no tienen ningun tipo de restricciones. Por ejemplo, en Minix 3, el FS (Servidor de Archivos),
PM (Servidor Manejador de Procesos) y otros componentes del SO (incluyendo los controladores de
dispositivo) se ejecutan como procesos en espacio de usuario, por lo tanto, ellos dependen de las

llamadas al sistema para poder realizar operaciones privilegiadas.

Una de las funciones principales del microntcleo es proveer un conjunto de funciones a los controladores
de dispositivos y a los servidores que estan en las capas inmediatamente superiores, estas funciones son
denominadas llamadas al sistema. La encargada de atender y realizar esas llamadas es la Tarea de

Sistema o0 System Task.

Desde el punto de vista del nicleo, todos los procesos de las capas superiores son tratados casi de la
misma forma: todos son planificados por el nicleo, estan limitados a usar instrucciones en modo usuario,
ninguno puede acceder directamente a puertos de E/S y ninguno puede acceder a direcciones de

memoria fuera del espacio asignado a si mismo.

La diferencia entre los procesos que pertenecen a las distintas capas radica, principalmente, en la
posibilidad de realizar llamadas al ndcleo siendo los de la capa 2 los mas privilegiados, seguidos en
orden decreciente por la capa 3 y 4. Por ejemplo, los procesos de capa 2 (Controladores de Dispositivos)
tienen permitido requerirle al System Task que lea y escriba datos en los puertos de E/S o que copie

datos en el espacio de direcciones de otro proceso.

Es importante distinguir entre llamadas al nacleo y llamadas al sistema POSIX (POSIX System calls). Las
primeras son llamadas de bajo nivel provistas por la System Task para permitirle hacer su trabajo a los
controladores de dispositivos y a los Procesos Servidores. En contraste las llamadas al Sistema POSIX
son llamadas de alto nivel definidas por el estandar POSIX y estan disponible para los procesos de

usuario en la capa 4 (1).

El controlador de dispositivo o proceso servidor tiene permitido intercambiar mensajes con un grupo

acotado de otros procesos. Los mensajes pueden fluir entre procesos de la misma capa o entre procesos

114

de capas adyacentes. Los procesos de la capa 4 no pueden enviar mensajes a otros procesos de la capa

4, sino so6lo a los de capa 3.

Para entender mejor como son las llamadas al sistema en Minix 3, vea la Figura 9.1. Las flechas indican
los mensajes intercambiados entre las distintas capas de Minix 3. La idea, muy simplificada, es la

siguiente (21):

e El proceso de usuario hace una llama al sistema. Desde su punto de vista, no es mas que una
funcion de biblioteca. En este ejemplo, la funcién forma parte de la libc.

e La funcién de la biblioteca es armar un mensaje con la peticién y lo envia a uno de los procesos
servidores quedando a la espera de una respuesta. En el ejemplo, se utiliz6 el Process Manager
como destinatario del mensaje.

e El proceso servidor recibe el mensaje y, dependiendo del tipo de mensaje, ejecutara operaciones
predefinidas. Si la llamada al sistema puede ser resuelta en el ambito del proceso servidor, se
genera un mensaje de respuesta d y se envia al proceso que realizd la peticion. Si la llamada no
puede ser resuelta por el proceso servidor, se generara un mensaje y se enviara al manejador de
dispositivos correspondiente o, en su defecto a la SYSTASK. En el ejemplo, la peticion es
realizada a la SYSTASK via el mensaje b.

e La SYSTASK realiza las acciones que correspondan ante un mensaje del tipo b y genera,
eventualmente, un mensaje c con la respuesta a la peticion. La respuesta, no esta demas decirlo,
es enviada al proceso servidor que emitié el mensaje b; no al proceso de usuario.

e El proceso servidor (el PM, en el ejemplo) toma el mensaje ¢, lo procesa y envia la respuesta al

proceso de usuario via el mensaje d

La funcién de biblioteca desempaqueta el contenido del mensaje y devuelve los resultados, posiblemente

via parametros pasados por referencia, al proceso de usuario.

115

Programa de usuario

Llamada al q
sistema simple Libc

@A "@

PM

Llamada al Lib
sistema extendida IDsys

@u "@

SYSTASK

Figura 9.1 Flujo de informacion en la nueva llamada al Sistema

9.2 Implementaciéon de Llamadas al Sistema

Minix 3 esta basado en servidores, existen dos servidores importantes el FS y el PM, entre otros. El FS
se encarga del manejo de archivos (creacién, eliminacion, etc.) y el PM se encarga de todo lo referente a
los procesos del sistema. Estos servidores son los que van a permitir el desarrollo de la nueva llamada al
sistema. Antes de implementar las llamadas al sistema se debe conocer algunas funciones definidas en
Minix 3.

9.2.1 Funciones relacionadas con llamadas al sistema

Estas funciones ayudaran a una implementacién rapida y eficaz de una llamada al sistema. La primera de
ellas es la _syscall. Esta llamada al sistema, realiza el envio de un mensaje destinado a otro proceso y se
bloguea hasta recibir una respuesta. Utilizandola es la forma mas sencilla de realizar una llamada al
sistema. _syscall debe recibir tres parametros, vea su implementacién en el /usr/src/lib/other/syscall.c o

en la Figura 9.2 y su sintaxis es la siguiente:

PUBLIC int _syscall(int who, int syscallnr, register message *msg);

v" who: es el destinatario del mensaje, en este caso el servidor.
v" syscallnr: es el nimero de la llamada al sistema
v' msgptr: es un apuntador al mensaje a enviar. message es una estructura de datos definida por

Minix 3 en el directorio /usr/src/include/minix/ipc.h.

En _syscall si el valor de retorno es negativo sera tratada como un error. Los valores estandares de error

se define en /usr/src/include/errno.h. De lo contrario el valor de retorno es deberia ser 0.

116

l.c] syscall.c &3

lg#inclnde <likb.h>

SPUBLIC int _syscall (who, syscallnr, msgptr)
4int who;

S5int =yscallnr;

tregister message *msgptr;

T4

int status;

sIRTRE]

10 msgptr->m type = syscallnr;

11 status = sendrec(who, msgptr):

12 1if (=status '= 0) {

13 f* "sendrec' itself failed. */f

f* - strerror doesn't know all the codes */

msEgptr->m type = status;

Ll e
&N b

if (msgptr->m type < 0) {
errno = -mEgptr->m_type;
retorn(-1);

=T

return (msgptr->m_type);

[ER CR ARy

Ll

Figura 9.2 Funcion _syscall

Como puede observarse _syscall utiliza a sendrec con el destinatario who (normalmente a PM o FS).
Sendrec hace una peticidn la cual es recibida por get work, y se encarga de responder a la misma a
través de reply. Las funciones get_work y reply existe tanto en las PM como en FS. Para entender mejor

a _syscall vea la siguiente llamada al sistema:

message m;

_syscall(MM,70,&m);

Donde MM es el nimero de proceso asignado al PM, vea la Figura 9.3 en la linea 26 del archivo
lusr/src/include/lib.h, donde se define dicha variable. El segundo pardmetro 70, es el nimero de llamada

al sistema y m es el mensaje a enviar.

117

iz the master header used by the library.

/* The <lib.h> header
i include it.

*# R1l the C files in

L

S VR R)

Sfifndef LIB H
G#define LIB H

B/* First

12 /#
13#include
l4finclude
15#include
lafinclude
17#include

1%9¢inclinde

come the defines.
S¢define POSIX SOURCE
l0#define MINIX

The following are =0 basic,

<minix/config.h>
<minix/types.h>
<limits.h>
<errno.h>
<ansi.h>

<minix/const.h>
<minix/com.h>
<minix/type.h>
<minix/callnr.h>

<minix/ipc.hy>

all the
/* muast be

include

include

lib filez get them automatically.
first */

fdefine MM
fdefine FS

int _ execve,

FM_PROC_NR
F5_PROC_NR

(cons=t char * path, char *const _argv(],

5 PROTOTYPE (

char *con=t envp[], int nargs, int _nenvps)

):

POSIX stuff =/
MINIX stuff */

L

1 PROTOTYPE(int syscall, (int who, int =y=2callnr, message * magptr))
2 _PROTOTYPE(wvoid _loadname, (const char * name, message * mSgptr)):
3_PROTOTYPE(int len, (const char *_s)):

4 PROTOTYPE(woid begsig, (int dummy))2

Figura 9.3 Cadigo fuente de lib.h

Otra funcion utilizada en llamadas al sistema es _taskcall. Tiene la misma funcionalidad que _syscall
excepto que devuelve los cédigos de error negativo directamente y no en errno. Esta es una mejor
interfaz para que MM y FS se comuniquen con el ndcleo, la implementacién de esta funcion esta en

lusr/srcllib/syslib/taskcall.c, puede observarse en la Figura 9.4.

118

.| taskeall.c 7
;F“ _taskcall() i=s the same as syscall() exce

* codes directly and not in errno. Thi=s is

[P 8]

= =

6#include <lib.h>
T#inclode <minix/syslib.h>

SPUBLIC int _taskeall (who, syscallnr, msgptr)
10endpoint t who;

11int =ys=scallnr;

1Z2register message *msgptr;

134

14 int status;

msSgptr->m type = syscallnr;

[
1 &

status = _sendrec (who, msgptr);
if (statu=s '= 0) return(status):

return (msgptr->m type) ;

5L 0o

J =

Figura 9.4 Funcion taskcall.c.

9.2.2 ¢(Colmo se crea unallamada al sistema?

La llamada al sistema propuesta utilizar4d como soporte al servidor PM. La comunicacién entre el proceso

de usuario y el PM involucra dos tareas:

a) La creacién, por parte del proceso de usuario, de un mensaje y el envio del mismo al proceso
servidor.
b) La creacién de un manejador, en el proceso servidor, que realice las acciones pertinentes cuando

llega un mensaje de ese tipo.

En cuanto a la generacién del mensaje por parte del proceso de usuario, existen dos alternativas. Se
desea implementar ambas alternativas de llamadas al sistema, estas se definen por enfoques; el directo
e indirecto (a través de una biblioteca). Las llamadas al sistema propuestas seran descritas a

continuacion, desglosadas por enfoque:

e Enfoque directo: Para este ejemplo el programa de usuario debe conocer, manipular y utilizar la

funcién _syscall, la cual sera explicada posteriormente.

e Enfoque indirecto: es necesario la creacion de una funcién dentro de una biblioteca que oculte

todo el manejo de envio y recepcién de mensajes entre las capas.

En la siguiente seccion se explica paso a paso el proceso para la creacién de cada tipo de llamada al

sistema mencionado anteriormente.

119

9.2.3 Pasos paracrear unallamada al sistema (enfoque directo)

En esta implementacion se utilizara el enfoque directo. Eso significa, como se mencioné anteriormente,
gue el programa de usuario va a utilizar la llamada al sistema _syscall, que realiza el envio de un
mensaje destinado a otro proceso y se bloquea hasta recibir una respuesta. Esta es la forma mas sencilla
de realizar una llamada al sistema. A continuacion se describe paso a paso el proceso de la creacion de

una llamada al sistema en Minix 3 la cual solo imprime por pantalla: “Esta es una llamada al sistema”:

Paso 1 (Implementar prueba_imprimirmsg.c): debe implementar en primer lugar un programa de
usuario que permita invocar la llamada al sistema, el cual sera denominado prueba_imprimirmsg.c, como
se indico en la tarea a). Este programa de estar alojado en el directorio /usr/src. Para crear este programa

debe crear primero el archivo a través de la consola de Minix 3 use el siguiente comando: “vi
prueba_imprimirmsg.c”. Posteriormente introduzca “”, luego cuando aparezca en pantalla los dos puntos
teclee wq para guardarlo y salir del editor de texto. Para finalizar utilice el IDE de eclipse para

implementar el programa que puede visualizar en la Figura 9.5.

#include <lib.h>
ttinclude <stdio.h>

/* Programa de prueba de la llamada
* al sistema imprimirmsg */

void main(int argc, char *argv[])
{
int retorno;
message m;
retorno = _syscall(MM,69,&m);

printf("Resultado imprimirmsg:[%d]\n", retorno);

Figura 9.5 prueba_imprimirmsg.c

Paso 2.1 (Creacion de un manejador - modificar el table.c): ahora se procede a la tarea b), para esto
se debe empezar por encontrar una ranura o entrada vacia en el archivo /usr/src/servers/pm/table.c, vea
la Figura 9.6. Para agregar una nueva llamada al sistema, se debe identificar una ranura o entrada sin
usar. Por ejemplo, el indice 69 contiene una entrada no utilizada, facil de identificar debido a que dice
unuse. Se podria utilizar el nimero de ranura 69 para la llamada al sistema de do_imprimirmsg. Para
utilizar la entrada 69, se reemplaza no_sys con do_imprimirmsg, vea la Figura 9.7 en la linea 83 del

archivo /usr/src/servers/pm/table.c.

do_imprimirmsg, /* 69 = Llamada nueva = imprimirmsg */

120

/% This file contains the table used to map system call numbers onto the
* routines that perform them.

[TV S

=

Sf#define TABLE
ey

T#include "pm.h™

g4inclode <minix/callnr.h>
J#include <signal.h>
10finclude "mproc.h™
1l#include "param.nq"

15 _PROTOTYPE (int (*call wec[]}), (wveoid))} = {
14 no_SyS, f* 0 = unused */
15 do exirt, S* 1 = exit #f
16 do_ fork, f* 2 = fork &/
17 no_sys, f* 3 = read #
18 no_sSys, f* 4 = write #f
13 no_sys, /% 5 = ppen = f
20 no_sys, /* & = close - f
21 dD_Wﬂitpid, r* T = wait * f
Figura 9.6 Codigo fuente de table.c
do itimer, /* 64 = itimer ¥/ 78 doitimer, /* 64 = itimer ¥/
19 doget, /¥ 65 = qetgroups */ 7 doget, /%65 = getqroups ¥/
B0 doset, /% 66 = setqroups */ 80y doset, /* 66 = setgroups ¥/
3 nosys, /f67=umised ¥ S\ n0 8y, /% 67 = umused ¥/
2 mosys, [* 68 = umsed ¢ no sy, /* 68 = unuged ¥
83 onosys, /%69 =umsed ¥ do inprimimsg, /* 69 = Mueva llamada al sistema [se:c;;;ah J!
nosys, /%70 =umused ¥ 24V moays, /%70 =unused ¥
do sigaction, /* 71=sigection #/ (|85 do sigaction, /* 71 = sigaction ¥/
% do sigsuspend, /* 72 = sigauspend */ |[26 do sigsuspend, /* 72 = sigsuspend ¥/

Figura 9.7 Codigo fuente de table.c (modificado)

Paso 2.2 (Creacion de un manejador - modificar el proto.h): El siguiente paso es declarar un prototipo
del manejador de sistema, esto se hace modificando el archivo /usr/src/servers/pm/proto.h. Este archivo
contiene los prototipos de todas las funciones manejadoras de las llamadas al sistema. Se debe afiadir el

prototipo de do_imprimirmsg, esto se muestra en la linea 10 de la Figura 9.8.

121

_PROTOTYPE(int do_imprimirmsg, (void));

proto.h &3

Iztroct mproc;
4=ztrnct stat;
Sstroct mem map:
estroct memory;

#include <timers.h>

BT e]

10 _PROTOTYPE (int do imprimirmsg, (void) }:

12/*% alarm.c

15 PROTOTYPE(int do_alarm, (void)):

14 PROTOTYPFE(int do_itimer, (void)):

15 _PROTOTYPE(weoid set_alarm, (stroct mproc *rmp, clock t ticks) I
16 PROTOTYPFE(void check vtimer, (int proc nr, int =ig)):

Figura 9.8 Codigo fuente de proto.h

Paso 2.3 (Creacidon de un manejador - implementar do_imprimirmsg): Afadir la implementacion de
do_imprimirmsg a un archivo nuevo o un archivo existente en /usr/src/servers/pm/. Si se agrega a un
archivo existente, no es necesario cambiar Makefile, si prefiere crear un nuevo archivo, es necesario
modificar el Makefile. En este ejemplo se utilizar4 un archivo existente en el directorio antes mencionado,
dicho archivo es getset.c. Debido a que la llamada al sistema do_imprimirmsg solo va a imprimir datos a
través de la salida estadndar, la implementacion de la misma solo tiene una llamada a la funcién printf. La

implementacion de esta llamada puede observarse en la Figura 9.9 desde la linea 17 a la 25.

122

AN b Ld RY S

T#include "pm.h"

f#include <minix/callnr.h>
3#include <minix/endpoint.h>
10#include <limits.h>
1lfinclude <minix/com.h>
1Z2#include <signal.h>
13#include "mproc.h"
l14#inclunde "param.h"

18 * R d:_ primirmsg AR R R =
21PUBLIC int do_imprimirmsg(]l
224
23 printf("Esta ez una llamada al sistema’n");:
24 return OK:
25}
26
[Femmmmmmmmmmmmmomo oo *
* ok ok ok ok ok do_imprimirmsg sokkokokok ok
* _ */

PUBLIC int do_imprimirmsg()

{
printf("Esta es una llamada al sistema\n");
return OK;

}

Figura 9.9 Cédigo fuente de getset.c

Paso 3 (Generar una versién): hay que recompliar el nicleo, para realizar este pendltimo paso se debe

dirigir al directorio /usr/src/tools y ejecutar los siguientes comandos:

cd /usr/src/tools/
make hdboot

Luego debe especificar la imagen desde donde se pretende iniciar, la misma puede verse una vez
ejecutado el comando make hdboot, aparece una vez ejecutado el comando y tiene la siguiente sintaxis

3.1.5rX, donde X es un entero que hace referencia nUmero de release. Debe ejecutar el comando:

d0Op0s0> image=/boot/image/3.1.6rX
dOp0s0> boot

Paso 4 (compilacién y ejecucion del programa de usuario): Para concluir debe compilar el programa
prueba.c y ejecutarlo. Para esto dirijase al directorio (/usr/src/) donde se encuentra prueba_imprimirmsg.c

y ejecute los siguientes comandos:

123

cd Susr/src/
cc prueba_imprimirmsg.c -o prueba_imprimirmsg
. /prueba_imprimMirmsg

Ezta es una llamada al sistema
Rezultado imprimirmsg:[H]

9.2.4 Llamada al sistema (usando una biblioteca)

En esta implementacion se utilizara el enfoque indirecto. Es necesaria la creacion de una funcién dentro
de una biblioteca que oculte todo el manejo de envio y recepcién de mensajes entre las capas. Dicha
comunicacion ocurre entre el proceso de usuario (capa 4) y el PM (capa 3). De esta forma, se abstrae a
los procesos de usuario del mecanismo de comunicacion interprocesos. Esta llamada al sistema solo
envia un entero y el resultado de la misma es el mismo entero multiplicado por dos, todo esto a través de

pase de mensajes. Como se muestra en la Figura 9.10 donde a es la peticién y d la respuesta.

Programa de usuario

Llamada al .
sistema simple Libc

ot @

PM

Figura 9.10 Llamada al sistema usando biblioteca (sencilla)

Antes de explicar los pasos de esta llamada es importante conocer la estructura de datos message. La
cual puede observarse a continuacion en la Figura 6.1. Luego sera explicada esta llamada al sistema

paso a paso (21).

29typedef struct {
endpoint_ T m_sSource; !
31 int m type: f* wh
32 wunion {
mess_1 m ml;

mess 2 m m2;

meas_3 rr._rr.S.:I
rr.ess_-’l rr._rr.*l;

R T

mess_5 m ms;
mess_T m m7;
mess_& m mB;

40 mess 6 m me;
o

41 mess m m%;

Figura 9.11 Estructura message

124

Paso 1 (Construccion de la biblioteca): En /usr/src/lib/posix se crea un archivo llamado _newcall.c. En
este archivo se creard la funcion newcall, encargada de armar un mensaje y enviarlo al proceso servidor,
en este caso al manejador de procesos. Si el proceso de usuario necesitara enviar informacién al proceso
servidor, deberia pasarla a newcall via argumentos. De la misma forma, si el proceso servidor devuelve
un mensaje con informacion. Luego, newcall deberia desempaquetar el mensaje y enviar la informacion

al proceso de usuario via argumentos. La implementacion del programa obsérvela en la Figura 9.12:

ttinclude <lib.h>
#include <unistd.h>

PUBLIC long newcall (int entrada, int *salida)

message m;
int retorno;

/* Se establece los campos del mensaje a enviar */
m.m1_il = entrada;

/* La forma de pasar un mensaje a MM es a través de:
_syscall(MM,NEWCALL,&m);

El mensaje de respuesta permanece en m.

*/

retorno = _syscall(MM, NEWCALL, &m);

/* Retornar la informacién contenida en el mensaje via parametros*/
/* *salida=m.m1_i2; */

*salida = 1234;
return(retorno);

}

Figura 9.12 Cédigo fuente de newcall.c (version 1)

Note que la funcién de ejemplo no hace mucho. Solo carga el campo ml il del mensaje m que se
enviara al PM vy, luego de la llamada a _syscall, coloca el valor 1234 en la direccion de memoria
suministrada como segundo paréametro. Por udltimo, retorna el valor devuelto como resultado de la
llamada a _syscall. Nota, si se quiere pasar otro tipo de dato que no es entero utilizar la estructura de
datos message y buscar el campo requerido, el procedimiento sigue siendo el mismo. Para que esta
funcion forme parte de la libreria, se debe editar el archivo Makefile.in en el mismo directorio y agregar el

nombre del nuevo archivo a compilar como parte de la libc.

Makefile for lib/posix.
CFLAGS="-O -D_MINIX -D_POSIX_SOURCE"
LIBRARIES=libc
libc_FILES="\
__exit.c\

_newcall.c\
_access.c\

125

Luego ejecutar, en ese directorio:

/usr/src/lib/posix

Make Makefile

Esto generara un nuevo Makefile que incluye las reglas para el nuevo archivo. Como se puede observar
en la llamada a _syscall, se ha usado la macro NEWCALL en lugar de utilizar el nimero de llamada al

sistema. Entonces, en /usr/src/include/minix se debe editar el archivo callnr.h para agregar dicha macro:

#tdefine NEWCALL 70 /* EI 70 esta libre en la seccion posix*/

Esto compilara e instalara la nueva libreria POSIX. Ahora s6lo queda agregar el prototipo de la funcién de
la biblioteca newcall al archivo de que corresponda (en este caso a unistd.h) para que el compilador de C
no de errores cuando deba generar el cédigo para su llamada. En virtud de lo antes mencionado se edita

lusr/src/include/unistd.h:

_PROTOTYPE(long newcall, (int entrada, int *salida));

Posteriormente se instala los nuevos archivos de cabecera en /usr/include/ ejecutando:

#cd /usr/src
make includes

También se deben compilar las bibliotecas, para esto ejecute:

cd /usr/src
make libraries

Paso 2 (Construcciéon del programa de prueba): En este punto, solo a los efectos de prueba, se

construira un programa llamado /usr/src/prueba_newcall.c con el siguiente cédigo:

#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>
ttinclude <stdio.h>

int main(int argc, char *argv[])

{
int retorno, entrada=5, salida=7;
retorno = newcall(entrada, &salida);

printf("Resultado newcall:[%d], valor salida:[%d] \n", retorno,salida);

return O;

126

Al compilar este programa y ejecutar prueba_newcall, se llama a la funcién de la libreria newcall que
envia, a su vez, un mensaje al PM. Es importante notar que no hace falta recompilar el niicleo para poder
probar a la nueva llamada al sistema, hasta ahora. Como el PM no sabe qué hacer con un mensaje de
ese tipo, el resultado de la ejecucion sera:

cc prueba_newcall.c -o prueba_newucall
. /prueba_newcall

PM: in no_sys, call nr 78 from 36691
Resultado newcall: [-11, wvalor =alida: [1234]

Pues la llamada a _syscall() retornara -1 (error). El 1234 es cargado por la funcién de la libreria

directamente. Lo siguiente, entonces, es aportar la funcionalidad requerida al PM.

Paso 3 (Modificacién del proceso servidor): ElI programa principal del Process Manager
(/usr/src/servers/pm/main.c) es un ciclo infinito en el que el servidor queda a la espera de mensajes,
cuando recibe un mensaje lo atiende y luego, eventualmente, envia los resultados a quien realiz6 la
peticion. En este procedimiento los privilegios que tienen las tareas Clock y System ya que son los
primeros atendidos por este proceso servidor (para denotar esto vea el coédigo completo). La forma en

que se realiza la accién a cada tipo de mensaje véala en la Figura 9.13:

switch(call nr)
{
case FM SETUID REPLY:
case PM SETGID REPLY:
case PM SETSID REPLY:
case PM EXEC REPLY:
105 case PM EXIT_REPLY:
106 case PM CORE_REPLY:
7 case FM FORK REPLY:
case FM_FORK NB_REPLY:
case PM UNPRUSE_REPLY:
case PM REBOOT REPLY:
111 case PM SETGROUPS REPLY:
112 if (who_e == FS_PROC_NR)
3 {
handle fs replv():
result= SUSPEND; /* don't reply */

else
result= ENOSYS;
break;

if ((unsigned) call_nr >= NCALLS) {
result = ENCSYS;

& } else {

T#if ENABLE SYSCALL STATS

8 calls_stats[call_nr]++;

Sfendif

result = (*call wec[call nr]}():

break:

Figura 9.13 Cédigo fuente de main.c

Como se ve, la funcién que se ejecuta es aquella que se encuentra en la posicidon call_nr del vector

call_vec[]. La variable call_nr, en este contexto, contiene el nimero de System Call solicitada. call_vec

127

es, entonces, un vector de apuntadores a una funcién que contiene en la posicién n-ésima que debe
ejecutarse para atender la System Call nUmero n y se encuentra definido en /usr/src/servers/pm/table.c.
Ahora para que el PM ejecute determinada funcion ante la llegada de un mensaje requiriendo la System

Call 70 hay que cambiar “no_sys, /* 70 = unused */”, como se ve mostro en la Figura 9.6, por:

do_newcall, /* 70 = newcall Nueva llamada al sistema (biblioteca)*/

Mediante este cambio, se indica al Process Manager que ejecute la funcién do_newcall. Para programar
do_newcall debe, en primera instancia, modificarse /usr/src/servers/pm/proto.h para agregar el prototipo

de la funcién, como se realiz6 en el ejemplo de la llamada al sistema anterior:

_PROTOTYPE(int do_newcall, (void));

Al escribir la funcién do_newcall se debe tener en cuenta que:

e Elmensaje de entrada estd en m_in

e El mensaje de respuesta esta en mp->mp_reply (mp es un apuntador a la posicién de la tabla de
procesos ocupada por el proceso que originé la llamada. ver setreply en main.c)

e Sila system call puede ser atendida con los recursos del proceso servidor, do_newcall debe ser
dotada de toda la funcionalidad necesaria y completar los campos correspondientes del mensaje
que se devolvera al proceso que realiz6 la llamada.

e Si debe requerirse algo a la SYSTASK, debe armarse un nuevo mensaje y enviarselo via
sys_newcall, este proceso sera explicado posteriormente.

e En/usr/include/minix/ipc.h se definen los tipos relativos a mensajes.

A continuaciéon, para no generar otro archivo, podemos escribir en la funcion do_newcall() en

lusr/src/servers/pm/getset.c:

/* *
* sk ok ok ok ok do_newcall sokokokkokok ok
* */

PUBLIC int do_newcall()

{
mp->mp_reply.m1_i2 =m_in.m1_il * 2;
return OK;

}

Una vez programada la funcién do_newcall es conveniente, a los efectos de simplificar la depuraciéon
probar lo hasta ahora lo que se ha realizado. Note que en el ejemplo, do_newcall no hace practicamente
nada. Solo retorna en un campo del mensaje de salida, el doble de lo que se le informa en el campo
ml_il del mensaje de entrada m_in. Una ligera modificacion a la funcién newcall (en la linea que esta

resaltada puede verse dicha modificacion) en /usr/src/lib/posix/_newcall.c permitira probar el escenario:

128

#include <lib.h>
#include <unistd.h>

PUBLIC long newcall(int entrada, int * salida)
{

message m;

int retorno;

/* Se establece los campos del mensaje a enviar */
m.m1_il = entrada;

/* La forma de pasar un mensaje a MM es a través de:
_syscall(MM,NEWCALL,&m);

El mensaje de respuesta queda en m.

*/

retorno=_syscall(MM,NEWCALL,&m);

/* Retornar la informacién contenida en el mensaje via parametros*/
*salida=m.m1_i2;

return(retorno);

}

Se tiene hasta aqui una llamada al sistema que permite calcular en el PM el doble del primer valor

pasado como argumento. Ahora debe compilar las librerias via, el PM y el nacleo:

#cd /usr/src

make libraries

cd /usr/src/servers/pm
make

cd /usr/src/tools

hdboot

Subsiguientemente, realice el paso explicado como Generar una versién. Luego de reiniciar se ejecuta

nuevamente prueba_newcall que daré:

cc prueba_mnewcall.c -o prueba_newcall
. /prueba_mnewcall

Resultado newcall: [B]1, walor =salida: [181

Para este punto, se habra probado que:

e El proceso de usuario puede enviar informacion al PM via un mensaje.

e Que el PM puede desempaquetar la informacién contenida en el mensaje y hacer la tarea

necesaria para realizar la nueva system call.

e Que el PM puede enviar informacion de respuesta al proceso que realiz6 la llamada al sistema.

Es decir, se ha logrado construir una nueva llamada al sistema y se ha trasmitido informacion entre las
capas 3 y 4 de MINIX. La funcionalidad de la llamada creada es nula, pero el mecanismo a utilizar para

escribir cualquier nueva llamada al sistema, serd muy similar al descrito.

129

9.2.5 Llamada al sistema (extendida)

En el caso en que el proceso servidor no tenga todos los recursos necesarios para satisfacer la llamada
al sistema, por ejemplo, porque se necesita acceder a informacion que esta en el espacio de direcciones

del nicleo, debera solicitar a un ente externe que realice la tarea por él.

En este ejemplo, se asume que la SYSTASK realizara la tarea, siendo especifico, la multiplicaciéon por
tres del primer valor pasado como parametro a newcall, se usara otro factor para distinguir los resultados
de la llamada al sistema sencilla. Este esquema de llamada al sistema puede observarse en Figura 9.14.
Es importante notar que esta funcién hace una invoca a _taskcall, para poder enviar un mensaje a
ndcleo. También es importante sefialar que un proceso a nivel de usuario no puede realizar este tipo de
llamadas debido a que el SYSTASK se encuentra en la capa 1, y los procesos de usuario solo envian
mensajes a la capa 3. Hay que resaltar que una llamada al sistema que impligue un cambio de modo es

mas costosa a nivel de recursos que las demas.

Ademas, implica otros temas como seguridad, si una llamada a nivel de usuario no estd seméanticamente
bien hecha puede afectar los Procesos Servidores. Sin embargo, para evitar la caida de los mismos
existe un proceso especial Proceso Servidor Reencarnacién. Dicho servidor de forma periddica envia
consultas a cada controlador de dispositivo y a los procesos servidores, como el PM, FS, etc. Si el
controlador de dispositivo 0 proceso servidor muere o no responde correctamente a las consultas, el
servidor de reencarnacién automaticamente los sustituye por una copia nueva. La deteccion y el
reemplazo de los controladores de dispositivo procesos servidores que no funcionan son de forma
automatica, sin intervencion del usuario. Este mecanismo intenta brindarle a Minix 3 tolerancia a una

caida de los controladores o procesos servidores (15).

A diferencia de una llamada al sistema que implique un cambio de modo, el servidor reencarnacién no
tiene el alcance ni el mecanismo para poder brindar la tolerancia o robustez al sistema operativo. Esta es
una razén para tener precaucion a la hora de implementar una llamada al sistema que implique un

cambio de modo.

130

Programa de usuario

Libc

Llamada al
sistema extendida

Figura 9.14 Llamada al sistema (extendida)

La funcidon do_newcall, mencionada anteriormente, debe ahora armar un nuevo mensaje y enviarlo a la

SYSTASK. Como en el caso del programa de usuario, puede programarse al PM para:

e Enviar directamente el mensaje utilizando la llamada a _syscall

e Crear una funcién de biblioteca que oculte todo el manejo de mensajes.

Se optara por la segunda opcién agregando una funcion a la biblioteca libsys. Estos pasos se explicaran

a continuacion.

Paso 1 (Construccion de la funcion de biblioteca): En /usr/src/lib/syslib/ se creard el archivo
sys_newcall.c con el cédigo necesario para invocar a la SYSTASK por medio de un mensaje. Para
lograrlo utiliza la funcién _taskcall (en la linea que esta resaltada), la cual fue explicada con anterioridad.

El cual tendré el siguiente contenido:

131

#tinclude "syslib.h"

int sys_newecall(int entrada, int *salida)
{

message m;

int retorno;

/* Se establece los campos del mensaje a enviar */
m.m1_il = entrada;

/* La forma de pasar un mensaje a la SYSTASK es a través de:
_taskcall(SYSTASK,SYS_NEWCALL,&m);
El mensaje de respuesta queda en m.
*/
retorno = _taskcall(SYSTASK,SYS_NEWCALL,&m);

/* Retorna la informacién contenida en el mensaje via parametros*/
*salida=m.m1_i2;

return(retorno);

}

Editar el archivo Makefile.in en el mismo directorio y agregar a sys_newecall.c en la lista de archivos que

componen la biblioteca:

Makefile for lib/syslib.
CFLAGS="-0 -D_MINIX -D_POSIX_SOURCE"
LIBRARIES=libsys

libsys_FILES=""\
alloc_util.c\
assert.c\
sys_newcall.c\
panic.c \
pci_attr_rl6.c\
pci_attr_r32.c\

Hacer el Makefile ejecutando:

cd /usr/src/lib/syslib/
make Makefile

Luego, en /usr/src/include/minix/syslib.h agregar el prototipo de la funcion:

_PROTOTYPE(int sys_newcall, (int entrada, int *salida));

Activar los nuevos archivos de cabecera:

#cd /usr/src/
make includes

Ahora se procedera a modificar el funcionamiento de la SYSTASK para que responda a la nueva peticion.

132

Paso 2 (Modificacion de la SYSTASK): Debe en primera instancia, agregar un procedimiento mas al

vector de apuntadores a funciones que utiliza la SYSTASK para ejecutar las funciones que atienden a

cada system call. Se comenzara cambiando en /usr/src/include/minix/com.h la cantidad méaxima de

llamadas soportada por el ntcleo (NR_SYS_CALLS) y definiendo la macro SYS_NEWCALL que se utilizé

en la llamada a _taskcall. Vea primero parte del archivo:

sys safemap
syz saferevm

sy=z safeunmap

calls */f

3544 define 5YS5_ RUNCTL (KERNEL CALL + 4&) /*

3554 define 5YS_ SAFEMAP (KERNEL CALL + 47) /*

356# define 5Y5_SAFEREVMAF (KEENEL CALL + 48) /*

357# define 5Y5 SAFEUNMAP (KERWNEL CALL + 48) /*
Ze0fdefine NER_S5Y5 CRLLS 50 J/* number of system
J6lfdefine 5¥Y5 CALL MASE SIZE BITMAF CHUNES (NR_S5YS5 CRLLS)
S0L

Lo que se debe hacer es agregar syscall al final del vector, y actualizar el valor de NR_SYS_ CALL. Las

modificaciones estén resaltadas en el siguiente cadigo. El archivo debe quedar de la siguiente forma:

define SYS_RUNCTL (KERNEL_CALL + 46) /* sys_runctl() */

define SYS_SAFEMAP (KERNEL_CALL + 47) /* sys_safemap() */

define SYS_SAFEREVMAP (KERNEL_CALL + 48) /* sys_safere sys_saferevmap2*/
define SYS_SAFEUNMAP (KERNEL_CALL + 49) /* sys_safeunmap() */

define SYS_NEWCALL (KERNEL_CALL + 50) /* sys_newcall() */

#define NR_SYS_CALLS 51 /* number of system calls */

#define SYS_CALL_MASK_SIZE BITMAP_CHUNKS(NR_SYS_CALLS

En la funcién initialize en /usr/src/kernel/system.c mediante llamadas a map carga en cada posicion del

vector call_vec[] un apuntador a la funciébn que debe ejecutarse ante un mensaje de tipo n (n es el

numero de llamadas). Entonces, debe agregarse una llamada a map para cargar la direccién

correspondiente a la nueva llamada:

map(SYS_NEWCALL, do_newcall); /* nueva llamada al sistema */

Los cambios se muestran en la siguiente figura, especificamente en la linea que esta resaltada:

133

* initialize *

* */
PRIVATE void initialize(void)

{

register struct priv *sp;

inti;

/* Initialize IRQ handler hooks. Mark all hooks available. */
for (i=0; i<NR_IRQ_HOOKS; i++) {

irg_hooks[i].proc_nr_e = NONE;

}

/* Initialize all alarm timers for all processes. */

for (sp=BEG_PRIV_ADDR; sp < END_PRIV_ADDR; sp++) {
tmr_inittimer(&(sp->s_alarm_timer));

}

/* Initialize the call vector to a safe default handler. Some system calls

* may be disabled or nonexistant. Then explicitely map known calls to their
* handler functions. This is done with a macro that gives a compile error
* if an illegal call number is used. The ordering is not important here.
*/

for (i=0; i<NR_SYS_CALLS; i++) {

call_vec]i] = do_unused;

callnames|i] = "unused";

}

map(SYS_NEWCALL, do_newcall); /* nueva llamada al sistema */

En /usr/src/ikernel/system.c, puede escribirse la funcién que hace el trabajo solicitado, en este caso
retorna el mensaje obtenido multiplicado por 3 (tres). Esta funcion es denominada do_newcall, vea su

implementacion a continuacion:

/* *
* do_newcall *
* */

int do_newcall(m_ptr)

register message *m_ptr;

{

m_ptr->m1_i2=m_ptr->m1_il * 3;
return(0);

}

Ahora debe escribirse el prototipo al comienzo de /usr/src/kernel/system.c, antes del map():

_PROTOTYPE(int do_newcall, (message *m_ptr));

Luego de esto, solo falta compilar las bibliotecas y el nuevo nudcleo. Para ello:

#cd /usr/src/

make includes

make libraries

cd /usr/src/tools
make hdboot

134

Paso 3 (Prueba 1 - Programa de usuario llama a system call): Se crea un nuevo archivo llamado
prueba_newcall_task.c, el cual utiliza la funcién sys_newcall ¢;Qué pasa si invocamos a la llamada al
sistema desde el programa de prueba, que corre con permisos de usuario? Compilamos el programa de

pruebas, esta vez su codigo en prueba_newcall_task.c sera (21):

#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>
ttinclude <stdio.h>
#include <minix/syslib.h>

int main(int argc, char *argv[])

{

int retorno, entrada=5, salida=7;
retorno = sys_newcall(entrada, &salida);

printf("Resultado newcall:[%d], valor salida:[%d]\n", retorno, salida);

return(0);

}

Se compila y se enlaza con la biblioteca del sistema. Luego podemos correr a prueba_newcall y ver el
resultado en pantalla. Lo que sucede es que se obtiene un mensaje de error en la consola, y el proceso

es terminado por el SO. El mensaje es:

cc -0 prueba_newcall_task prueba_newcall_task.c -lsys
. prueba_newcall_task

ipc mask denied trap 3 from 36727 to -2
ipc mask denied trap 3 from 36727 to -2

El 36730 es el PID del proceso creado al ejecutar el programa prueba newcall. El mensaje dice que se
denego el permiso para hacer IPC desde el proceso de usuario al servidor, arrojando el nimero de error -
2 (el RS_PROC_NR).

Paso 2 (Prueba 2 - Programa de usuario llama a system call): Para poder utilizar realmente lo
implementado debe modificar la funcion do_newcall en el archivo /usr/src/servers/pm/getset.c de la

siguiente manera para sea el PM el que se comunique con el SYSTASK (21).

PUBLIC int do_newcall()
{

int retorno, input, output;
input=m_in.m1_il;

retorno = sys_newcall(input, &output);
mp->mp_reply.m1_i2 = output;

return OK;

}

135

Luego de esto, solo falta compilar las bibliotecas y el nuevo nucleo. Para ello:

#cd /usr/src/
make libraries

cd /usr/src/tools
make hdboot

Luego implementamos el programa de pruebas, recordemos su cédigo en prueba_newcall_task_final.c:

#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>
#tinclude <stdio.h>

int main(int argc, char *argv[])

{

int retorno, entrada=5, salida=7;
retorno = newcall(entrada, &salida);

printf("Resultado newcall:[%d], valor salida:[%d] \n", retorno, salida);

return O;

}

Para finalizar compilamos y ejecutamos el cédigo y obtenemos los valores esperados, como se muestra a

continuacion.

cc prueba_mnewcall_task_final.c -o prueba_newcall_task_final
. sprueba_newcall_task_final

Resultado newcall:[B], wvalor =salida:[151

136

10 Implementacién de semaforos

El concepto de proceso es fundamental en la estructura de los SO. Cada proceso tiene asociado un
espacio de direcciones, una lista de posiciones de memoria desde algin minimo hasta algin maximo,
que el proceso puede leer y escribir. El espacio de direcciones contiene el programa ejecutable, los datos
del programa, y su pila. A cada proceso también se asocia un conjunto de registros, que incluyen el
contador del programa, el apuntador de la pila y otros registros de hardware, asi como todo la demas
informacién necesaria para ejecutar el programa. Este término de proceso tiene muchas definiciones en

las cuales tenemos (2):

e Un programa en ejecucion, que conceptualmente tiene su CPU virtual.

¢ Unainstancia de un programa ejecutandose en un procesador.

e Laentidad que se puede asignar o ejecutar en un procesador.

¢ Una unidad de actividad caracterizada por un solo hilo secuencial de ejecucion, un estado actual,

y un conjunto de recursos del sistema asociados.
Cada proceso tiene las siguientes dos caracteristicas (2):

e Propiedad de recursos: Un proceso incluye un espacio de direcciones virtuales para el manejo de

la imagen del proceso; la imagen de un proceso es la coleccién de programa, datos, pila y
atributos definidos en el bloque de control del proceso. En ciertas ocasiones un proceso se le
puede asignar control o propiedad de recursos tales como la memoria principal, dispositivos E/S y
archivos. El sistema operativo realiza la funcién de protecciéon para evitar interferencias no
deseadas entre procesos en relacion con los recursos.

e Planificacion/ejecuciéon: Un proceso tiene un estado de ejecucién y una prioridad de activacion.

En la mayor parte de los sistemas operativos tradicionales, estas dos caracteristicas son, realmente, la
esencia de un proceso. Sin embargo, debe quedar muy claro que estas dos caracteristicas son in-

dependientes y podrian ser tratadas como tales por el sistema operativo.

10.1Secuencia de inicializacion del arbol de procesos en Minix 3

Los procesos en MINIX siguen el modelo general de procesos que se describié con anterioridad, también
procesos pueden crear subprocesos, que a su vez pueden crear mas subprocesos, produciendo un arbol
de procesos. De hecho, todos los procesos de usuario del sistema forman parte de un solo arbol con init
ver la. Los servidores y controladores son un caso especial, por supuesto, ellos deberian ser inicializados

antes que cualquier proceso de usuario, incluyendo init (15).

¢,Como se forma este arbol? Una vez cargado el sistema operativo, como se explico en el capitulo 2,

siguiendo la secuencia de ejecucion del masterboot, bootblock y boot monitor. Este Gltimo busca un

137

archivo multiparte llamado boot image. El cual contiene la parte mas importante del nicleo (la tarea del
reloj y la tarea del sistema), el manejador de procesos y el sistema de archivos. Adicionalmente, también
deberian estar incluidos algunos controladores. Ademas, hay varios programas incluidos en la boot

image, estos son: el servidor reencarnacion, la consola, el disco RAM e init.

Durante su fase de inicializacion, el nicleo inicia las tarea del reloj y la tarea del sistema, luego el
manejador de procesos Yy el sistema de archivos. Posteriormente, el manejador de procesos y el sistema
de archivos cooperan para inicializar cualquier otro servidor o controlador que son parte de la boot image.
Una vez que todos éstos se han ejecutado e inicializado a si mismos, se bloquean, esperando algo que
hacer. Cuando todas las tareas y servidores estan bloqueados, se ejecuta init, el cual es el primer
proceso de usuario. Este proceso ya esta en la memoria principal, pero desde luego podria haberse
cargado del disco como programa aparte, ya que todo esta funcionando para cuando se inicia. Sin
embargo, dado que init se inicia s6lo esta Unica vez y nunca se vuelve a cargar del disco, lo mas facil es
incluirlo en el archivo de imagen del sistema junto con el ndcleo, las tareas y los servidores. Los
componentes del sistema cargados en la boot image o durante la inicializacién se muestran en la Tabla
10.1 (15).

Componente Descripcion Cargado por
nudcleo Nucleo + las tareas del reloj y del sistema En la boot image
pm Manejador de procesos En la boot image
fs Sistema de archivos En la boot image
rs Servidor reencarnacion (inicio y controladores) En la boot image
memory RAM controlador de disco En la boot image
log Registro de salida del bufer En la boot image
tty Controlador de consola y teclado En la boot image
driver Controlador de disco En la boot image
init Padre de todos los procesos de usuario En la boot image
floppy Controlador del disquete letc/rc

is Servidor de informacién (la depuracion) letc/rc

cmos lee reloj CMOS para ajustar la hora letclrc

random Generador de nimeros aleatorios letc/rc

printer Controlador de impresora letc/rc

Nota: otros componentes como el controlador de Ethernet y el servidor inet pueden estar presentes en
la boot image.

138

Tabla 10.1 Componentes de Minix 3

10.2Comunicacion entre proceso en Minix 3

Minix 3 utiliza el paso de mensajes para la comunicacion, en general, el paso de mensajes proporciona
un par de primitivas. Las cuales permiten la comunicacién y sincronizacion entre procesos. Las primitivas

puede observarlas a continuacion:

e send(destino, mensaje)

e receive(origen, mensaje)

Este es el conjunto minimo de operaciones necesarias para que los procesos puedan entablar paso de
mensajes. Un proceso envia informacion en forma de un mensaje a otro proceso designado por destino.
El proceso recibe informacion ejecutando la primitiva receive indicando la fuente y el mensaje. Esta
llamada podria ser bloqueante, esto quiere decir que el proceso puede bloquearse hasta recibir un

mensaje.

10.2.1 Mecanismo de paso de mensajes en Minix 3

Debe recordar, primero que el disefio de Minix 3 es de microntcleo. Segundo que Minix 3 esta disefiado
en capas, y que la principal diferencia entre las mismas radica en la posibilidad de realizar llamadas al
ndcleo siendo los de la capa 2 los mas privilegiados, seguidos en orden decreciente por la capa 3y 4. En
cuanto al paso de mensajes, las capas 2 y 3 son las Unicas que pueden comunicarse con el nucleo.
También el paso de mensajes entre procesos de usuarios (capa 4) no es posible. En esta figura puede
observarse el flujo de mensajes entre las diferentes capas y actores de Minix 3. Los procesos de usuario
(capa 4) solo pueden enviar y recibir mensajes de la capa 3. Los procesos servidores (capa 3) pueden
comunicarse con las capas 2 y 1. Los controladores (capa 2) se comunican directamente con el nicleo
como los procesos servidores, sin embargo, los de esta capa tienen mas prioridad (15). Para entender

mejor la situacion vea la Figura 10.1.

139

Proceso Proceso
de Usuario de Usuario 4
o . .)
= Manejador Sistema de Servidor
g de procesos archivos reencarncacion 3
%)
D
o
©
o
=
Controlador Controlador Controlador
de disco de TTY de Ethernet 2
-8 GEJ Ta_lrea del Tarea del 1
S sistema reloj
=y

Figura 10.1 Flujo de mensajes en Minix 3

10.3Sincronizacion de procesos de usuario en Minix 3

El tnico método para sincronizar los procesos en Minix 3 es a través de paso de mensajes. Sin embargo,
debido al mecanismo de paso de mensajes surge un problema para sincronizar procesos de la capa 4.
Se requiere proporcionar una solucién que permita la sincronizacion entre procesos de usuarios. Para
ello se propone la implementacién de semaforos en Minix 3, usando como soporte el pase de mensajes.

Antes de describir esta solucién conozca la estructura y todo lo referente a un seméforo.

El primer avance fundamental en el tratamiento de los problemas de programacién concurrente ocurre en
1965 con el tratado de Dijkstra. Dijkstra estaba involucrado en el disefio de un sistema operativo como
una coleccion de procesos secuenciales cooperantes y con el desarrollo de mecanismos eficientes y
fiables para dar soporte a la cooperacion. Estos mecanismos podrian ser usados facilmente por los

procesos de usuario si el procesador y el sistema operativo colaborasen en hacerlos disponibles.

El principio fundamental es éste: dos o mas procesos pueden cooperar por medio de simples sefiales,
tales que un proceso pueda ser obligado a parar en un lugar especifico hasta que haya recibido una
sefial especifica. Cualquier requisito complejo de coordinacién puede ser satisfecho con la estructura de
sefiales apropiada. Para la sefializacion, se utilizan unas variables especiales llamadas semaforos. Para
transmitir una sefial via el seméforo s, el proceso ejecutara la primitiva semSignal(s). Para recibir una

sefial via el seméforo s, el proceso ejecutara la primitiva semWait(s); si la correspondiente sefial no se ha

140

transmitido todavia, el proceso se suspendera hasta que la transmision tenga lugar. Para conseguir el
efecto deseado, el semaforo puede ser visto como una variable que contiene un valor entero sobre el

cual solo estan definidas tres operaciones (2):

e Un seméforo puede ser inicializado a un valor no negativo.

e La operacion semWait decrementa el valor del seméaforo. Si el valor pasa a ser negativo,
entonces el proceso que esta ejecutando semWait se bloquea. En otro caso, el proceso continta
su ejecucion.

e La operacion semSignal incrementa el valor del seméforo. Si el valor es menor o igual que cero,

entonces se desbloquea uno de los procesos bloqueados en la operacion semWait.

10.3.1 Semaforos en Minix 3

Lo anterior descrito es lo que se desea implementar en Minix 3. Pero ¢cémo la funcionalidad del
semaforo se puede agregar a MINIX 3? Los semaforos son nimeros enteros, los cuales se inicializan
igual o mayor que cero. Y son modificados mediante dos operaciones, semSignal y semWait, para
sincronizar multiples procesos intentan que acceder a un recurso compartido. Una operacién semWait(S)
decrementa el semaforo S. Si S es menor que cero, el proceso se bloquea la llamada hasta que algin
otro proceso incrementa a S a través de una operacion semSignal(S). Esta funcionalidad es normalmente
parte del nicleo de un sistema monolitico, pero puede ser realizado como un servidor independiente del

espacio de usuario en MINIX 3.

Para la implementacién de la solucidon se requiere de un proceso servidor. La estructura del servidor
seméaforo MINIX 3 se muestra en la Figura 10.2. Después de la inicializacion, el servidor entra en un
bucle principal sin fin. En cada iteracion el servidor se bloquea y espera hasta que llega un mensaje de
solicitud. Una vez que un mensaje ha sido recibido, el servidor examina la solicitud. Si el tipo es conocido,
la funcién manejadora asociada a esta llamada procesa la solicitud, y el resultado se devuelve; a menos
que el proceso que llama deba ser bloqueado. Si se recibe tipos ilegales de solicitud directamente el

resultado debe indicar que es una solicitud errénea.

Un punto importante es que los procesos de usuario en Minix 3 se limitan al paso de mensajes sincrono.
Esto quiere decir que, luego de realizar la solicitud el proceso invocador se bloqueard hasta que la
respuesta haya llegado. De esta caracteristica se puede obtener mucha ventaja a la hora de implementar
semaforos en Minix 3, sobre todo cuando se construye el servidor de seméforos. Para las operaciones
semsSignal, el servidor simplemente incrementa el seméforo y directamente envia una respuesta para que
el proceso que realiza la solicitud pueda continuar. Para las operaciones semWait, por el contrario, la
respuesta es retenida, el semaforo se decrementa, bloqueando efectivamente al proceso que llama hasta

gue se retorne el mensaje de respuesta (22).

141

void semaphore_server() {
message m;
int result;
/* Inicializa al Servidor Semaforo. */
initialize();
/* Ciclo principal del servidor. Obtiene trabajo y lo procesa. */
while(TRUE) {
/* Se bloquea hasta que un mensaje de peticion llega. */
ipc_receive(&m);
/* El proceso que envio el mensaje esta bloqueado.
* Despacho segun el tipo de mensaje. */
switch(m.m_type) {
case semSignal: result = do_semSignal (&m); break;
case semWait: result = do_semWait (&m); break;
default: result = ERROR;
}
/* Enviar respuesta, a menos que el solicitante debe estar bloqueado. */
if (result != EDONTREPLY) {
m.m_type = result;
ipc_reply(m.m_source, &m);

Figura 10.2 Estructura del servidor semaforo

El semaforo tiene asociado una cola FIFO (First In, First Out) de procesos para realizar un seguimiento
de los procesos que estan bloqueados. Después de una operacion semSignal, la cola se comprueba para

Ver si un proceso espera por ser desbloqueado (22).

Todos los servidores y los controladores tienen un bucle principal similar. La funcion initialize() se llama
sélo una vez y antes de entrar en el bucle principal, dicha funcién no sera explicada aqui. Las funciones

manejadoras do_semSignal y do_semWait se muestran a continuacion.

Con la estructura del servidor de seméforos implementada, es necesario proveer a los procesos de
usuario la posibilidad de comunicarse con él. Una vez que el servidor se ha iniciado esta listo para recibir
peticiones. En principio, el programador puede construir mensajes de solicitud y enviarlo al servidor
nuevo mediante ipc_request, pero esos detalles suelen ser convenientemente escondidos en las

bibliotecas del sistema, junto con las otras funciones POSIX, como se explico en el capitula anterior.

int do_semWait (message *m_ptr) {
/* Decremento al seméaforo y retorna la respuesta. */
s=s—1; /* take a resource */

if (s>0){

return(OK); /* let the caller continue */
}
/* Encola al proceso solicitante y lo bloquea. */
enqueue(m_ptr->m_source); /* lo agrega a la cola */
return(DONTREPLY); /* indica que no retorne respuesta */

Figura 10.3 Implementacion de do_semWait

142

Como puede observarse en la Figura 10.3 esta la implementacion de la funcion semWait, la cual
decrementa el valor del semaforo s y verifica si esta variable queda negativa encola al proceso invocante
y lo bloquea. En la Figura 10.4 se muestra la implementacién de la funcién semSignal, la cual incrementa
el semaforo s; después verifica si existen procesos bloqueados, en caso afirmativo bloquea al proceso

que lleva mas tiempo bloqueado.

int do_semSignal (message *m_ptr) {

message m; /* Declaracion del mensaje a reponder */

/* Agregar respuesta y desbloquear a un proceso

* sj es necesario. */

s=s+1; /* incrementa al semaforo */

/* Chequea si un proceso esta bloqueado por el semaforo. */

if (queue_size() > 0) { /* pregunta si hay procesos encolados? */
m.m_type = OK;
m.m_source = dequeue(); /* lo elimina de la cola */
ipc_reply(m.m_source, m); /* coloca la respueta */

}

return(OK);

Figura 10.4 Implementacion de do_semSignal

Por lo general, las llamadas a semSignal y semWait estan declaradas en una nueva biblioteca que
permitiria manejar estas llamadas. Esto se explicé en el capitulo anterior. La estructura modular de MINIX
3 ayuda a acelerar el desarrollo la implementacion de semaéaforos de varias maneras. En primer lugar, se
puede implementar de forma independiente del resto del sistema operativo, al igual que las aplicaciones
de usuario normal. Cuando haya finalizado, puede ser compilado como una aplicacién independiente y de
forma dindmica comenzé a formar parte del sistema operativo. No es necesario construir un nuevo nicleo
(22).

10.4Servidor PM

Antes de implementar la soluciéon se debe conocer el funcionamiento del servidor PM, debido a que el
mismo se va a utilizar como soporte a la misma. El servidor PM tiene similar a la ilustrada como
semaphore_server en la Figura 10.2. La funcién main del servidor PM se muestra en la Figura 10.5 y
empieza con una inicializacion principal sef local_startup(). Después, el servidor entra en un bucle

principal sin fin.

En cada iteracion el servidor se bloquea y espera hasta que llega un mensaje de solicitud, para esto
utiliza la funcién get_work(). Una vez que un mensaje ha sido recibido, el servidor examina la solicitud, a
través del switch(call_nr) para determina el tipo de llamada. Si el tipo es conocido y la llamada esta
definida en /usr/src/servers/pm/table.c, el servidor busca la funcién mapeada a la llamada a través de la
instruccion result = (*call_vec[call_nr])(). La funcibn manejadora asociada a esta llamada procesa la

solicitud, y devuelve el resultado. Si se recibe tipos ilegales de solicitud directamente el resultado debe

143

indicar que es una solicitud errénea, para este caso el resultado como se explicéd en el capitulo anterior
retorna -1. La porcion de cddigo que se encarga de retornar la respuesta la funciéon main del servidor PM
comienza con la etiqueta send_reply, y se puede observar en la Figura 10.6, la cual es una continuacion
de la funciéon main. Para poder retornar el mensaje el servidor PM verifica si result = SUSPEND, cuando
se cumpla esta condicion el mensaje es devuelto al proceso invocador, para que el mismo se

desbloquee.

El proceso antes mencionado ocurre siempre que el sistema operativo este funcionado. En caso de que
ocurra un error, existe el servidor RS (Servidor Reencarnacion). El RS trabaja para reiniciar los
controladores y procesos servidores. Este servidor inicia bloqueado y espera a la llegada de un mensaje
que indica le indique que va a crear. En el proceso de arranque el proceso init ejecuta un script que emite
un comando al RS para que inicie los controladores y servidores que no estan presentes en la boot
image, entonces inician como procesos hijos des servidor RS. En consecuencia, si alguno de estos

procesos falla o terminan el RS sera informado y se encargara de restaurarlos.

Este mecanismo es un intento para permitirle a Minix 3 la tolerancia a fallos de los controladores y

servidores debido a que uno nuevo de estos siempre se crearan.

144

/* *
* main *

* */
PUBLIC int main()

{

/* Main routine of the process manager. */

int result, s, proc_nr;

struct mproc *rmp;

sigset_t sigset;

/* SEF local startup. */

sef_local_startup();

/* This is PM's main loop-get work and do it, forever and forever. */
while (TRUE) {

get_work(); /* wait for an PM system call */

switch(call_nr)

{

case PM_SETUID_REPLY:

case PM_SETGID_REPLY:

case PM_SETSID_REPLY:

case PM_EXEC_REPLY:

case PM_EXIT_REPLY:

case PM_CORE_REPLY:

case PM_FORK_REPLY:

case PM_FORK_NB_REPLY:

case PM_UNPAUSE_REPLY:

case PM_REBOOT_REPLY:

case PM_SETGROUPS_REPLY:

if (who_e == FS_PROC_NR)

{
handle_fs_reply();
result= SUSPEND; /* don't reply */
}
else
result= ENOSYS;
break;

default:
/* Else, if the system call number is valid, perform the call. */
ir_a_call_vec:
if ((unsigned) call_nr >= NCALLS) {
result = ENOSYS;
}else {
#if ENABLE_SYSCALL_STATS
calls_stats[call_nr]++;
ttendif

result = (*call_vec[call_nr])();

break;

}

send_reply:

Figura 10.5 Cadigo fuente de main.c

145

send_reply:
/* Send the results back to the user to indicate completion. */
if (result = SUSPEND)setreply(who_p, result);

/* Send out all pending reply messages, including the answer to
* the call just made above.
*/
for (proc_nr=0, rmp=mproc; proc_nr < NR_PROCS; proc_nr++, rmp++) {
/* In the meantime, the process may have been killed by a
* signal (e.g. if a lethal pending signal was unblocked)
* without the PM realizing it. If the slot is no longer in
* use or the process is exiting, don't try to reply.
*/
if ((rmp->mp_flags & (REPLY | IN_USE | EXITING)) ==
(REPLY | IN_USE)) {
s=sendnb(rmp->mp_endpoint, & mp->mp_reply);
if (s 1= OK) {
printf("PM can't reply to %d (%s): %d\n",
rmp->mp_endpoint, rmp->mp_name, s);
}
rmp->mp_flags &= ~REPLY;

}
}
return(OK);
}

Figura 10.6 Cddigo fuente de main.c (continuacion)

10.5Implementacion de semaforos Minix 3

Una vez trazado un bosquejo de la solucién para la implementacion de semaforos en Minix 3, se
procedera a la explicacion de la misma. Esta solucion sigue el patrén de la solucién explicada en el punto
anterior, sin embargo, no se implemento un nuevo servidor para el manejo de los mensajes. En contraste,
se utilizo el proceso servidor PM, para la recepcién y transmision de los mensajes con los procesos de
usuario. Cabe destacar que para la implementacién de seméforos se implementaron las llamadas
sem_signal, sem_wait y sem_init para la comunicacién entre los procesos de usuario y el servidor PM. En

este momento se procederd a describir la solucion de la implementacién de semaforos en Minix 3.

Paso 1 (Implementaciéon de las llamadas al sistema): se debe implementar las llamadas al sistema
que permiten la comunicacion entre los procesos de usuario y el servidor PM, tal y como se explico el

capitulo anterior. Dicha implementacion se llevo a cabo en el archivo /ust/src/lib/posix/_semcall.c.

Para esto se implementara como se menciono anteriormente las funciones sem_signal, sem_wait y
sem_init, las cuales reciben un entero seméforo que indica cual es el seméforo referenciado. En el caso
de sem_init también recibe un entero valor que indica el valor con el cual sera inicializado el seméaforo,
como se sabe el valor debe ser positivo. Todos estos parametros se transfieren a cada llamada en

particular a través del mensaje m declarado.

146

#include <lib.h>
#include <unistd.h>
#tinclude <stdio.h>

PUBLIC long sem_signal (int semaforo)

{

message m;

m.m1_il=semaforo; /* pasa por parametro el semaforo asociado */
return _syscall(MM, SEM_SIGNAL, &m);
1

PUBLIC long sem_wait (int semaforo)

{

message m;

m.m1_il=semaforo; /* pasa por parametro el semaforo asociado */
return _syscall(MM, SEM_WAIT, &m);
}

PUBLIC long sem_init (int semaforo, int valor)

{

message m;
if(valor >= 0){

m.m1_il=semaforo; /* pasa por parametro el semaforo asociado */
m.m1_i2=valor; /* pasa el valor de inicio del semaforo */
return _syscall(MM, SEM_INIT, &m);

lelse{
printf("el valor de inicio debe ser mayor o igual a 0\n");

Evidentemente, se modifico el archivo /usr/src/include/minix/callnr.h con las entradas a los macros como

se muestra, No se hard mucho énfasis entre punto debido a que se explico en el capitulo anterior.

#define SEM_SIGNAL 67
#define SEM_WAIT 68
ttdefine SEM_INIT 69

Paso 2 (Modificacion de PM): Como se menciond con anterioridad para la implementacién de
semaforos en Minix 3 no se va a crear un nuevo proceso servidor, en cambio se va a modificar el servidor
PM. Es un sutil cambio pero vital, el cual sera mostrado a continuacién. Solamente se agreg6 una
entrada al switch con el case 68. Para que a la hora de bloquear a un proceso, pueda ser determinado
mediante el pardmetro que se esta pasando a través de la variable m_in.m1_i2. Luego de esto se indica
que debe realizar un salto a la nueva etiqueta creada como ir_a_call_vec. Los cambios pueden verse

resaltados con el color amarillo.

147

switch(call_nr)

{

case 68:
m_in.m1_i2=who_p;
goto ir_a_call_vec;

case PM_SETUID_REPLY:
case PM_SETGID_REPLY:
case PM_SETSID_REPLY:
case PM_EXEC_REPLY:
case PM_EXIT_REPLY:
case PM_CORE_REPLY:
case PM_FORK_REPLY:
case PM_FORK_NB_REPLY:
case PM_UNPAUSE_REPLY:
case PM_REBOOT_REPLY:
case PM_SETGROUPS_REPLY:
if (who_e == FS_PROC_NR)
{
handle_fs_reply();

result= SUSPEND; /* don't reply */
}
else
result= ENOSYS;
break;
default:
/* Else, if the system call number is valid, perform the call */
ir_a_call_vec:

if ((unsigned) call_nr >= NCALLS) {
result = ENOSYS;
}else {
#if ENABLE_SYSCALL_STATS
calls_stats[call_nr]++;
ttendif

result = (*call_vec[call_nr])();

break;

Paso 3 (Implementacibn de semaforo): Para la implementacibn se modific6 el archivo
lusr/src/servers/pm /getset.c. En primer lugar se implemento la estructura cola para el manejo de
procesos. Esta estructura de datos permite simular una cola FIFO, la cual es de valiosa importancia para
la implementacion de semaforos. Ademas, se implemento las funciones encolar y desencolar para

manipulacion de la cola. La cual puede observarse en la Figura 10.7.

148

Parte de semaforos / cola *

_*/

/*************** Varlb|eS ******************************/

#define Max_Sem 10 /* numero de semaforos */
#define N 10 /* capacidad de la cola fifo */

int Sem[Max_Sem];

struct cola{
/* el elemento 0 n es usado */
int fifo[1+N];
int w_idx;
intr_idx;
JFIFO[10];

int next_index(int idx){ return --idx ? idx: N; }

int fifo_empty(struct cola *c_fifo)

{
return c_fifo->w_idx == c_fifo->r_idx;

}

int fifo_full(struct cola *c_fifo)
{

return next_index(c_fifo->w_idx) == c_fifo->r_idx;
}

int fifo_encolar(struct cola *c_fifo, int ch)

{

if(fifo_full(c_fifo)) return O;

c_fifo->w_idx = next_index(c_fifo->w_idx);
c_fifo->fifo[c_fifo->w_idx] = ch;

return 1;

}

int fifo_desencolar(struct cola *c_fifo, int *ch)

{
if(fifo_empty(c_fifo)) return 0;

c_fifo->r_idx = next_index(c_fifo->r_idx);
*ch = c_fifo->fifo[c_fifo->r_idx];

return 1;

}

Figura 10.7 Implementacion de la estructura cola

Tal y como se describié con anterioridad se implementaron las funciones semSignal, semWait y seminit,
sin embargo para que no se confundan estas funciones con las llamadas al sistema se denominaron:

do_incrementar, do_decrementar y do_iniciar_sem. Las cuales pueden observarse a continuacion:

149

/*

* do_incrementar *
* _*/
PUBLIC int do_incrementar()
{
int Nsem,who;
Nsem =m_in.m1_i1;
Sem[Nsem]++; /* incrementa el semaforo */
if(Sem[Nsem] <= 0){ /* hay un proceso bloqueado? */
if(fifo_desencolar(&FIFO[Nsem],&who)){/* desencola el primero */
setreply(who, ENOSYS);/* habilita para recibir mensaje */
lelse{
return -1; /* si hay error retorna -1 */
}
}
return OK; /* no hay, retorna ok */
}
/* *
* do_decrementar *
* */
PUBLIC int do_decrementar()
{
int Nsem,who;
Nsem =m_in.m1_i1;
who =m_in.m1_i2;
Sem[Nsem]--; /* decrementa al semaforo */
if(Sem[Nsem]>0){ /* si queda positivo */
return OK;
}else{ /* si queda negativo */
if(fifo_encolar(&FIFO[Nsem],who)){ /* encola al proceso */
return SUSPEND; /* inhabilira para recibir mensaje */
lelse{
return -1;
}
}
}
/* *
* do_decrementar *
* */
PUBLIC int do_decrementar()
{
int Nsem,who;
Nsem =m_in.m1_il;
who =m_in.m1_i2;
Sem[Nsem]--; /* decrementa al semaforo */
if(Sem[Nsem]>0){ /* si queda positivo */
return OK;
telse{ /* si queda negativo */
if(fifo_encolar(&FIFO[Nsem],who)){ /* encola al proceso */
return SUSPEND; /* inhabilira para recibir mensaje */
lelse{
return -1;
}
}
}

150

/* *
* do_iniciar_sem
* */
PUBLIC int do_iniciar_sem()

{

int Nsem,valor;
int auxiliar;

Nsem =m_in.m1_il;
valor =m_in.m1_i2;

Sem[Nsem] = valor; /* se inicializa el semaforo con el valor */
/* se debe inicilizar la cola, r_idx = w_idx = N */
FIFO[Nsem].w_idx = N;

FIFO[Nsem].r_idx = N;

return OK;

Una vez modificado todos los archivos, introduzca los siguientes comandos e inicie desde la nueva

imagen creada.

#cd /usr/src

make libraries

cd /usr/src/servers/pm
make

cd /usr/src/tools

hdboot

Paso 4 (Implementacion de programas de prueba): Para la implementacion de los programas de
pruebas se utilizaran dos c6digos que se muestran a continuacion en la Figura 10.8y la Figura 10.9. El
primero sélo se encarga de inicializar el seméforo indicado por parametro en cero y posteriormente de
hacer un wait del semaforo indicado por pardmetro para que el programa se bloquee. El otro cédigo sélo
hace un signal del semaforo pasado por parametro. Ambos imprimen por salida estandar el PID del

proceso. Estos programas estan ubicados en la el directorio /usr/src. Y tienen la siguiente estructura:

151

#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>
#tinclude <lib.h>
ttinclude <stdio.h>

int main(int argc, char *argv[])

{
int PID;
message m;
/* argumentos:
* argv[0] => puede ser [0,1] = indica el semaforo a iniciar
* argv[1] => puede ser [0,1] = indica el semaforo a hacer sem_wait
*/
_syscall(MM,MINIX_GETPID,&m);
PID =m.m2_i1;
printf("soy el proceso == %d \n",PID);
if(atoi(argv[1])==0){
printf("voy a iniciar el semaforo[0] en == 0\n");
sem_init(atoi(argv([1]),0);
}else if(atoi(argv[1])==1){
printf("voy a iniciar el semaforo[1] en == 0\n");
sem_init(atoi(argv[1]),0);
}
if(atoi(argv[2])==0){
printf("voy a hacer un sem_wait del semaforo[0]\n");
sem_wait (0);
printf("soy el proceso == %d y me debloquee\n",PID);
lelse if(atoi(argv[2])==1){
printf("voy a hacer un sem_wait del semaforo[1]\n");
sem_wait (1);
printf("soy el proceso == %d y me debloquee\n",PID);
}
return 0;
}

Figura 10.8 prueba_sem_wait.c

152

{

#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>
#tinclude <lib.h>
ttinclude <stdio.h>

int main(int argc, char *argv[])

int PID;
message m;

/* argumentos:

* argv[0] => [0,1] = indica el semaforo a iniciar
* argv[1] =>[0,1] = indica a que semaforo se aplica sem_wait
*/

_syscall(MM,MINIX_GETPID,&m);

PID =m.m2_i1;

printf("soy el proceso == %d \n",PID);

printf("voy a hacer un signal del semaforo[%d]\n",atoi(argv[1]));
sem_signal (atoi(argv[1]));

return 0;

Para comprobar la correcta implementacién de los semaforos implementados habilite las cuatro consolas

de minix y ubiquese en el directorio /usr/src/. Luego ejecute los programas de la siguiente forma:

En primera instancia compile el cédigo prueba_sem_wait.c y ejecltelo con los parametros
mostrados en la siguiente figura. Esto hace que el programa inicialice el semaforo 0 con un valor
igual a 0. Posteriormente el programa hace un wait del seméaforo y como es de esperarse el
mismo se queda bloqueado, el seméforo queda con valor igual a -1. Como puede observarse el

proceso al ejecutarse el programa tiene PID igual a 110.

cc prueba_sem_mwait.c -o prueba_sem_wait
.“prueba_ser_mait B B
oy el proceso

oy a iniciar el semaforolB] en == H
oy a hacer un sem_mait del semaforolfl]

El segundo paso es ejecutar el mismo cédigo como se muestra debajo. Esta ejecuciéon sélo un
wait del seméforo 0, quedando con valor igual a -2. Y desde luego el proceso con PID igual a 111

queda bloqueado.
Figura 10.9 prueba_sem_signal.c

153

154

prueba_serm_wWait -1 B8
=0y el proceso 111

oy a hacer un sem_HWait del semaforoldl

El tercer programa a ejecutarse sigue siendo el cédigo de prueba_sem_wait.c, sin embargo, en
este caso se hace una inicializacion del seméaforo 1 con un valor igual a 0. Después, el proceso

hace un wait del mismo semaforo para quedar bloqueado. El PID del proceso es igual a 112.
. A/prueba_sem_mait 1 1
=oy el proceso == 112
oy a iniciar el semaforoll]l en ==

oy a hacer un ser_Wait del semaforolll]

Luego se ejecuta el programa prueba_sem_signal.c. En ese caso se hace un signal del semaforo
1, y como es de esperarse el proceso con PID 112 es desblogueado. Puede observarse a

continuacion. El proceso que ejecuta el signal tiene un PID igual a 113.

cc prueba_sem_sigunal.c —-o prueba_sem_signal
. prueba_sem_signal 1

=oy el proceso 113

voy a hacer un signal del semaforolll]

H

_/prueba_sem_mait 1 1

=oy el proceso 112

voy a iniciar el semaforolll en ==

voy a hacer un sed_wait del semaforoll]
=oy el proceso == 112 vy mMe debloquee

it

Ahora se ejecutara nuevamente el programa prueba_sem_signal.c. Pero en esta oportunidad se
hace un signal del semaforo 0. Se obtiene el resultado que el proceso con PID 110 es
desbloqueado. Puede observarse a continuacion. El proceso que ejecuta el signal tiene un PID

igual a 113.

cc prueba_sem_signal.c -o prueba_sem_signal
Aprueba_sem_signal 1

=oy el proceso 113

oy a hacer un signal del semaforolll]

.“prueba_sem_szignal B
=oy el proceso
oy a hacer un signal del semaforolfl]

Se puede observar como el proceso con PID 112 es desbloqueado.

cc prueba_sem_mMait.c -o prueba_sem_mwait
Aprueba_ser_wait B B

=oy el proceso 118

oy a iniciar el semaforolB] en ==

oy a hacer un =em_wait del semaforolB]
=oy el proceso == 118 y me debloquee

Para culminar con la prueba se ejecutara nuevamente el programa prueba_sem_signal.c. Se
hace otro un signal del seméaforo 0. Se obtiene el resultado que el proceso con PID 111 es
desbloqueado. Puede observarse a continuacion. El proceso que ejecuta el signal tiene un PID

igual a 113.

cc prueba_sem_signal.c -o prueba_sem_signal
. sprueba_sem_signal 1

=oy el proceso 113

woy a hacer unm =ignal del semaforoll]
. /prueba_sem_szignal B

=oy el proceso == 113

oy a hacer un signal del semaforolB]
. /prueba_sem_signal B

=oy el proceso 113

oy a hacer un signal del semaforolB]
1

Se puede observar como el proceso con PID 111 es desbloqueado.

Aprueba_sem_wait -1 8
=oy el proceso == 111
oy a hacer un =em_wait del semaforolB]

=oy el proceso == 111 y me debloquee

155

156

11 Modificacién del planificador de procesos

La planificacion de procesos es una caracteristica provista por los sistemas operativos modernos que le
permite garantizar un comportamiento multiprogramado al sistema. Regularmente esta funcionalidad es
provista por una pieza de software conocida como el “planificador” encargado de asignar los recursos de
un sistema entre los multiples procesos que lo solicitan. Siempre que exista la necesidad de tomar una
decision referente a la asignacion de recursos entrara en ejecucién el planificador para definir qué
proceso recibira el recurso. Se debe hacer hincapié que el procesador es la pieza mas importante del

computador, pero sigue siendo un recurso del mismo (23).

Hay dos tipos fundamentales de planificadores [Referencia libro] que coexisten dentro del sistema

operativo, y existe un tercero que ha surgido para manejar nuevos estados de los procesos, estos son:

e Planificador de largo plazo: este determina que trabajos se admiten en el sistema para su
procesamiento y cual(es) seran alojados en la memoria principal. Ademas, es el principal
responsable que se cumplan las condiciones definidas referentes al manejo del procesador y los
dispositivos de entrada/salida.

e Planificador de corto plazo: este determina que proceso del sistema que se encuentre en un
estado activo (en espera de procesador) lo selecciona y lo lleva al procesador, regularmente este
es un cédigo bastante corto debido a que es un programa que se ejecuta mucho en el sistema y
para garantizar un mayor rapidez del sistema operativo se exige eso. Durante la ejecucién del
sistema operativo cada vez que se presenta algin evento que implica un cambio en el proceso
que debe pasar al estado activo. Los eventos que regularmente disparan la ejecucién de este
planificador son los siguientes:

o Las sefiales de reloj del sistema.

o Las interrupciones.

o Lafinalizacién de las operaciones de entrada/salida.
o Las llamadas al sistema operativo.

o Elenviéy larecepcion de sefales.

o Laactivacion de programas interactivos.

En otros casos, se divide al planificador en dos partes, el primero conocido como Schedule
que se encarga solo de manejar la cola de procesos en espera por el CPU y el dispatcher
que es aquel que lleva a cargo en si la tarea de asignar el procesador al proceso

seleccionado en la cola.

e Planificador a medio plazo: este planificador surge en el hecho de que en algunos casos es

conveniente llevar a la memoria secundaria algliin proceso que se encuentre en un estado de

157

suspendido lo que permite liberar espacio en la memoria principal para albergar a un proceso que

requiera el procesador.

Para tener un mejor entendimiento de estos conceptos vea la Figura 11.1 en la donde se puede observar

los escenarios de cada uno de los planificadores son ejecutados (23).

Cola del estado

blogueado
PMP
Lote de PLP—— .
trabajos — Cola de lotes Cola de lotes Salida
Programas
interactivos
Cola del
estado
blogueado

Figura 11.1 Diagrama de planificacion

11.1Criterios para la planificacion:

Un algoritmo de planificacién de corto plazo tiene distintas propiedades dependiendo de los criterios o
fundamentos con los que este haya sido disefiado, lo que conlleva a que siempre existira un tipo de
proceso que se vera discriminado porque este no cumple en su totalidad con la caracteristica impuesta

en la implementacion del algoritmo para su escogencia.

Asi que antes de mostrar cual(es) son los algoritmos de planificaciéon debe revisarse los criterios mas
importantes referentes al disefio o escogencia de un algoritmo para la gestion de la planificacion. Alguno

de estos criterios son los siguientes:

e Eficacia: se expresa como el porcentaje o la media de utilizacion del procesador.

¢ Rendimiento: es una medida que expresa el numero de procesos culminados por unidad de
tiempo.

e Tiempo de retorno: es el intervalo de tiempo delimitado por el inicio del proceso al sistema y su
finalizacion y salida del mismo.

e Tiempo de espera: es el tiempo que espera el proceso para poder usar el procesador.

158

e Tiempo de respuesta: se denomina asi al intervalo de tiempo que transcurre desde que se
sefiala un evento hasta que se ejecuta la primera instruccién de la rutina de servicio de dicho

evento.

11.2 Algoritmos de planificacion

Existen un numero elevado de algoritmos propuestos para llevar a cabo la tarea de planificacién en los
Sistemas Operativos cuya adecuacion depende precisamente del tipo de planificacion que se desee
manejar y de los objetivos que se persigan con la misma. Hoy dia debido a la diversidad de sistemas
podriamos conseguir muchos de estos en herramientas modernas. Enfocado a este estudio el enfoque va
dedicado a analizar aquellos algoritmos orientados directamente al comportamiento del planificador a

corto plazo.

Antes de mostrar algin algoritmo debemos definir un concepto importantisimo en dichos algoritmos

referentes a lo que se llama un algoritmo apreciativo.

Un algoritmo de planificacion es catalogado como apreciativo cuando el proceso que se encuentra en
ejecucidon o mejor dicho que posee al recurso procesador este puede ser interrumpido por el sistema
operativo y colocarlo en un estado de listo o preparado nuevamente. A diferencia que aquellos de
naturaleza no apropiativa donde el proceso activo permanece con el recurso procesador hasta que
culmine toda su labor en el sistema o hasta que el proceso en si lo libere, la ejecucién del planificador a
corto plazo en este tipo de algoritmos no es tan frecuente como el anterior debido a que la cantidad de
veces que se seleccionara a algin proceso del estado preparado a llevarlo al procesador dependera

exclusivamente del tiempo de ejecucién del proceso activo.

11.3Planificacién por prioridades

Este algoritmo consiste en asignarle prioridades a los procesos y el de mayor prioridad que se encuentra
en la cola de procesos preparados o disponibles sera el que tome el uso del procesador. El valor inicial
de esta prioridad puede ser asignada por el usuario a través de algun utilitario como lo es el comando
nice en los Sistemas Operativos Unix-like o es asignada directamente por el sistema. La asignacién de

este valor puede ser (23):

e Estética: en este caso la prioridad asignada al proceso no cambia a lo largo de su estadia en el
sistema.

e Dinamica: en este caso la prioridad asignada al proceso puede cambiar a lo largo de su estadia
en el sistema, este cambio puede venir de parte del sistema o del usuario, un ejemplo seria el
uso del utilitario renice de los Sistemas Operativos Unix-like que le permite al usuario modificar la

prioridad de un proceso residente en el sistema.

159

Los algoritmos por prioridades pueden ser apropiativos 0 no apropiativos, es decir, en el primer caso si
llega a la cola de procesos preparados un proceso que posee mayor prioridad que aquel que se
encuentra ejecutandose en el procesador entonces el planificador a corto plazo toma la decisién de

quitarle el recurso procesador y asignarselo al proceso de mayor prioridad que ha llegado al sistema.

Regularmente los algoritmos por prioridades que manejen este enfoca deben tener sumo cuidado en no
relegar a los procesos de menor prioridad a lo que se llama muerte por inanicion, es decir, los procesos
de menor prioridad se ejecutaran muy poco o incluso no llegaran nunca a ejecutarse, por lo tanto, sus
tareas no podran ser realizadas y ademas estos consumen recursos del sistema. Para minimizar esta
consecuencia se plantea el uso de prioridades dinamicas en el algoritmo para que aquellos procesos que
tienen mucho tiempo en el sistema puedan ir aumentando su prioridad para poder acceder al procesador
o por el contrario, para aquellos procesos que han utilizado continuamente el procesador se le

decrementa su prioridad para que la competencia con el procesador sea mas equitativa.

11.4Planificacion FIFO (First In First Out)

Es el algoritmo de planificacién mas sencillo de implementar es aquel que la cola de procesos preparados
es evaluada siempre seleccionando al proceso que se encuentre en la primera posicion de la mismay los

procesos se iran encolando acorde a su tiempo de llegada.

Este método es rara vez utilizado aunque existen algunas implementaciones como las colas multinivel
donde cada cola representa una prioridad en el sistema, y como todos los procesos que se encuentren
en una cola particular comparten caracteristicas similares entonces utilizar FIFO seria una forma sencilla

y equitativa de atenderlos.

11.5Planificacién SJF (Shortest Job First)

Es un algoritmo no apropiativo en la que cada proceso se le asocia una estimacion del tiempo que le
resta para finalizar su ejecucion y su seleccion en la cola de procesos preparados es llevada a cabo con
dicho parametro. En caso de que existan dos procesos cuyo tiempo restante sean iguales entonces se

procede la escogencia por el parametro de tiempo de llegada a la cola.

Este algoritmo de planificacién podria ser optimo e incluso podriamos catalogarla como de los mejores
disefios el problema recurre en como determinar o mejor dicho estimar el tiempo restante de ejecucion de
un proceso lo que requiere algin proceso que se encargue de calcular estos tiempos ,por lo tanto, eso
cuesta tiempo de ejecucidn para una tarea que luego me va a permitir seleccionar al proceso que
realmente llevara a cabo una tarea especifica en el sistema y ademas si se desea manejar un historico
para agilizar los célculos entonces la probleméatica se presentara para aquellos procesos sean nuevos en

el sistema ,por lo tanto, es muy complicada de implementar y la misma podria ser muy costosa.

160

11.6Planificacion SRT (Shortest Remaining Time)

Este algoritmo es muy similar al presentado anteriormente su principal diferencia es que este método de
planificacién es apropiativo. El algoritmo de igual manera que el anterior selecciona a los procesos de la
cola de preparados o activo de igual manera, pero si a esta cola llega un proceso cuyo tiempo de
finalizacion sea menor que el del proceso que se estd ejecutando en el procesador entonces el
planificador toma la decisién de sacar a dicha tarea del procesador y asignarselo al proceso que ha

llegado a la cola de preparados o activos.

La limitante de este algoritmo sigue siendo la misma que la del anterior, calcular el tiempo restante de

ejecucidn del proceso seria sumamente costoso.

11.7Planificacion RR (Round Robin)

Este algoritmo le asigna a todos los procesos ubicados en la cola de procesos listos un quantum de
tiempo donde este define el tiempo que dicho proceso podra utilizar el procesador y la asignacion del
mismo se va realizando de manera secuencial. Si algln proceso requiere de la asignacién de un nuevo
quantum de tiempo entonces el planificador a corto plazo se lo asigna y lo coloca al final de la cola de

procesos preparados o listos véase la Figura 11.2

Lista del estado preparado

Finalizacion

Figura 11.2 Diagrama de planificacion RR (Round Robin)

El disefio de este algoritmo exige la existencia de un temporizador que sea capaz de llevar el control de
los quantum de tiempos asignados y ademas de generar la interrupcion en el sistema para que se pueda
indicar la finalizacion del quantum de tiempo para que el procesador sea asignado al siguiente proceso

en la cola de espera o listos.

161

La principal problematica que presenta este algoritmo es referente a de que tamafio sera el quantum de
tiempo a asignar a los procesos ya que acorde a la definiciéon de esta variable se podra observar el buen

0 no uso del procesador.

11.8Planificacion MLQ (Multi-level Queues)

En este algoritmo se plantea una estrategia para llevar a cabo alguna clasificacion de los procesos se
encuentran en el sistema y dependiendo de ella los procesos ingresaran a la cola correspondiente, a su

vez cada una de estas colas puede ejecutar un algoritmo de planificacion diferente.

El disefio de esta estrategia de planificacion se basa principalmente en como categorizar a los procesos y
manejar cual sera el orden o prioridad en el que se van a manejar la eleccion de alguna de estas colas
para luego decidir acorde al algoritmo de planificacion particular de dicha cola como se seleccionan a los

procesos que alli se encuentren.

Regularmente, la eleccién de la cola se lleva a cabo por prioridades donde se examinan cada una de las
colas de forma secuencial y en caso de existir en alguna de ellas procesos en espera por el procesador
entonces esa sera la cola que se va a manejar. Esto puede presentar un problema con aquellos procesos
que residan en las colas de menor prioridad ocasionando las consecuencias de los algoritmos de
planificacién por prioridades donde estos procesos tendran la posibilidad de morir por inaniciéon en el

sistema.

11.9Planificacién MLFQ (Multi-level Feedback Queues)

En este algoritmo al igual que el anterior se debe plantear una estrategia para llevar a cabo alguna
clasificacion de los procesos para que estos sean asignados a las colas que les corresponden. El
algoritmo anterior no trae la limitante de que los procesos siempre iran a la misma cola y nos trae la
consecuencia de la muerte por inanicion, por lo tanto, este algoritmo plantea la necesidad de que los
procesos dependiendo de un parametro puedan ir siendo asignados a diferentes colas para que el uso

del procesador sea lo mas equitativo posible entre todos los procesos del sistema.

Un ejemplo bastante sencillo seria el siguiente, se tiene un algoritmo de planificacion MLFQ que esta
definido por tres colas, la primera se gestiona a través de RR con un quantum de 10ms, la segunda cola
al igual que la anterior, pero con un quantum de 20ms y por Ultimo la tercera cola es manejada por
planificacién FIFO. EIl planificador a corto plazo ira chequeando por cada una de las colas por la
existencia de procesos en espera entonces supongamos un proceso de la primera cola siempre tendra
mayor prioridad que el anterior y en caso de que su tiempo de vida en el sistema es extremadamente
largo entonces los procesos de las otras colas se veran discriminados en el uso del procesador, por lo

tanto, cuando este proceso se le acaba su quantum de tiempo y resulta que requiere de un nuevo

162

gquantum para seguir su ejecucion este en vez de ser asignado en la primera cola este es asignado a la
segunda cola al final y se le da acceso al procesador ahora a los procesos de esta cola, y nuevamente
ocurre el mismo escenario el proceso llega al procesador aun no logra culminar su ejecucion en el
sistema, por lo tanto, el planificador a corto plazo lo asigna a una cola FIFO donde este tendra la
posibilidad de culminar su tarea y no discriminara a ningan proceso en el sistema, véase la Figura 11.3

donde se muestra un diagrama de lo anterior planteado (23).

Nivel 1
10 ms
|
Nivel 1 .
20 ms ¢
N
7
|
Nivel 3
FCFS

Figura 11.3 Diagrama de planificacion MLFQ

Existen muchos algoritmos posibles de planificacion MLFQ que pueden definirse de forma mas general

por los siguientes parametros:

e El numero de colas a implementar.
e El algoritmo de planificacién de cada una de las colas.
e Los métodos o condiciones que determinan el movimiento de los procesos entre las distintas

colas.

11.10 Planificacion de procesos en Minix

Dentro de la amplitud de la gestién de procesos en un sistema operativo, la parte que se lleva a cabo
dentro del microndcleo es la tarea de planificacion. Un sistema multiprogramado se basa en las
interrupciones, que permite al nicleo gestionar las peticiones de entrada/salida de los procesos y ademas

controlar los tiempos de ejecucion de cada proceso.

Los procesos se bloguean cuando hacen peticiones de entrada/salida, permitiendo la ejecucién de otros
procesos. Cuando la peticion ha sido resuelta, el proceso en ejecucion es interrumpido por el disco, el
teclado o cualquier otra pieza de hardware, y deja de estar activo mientras el dispositivo atiende su

peticion. El reloj también genera interrupciones, utilizadas para garantizar que un proceso que no ha

163

realizado entrada/salida libere la CPU en algin momento y permita la ejecucion de otros procesos. Es
tarea de las capas mas bajas de Minix 3 ocultar esas interrupciones transformandolas en mensajes.
Desde el punto de vista de los procesos, cuando una operacion de E/S termina, envia un mensaje a

algun proceso, despertandolo y marcandolo como listo para ejecutar.

Las interrupciones también pueden ser generadas por software, caso en el que suelen ser llamadas
traps. Las operaciones send y receive que son traducidas por la libreria del sistema como interrupciones
software, que tienen exactamente el mismo efecto que las interrupciones generadas por hardware -el
proceso que lanza una interrupcién software se bloguea inmediatamente y el nlcleo se activa para
procesar la interrupcién. Los programas de usuario no invocan directamente send o receive, pero las

llamadas al sistema implicadas ejecutan sendrec y generan una interrupcion software.

Cada vez que un proceso es interrumpido (ya sea por un dispositivo E/S convencional o por el reloj) o
debido a la ejecucién de una interrupcion software, existe una oportunidad para determinar nuevamente

el proceso que tiene mas derecho a ejecutarse. Por supuesto, esto también debe realizarse cada vez

Que un proceso termina, pero en un sistema como Minix 3 las interrupciones debidas a E/S, el reloj o el

paso de mensajes ocurren de manera mas frecuente que la finalizaciéon de un proceso.

11.10.1 Algoritmo de planificacién en Minix v3.1.6

El platicador de Minix 3 utiliza un sistema de varios niveles de colas, cada una con distinta prioridad. Se
defien dieciséis colas, aunque puede recompilarse para usar mas o menos colas de manera sencilla. La
cola de menor prioridad es utilizada Unicamente por el proceso IDLE, que se ejecuta cuando no hay nada
mas que hacer. Los procesos de usuario comienzan por defecto en una cola varios niveles de prioridad

por encima de la més baja.

Los servidores normalmente se planifican en colas con prioridades mas altas que las permitidas a los
procesos. Los controladores de dispositivos en colas con prioridades mayores que los servidores y Clock
Task y System Task se planifican en las colas de maxima prioridad. No tienen por qué estar en uso las

dieciséis colas en un momento determinado.

Los procesos se inician Unicamente en algunas de ellas. Un proceso puede ser movido a una cola de
prioridad diferente por el sistema o0 por un usuario que invoque la orden nice. Ademas de la prioridad
determinada por la cola en la que se coloca un proceso, se utiliza otro mecanismo para dar ventaja a
unos procesos sobre otros: el quantum, un intervalo de tiempo minimo que puede ejecutar un proceso
antes de ser expropiado, aunque no es idéntico para todos los procesos. Los procesos de usuario tienen
un quantum relativamente bajo, mientras que los controladores y los servidores normalmente se ejecutan

hasta que ellos mismos se bloquean.

164

Sin embargo, como medida contra el funcionamiento incorrecto de los mismos, se han programado de
manera en que puedan ser expropiados, pero se les asigna un quantum mayor. Tienen permitido ejecutar
por un periodo largo, pero finito, de tiempo, pero si utilizan todo su quantum son expropiados para evitar
que el sistema se bloquee. En estos casos, el proceso se considera preparado para ejecutar y se coloca
al final de su cola. Sin embargo, si un proceso que ha utilizado todo su quantum fue el mismo que se
ejecutd por dltima vez, se interpreta que puede estar bloqueado en un bucle y puede estar evitando que
otros procesos se ejecuten. En estos casos, su prioridad se ve reducida, colocandolo al final de una cola
de prioridad inferior. Si el proceso se quedase de nuevo sin tiempo, su prioridad se veria reducida de

nuevo. Tarde o temprano, algun otro proceso tendra una oportunidad para ejecutarse.

Un proceso al que se le ha reducido su prioridad puede recuperarla. Si un proceso utiliza todo su
quantum, pero no impide que otros procesos se ejecuten, se asciende ese proceso a una cola de

prioridad superior, hasta la prioridad maxima que el proceso tenga permitida.

Los procesos son planificados utilizando un RR ligeramente modificado (24). Si un proceso no ha
utilizado todo su quantum cuando pasa a estar en estado no ejecutable, se interpreta que el proceso se
ha bloqueado esperando a E/S, y cuando vuelva a estar listo para ejecutar, se colocara en la cabeza de
su cola, pero tan solo con la cantidad de quantum que le quedaba cuando se bloqueé. La idea es
proporcionar a los procesos de usuario una respuesta rapida a la E/S. Un proceso que es expropiado

porque ha terminado su quantum se coloca al final de su cola, siguiendo el esquema RR.

Con las tareas situadas en la prioridad mas alta, los controladores después, los servidores detras de los
controladores, y los procesos de usuario al final, un proceso de usuario no se ejecutara hasta que ningun
proceso de sistema tenga nada que hacer, y un proceso de usuario no puede evitar que un proceso de

sistema se ejecute.

Cuando se selecciona un proceso para ejecutar, el planificador comprueba si hay algun proceso
esperando en la cola de mayor prioridad. Si hay alguno listo, el que se encuentre en la cabeza de la cola
es ejecutado. Si no hay ninguno listo, se comprueba la cola de prioridad inmediatamente inferior, y asi
repetida mente. Puesto que los controladores responden a peticiones de los servidores y los servidores a
peticiones de procesos de usuario, en algin momento todos los procesos de prioridad alta completaran la
tarea que estén realizando. Entonces se bloquearan sin nada que hacer hasta que algun proceso de
usuario tenga oportunidad de ejecutarse y realice mas peticiones. Si no existe ningln proceso preparado,
entonces el proceso IDLE es elegido. Esto coloca a la CPU en un estado de bajo consumo hasta la

siguiente interrupcion.

En cada tick de reloj, se realiza una comprobacién para ver si el proceso actual ha agotado su quantum.

Si lo ha hecho, el planificador lo mueve al final de su cola. Entonces, se elige el siguiente proceso para

165

ser ejecutado, como se ha descrito anteriormente. Sélo si no hay procesos en las colas de mayor

prioridad y el proceso anterior esta solo en su cola, sera seleccionado para ejecutar inmediatamente.

En otro caso, el proceso en la cabeza de la cola de mayor prioridad serd ejecutado. Los controladores
esenciales y los servidores tienen un quantum tan largo que normalmente no son interrumpidos jamas
por el reloj. Pero si algo va mal, su prioridad puede ser temporalmente reducida para evitar que el
sistema llegue a un blogqueo completo. Probablemente no se pueda hacer nada Util si esto sucede con un
controlador imprescindible, pero quiza sea posible apagar el sistema correctamente, evitando pérdida de

datos y recolectando informacién que puede ayudar en la depuracion del problema.

11.10.2 Desarrollo de ambiente de pruebas sobre el planificador en Minix

En las secciones anteriores de este capitulo se ha descrito el procedimiento de planificacién de forma
general, los distintos algoritmos de planificacion existentes y ademas se ha mostrado de manera
detallada cual es el funcionamiento de todo este proceso en el Sistema Operativo Minix version 3.1.6,

entonces ahora se procede a realizar algunas pruebas de desemperio.

Las pruebas consisten en un primer lugar en la ejecucién de dos programas uno que tenga alta carga de
uso del CPU y otro que tenga una alta carga de peticiones de Entrada/Salida, véase la Figura 5.4. Estos
dos programas deberan ejecutarse en las distintas capas en las que esta disefiado el Sistema Operativo
Minix v3.1.6:

e Ejecucién de ambos programas en la capa 4 de Minix v3.1.6 que corresponde con el espacio de
procesos de usuario.

e Ejecuciéon de ambos programas en la capa 3 de Minix v3.1.6 que corresponde con el espacio de
procesos servidores, véase el Capitulo 3 de este documento de investigacion donde podré ver los
pasos que debe seguir para desarrollar una llamada al sistema en la capa 3.

e Ejecucién de ambos programas en la capa 1 de Minix v3.1.6 que corresponde con el espacio del
nacleo donde operan los programas Clock y SystemTask, véase el Capitulo 3 de este documento
de investigacion donde podra ver los pasos a seguir para desarrollar una llamada al sistema que

le permita ejecutar su codigo en la SystemTask.

Para el ambiente de pruebas se han desarrollado los siguientes programas para comprobar el
funcionamiento del planificador de Minix v3.1.6 y observar el desempefio del mismo, estos son los

siguientes:

e altaiouser.c: este programa se ejecuta en la capa de procesos de usuario realizando muchas

peticiones de Entrada/Salida (véase Figura 11.4)

166

#include <lib.h=
#include <=stdio.h=>

void main(int argc, char *argv[]){
int 1,3;
printf("Programa con alta carga de Entrada/Salida ejecutandose a nivel de usuario.\n");
for(1=0;1<1000;1++){
for()=0;)<1000; j++){
printf("Imprimir por pantalla como proceso en el nivel de usuario.\n")j

}

Figura 11.4 Cddigo fuente de altaiouser.c

altaioserver.c: este programa hace una llamada al sistema que se encuentra implementada en la capa

de procesos servidores donde se realizan muchas peticiones de Entrada/Salida (véase Figura 11.5)

#include <lib.h>
#include <stdio.h>

void main(int argc, char *argv[]){
int retorno;
message m;
retorno = _syscall(MM,68,6&m);
printf("Resultado de altaioserver:[%d]\n",retorno);

Figura 11.5 Cédigo fuente de altaioserver.c

e altaiokernel.c: este programa hace una llamada al sistema que se encuentra implementada en la
capa de procesos servidores, donde esta hace una llamada luego al SystemTask y luego alli se

ejecuta el programa que realiza muchas peticiones de Entrada/Salida (véase Figura 11.6).

#include <sys/types.h>
#include <stdlib.h=
#include <unistd.h=
#include <stdio.h=>

int main(int argc, char *argv[]){
int retorno, entrada=S, salida=7;
retorno = altailokernel({entrada, &salida);
printf ("Resultado de la llamada es:[%d], valor salida:[%d]\n",retorno,salida);
return(0);

Figura 11.6 Codigo fuente de altaiokernel.c

167

e altacpuuser.c: este programa se ejecuta en la capa de procesos de usuario generando alta

carga de CPU (véase Figura 11.7)

#include <lib.h=
#include <stdio.h>

void main(int argc, char *argv[]){
int 1,73;
printf("Programa con alta carga de CPU ejecutandose a nivel de usuario.\n");
for(1=0;1<1000;1++){
for(j=0;)<1000; j++){

}

Figura 11.7 Cédigo fuente de altacpuuser.c

e altacpuserver.c: este programa hace una llamada al sistema que se encuentra implementada en

la capa de procesos servidores generando alta carga de CPU (véase Figura 11.8).

#include <lib.h>
#include =<stdio.h>

void main(int argc, char *argv[]){
int retorno;
message m;
retorno = _syscall(MM,69,&m);
printf ("Resultado de altacpuserver:[%d]\n",retorno);

Figura 11.8 Cadigo fuente de altacpuserver.c

e altacpukernel.c: este programa hace una llamada al sistema que se encuentra implementada en
la capa de procesos servidores, donde esta hace una llamada luego al SystemTask donde alli

reside el programa que genera alta carga de CPU (véase Figura 11.9).

168

#include =sys/types.h=
#include =stdlib.h=
#include =<unistd.h=
#include =stdio.h=

int main(int argc, char *argv[]){
int retorno, entrada=S, salida=7;
retorno = altacpukernel{entrada, &salidal;
printf("Resultado de la llamada es:[%d], valor salida:[%d]n",retorno,salidal;
return(o);

Figura 11.9 Codigo fuente de altacpukernel.c

Estos cédigo fuentes seran ejecutados manejando el numero de colas predefinidas por el Sistema

Operativo Minix v3.1.6 y luego seran modificados el numero de colas a su mitad.

11.10.3 Manejo de colas de planificacion en Minix v3.1.6.

Anteriormente se realizo una explicacion bien detallada sobre el algoritmo utilizado por el planificador a
corto de plazo del Sistema Operativo Minix version 3.1.6 y en esta seccion tan solo mostraremos la

ubicacion de aquellos archivos fuentes donde son definidas dichas caracteristicas.

En el archivo /usr/src/kernel/proc.h podemos conseguir casi al finalizar el archivo la definicién del numero
de colas que manejara el planificador, la definicién de las prioridades o asignaciones de colas para los
procesos del nucleo, se define la cola para el procesos IDLE ,pero principalmente se define el
comportamiento de los procesos de usuario esto debido a que existe un archivo donde se definen las
asignaciones de las colas para los procesos de capa 3 hacia abajo durante el procedimiento de arranque

del sistema operativo, véase Figura 11.10

* Scheduling priorities for p_priority. Values must start at zero (highest
¥ priority) and increment. Priorities of the processes in the boot i1mage
236 * can be set in table.c. IDLE must have a queue for itself, to prevent low
237 * priority user processes to run round-robin with IDLE.
g ¥/
239#define NR_SCHED_QUEUES 16 /# MUST equal minimum priority + 1 #
240 #define TASK_Q 0 * highest, used for kernel tasks *,
241 #define MAX_USER Q 0 /* highest priority for user processes *
242#define USER Q (NR_SCHED_QUEUES / 2) /* default (should correspond to
243 nice 0) *
244 #define MIN_USER Q (NR_SCHED_QUEUES - 1) /* minimum priority for user
245 processes *

Figura 11.10 Cédigo fuente de /usr/src/kernel/proc.h

En el archivo /usr/src/kernel/table.c se encuentran definidos aquellos procesos que son importantes para

169

el arranque del Sistema Operativo, este archivo debe ser modificado cuando se desee disminuir el

namero de colas significativamente, véase Figura 11.11

62PUBLIC struct boot i1mage image[] = {
62 /* process nr, pc, flags, gs, queue, stack, name *,
64 {IDLE, NULL, 0, O, 0, IDL_s, "idle" 1},
65 {CLOCK, clock_task, 0, 8, TASK _Q, TSK_S, "clock" },
66 {SYSTEM, sys_task, O, 8, TASK_Q, TSK_S, "system"},
67 {HARDWARE, 0, 0, 8, TASK_Q, HRD_S, "kernel"},
62 {PM_PROC_NR, 0, 0, 32, 3, 0O, "pm" 1,
u{FS_PF{GC_NF{, 0, o, 32, 3, 0, nyfgn }’
"0 {RS_PROC_NR, 0, o0, 4, 3, 0, "rs" 1,
71 {MEM_PROC_NR, 0, BVyM_F, 4, 3, 0O, "memory"},
72{LOG_PROC_NR, 0, BVM_F, 4, 2, 0, "log" },
73{TTY_PROC_NR, 0, BVWM_F, 4, 1, O, "tty" 1,
74 {DS_PROC_NR, 0, BVvWM_F, 4, 3, O, "ds" },
75 {MFS_PROC_NR, 0, BVM_F, 32, 3, 0, "mfs" 1,
76 {VM_PROC_NR, 0, 0, 32, 2, 0, "ym" },
"{PFS_PROC_NR, 0, BVM_F, 32, 3, 0, "pfs” 1,
'8{INIT_PROC_NR, O, BVM_F, 8, USER Q, O, "init" },
9}

Figura 11.11 Cédigo fuente de /usr/src/kernel/table.c

11.11Analisis de resultados.

Los resultados obtenidos son manejados a través del comando time proporcionado en el Sistema

Operativo Minix v3.1.6 donde se pueden observar los tiempo de vida del proceso dentro del sistema.

Los resultados debemos dividirlos en dos etapas, la primera como se comento en secciones anteriores
sera ejecutar cada uno de dicho programas con la definicién predeterminada por el Sistema Operativo
Minix version 3.1.6 donde se manejan 16 colas de planificacién y un segundo escenario donde se va a

reducir el nimero de colas a ocho.
Los siguientes son los resultados obtenidos:

altaiouser.c: este programa es ejecutado en la capa 4 del sistema operativo, correspondiente a la
seccién de procesos de usuario. En ambos casos tanto para la prueba manejando 16 colas de
planificacién véase la Figura 11.12 y 8 colas véase Figura 11.13 el tiempo de vida del proceso es
sumamente largo debido a que las peticiones de Entrada/Salida que este realiza son suficientes para que

su resultado sea el esperado. Se observo un decremento del tiempo de ejecucién al disminuir las colas.

Imprimir por pantalla como proceso en el nivel de usuario.

12:24 .33 real Z0.16 user 12:04.16 suys

170 Figura 11.12 Resultados altaiouser.c (16 Colas de planificacién)

Imprimir por pantalla como proceso en el nivel de usuario.

12:05.66 real 19.78 user 11:45.83 sys

Figura 11.13 Resultados altaiouser.c (8 Colas de planificacion)

altaioserver.c: este programa es ejecutado en la capa 3 del sistema operativo, correspondiente a la
seccion de procesos servidores. En ambos casos tanto para la prueba manejando 16 colas de
planificaciéon véase la Figura 11.14 y 8 colas Figura 11.15 el tiempo de vida del proceso es
considerablemente menor al ejecutado en espacio de usuario debido a que estos procesos poseen mayor
prioridad en el sistema. Se observo un decremento del tiempo de ejecucién al disminuir las colas del

procesador.

lesultado de altaioserver:[0O]

Z2:00.10 real .00 user

Figura 11.14 Resultados altaioserver.c (16 Colas de planificacion)

Esta es una llamada con alta carga de entradarssalida.
esultado de altaioserver:[0]

1:58.21 real Q.00 user

Figura 11.15 Resultados altaioserver.c (8 Colas de planificacion).

altaiokernel.c: este programa es ejecutado en la capa 1 del sistema operativo, correspondiente a la
seccién de procesos del nlcleo. En ambos casos tanto para la prueba manejando 16 colas de
planificacién véase la Figura 11.16 y 8 colas véase Figura 11.17 el tiempo de vida es aun mas corto que
las pruebas anteriores debido a que estos procesos son los que poseen mayor prioridad dentro del
sistema y ademas acorde a lo planteado en secciones anteriores dichos procesos no pueden ser sacados

del procesador mientras lo estan utilizando razén por la cual su ejecucion es extremadamente veloz.

time .raltaiokernel
iesultado de la llamada es:[0]1, valor salida:[15]

} real 0.00 user 12 .00 sys

Figura 11.16 Resultados altaiokernel.c (16 Colas de planificacion)

171

time .-raltaiokernel
iesultado de la llamada es:[®@], valor salida:[15]

11.83 real 0.00 user 11.66 suys

Figura 11.17 Resultados altaiokernel.c (8 Colas de planificacion)

altacpuuser.c: este programa es ejecutado en la capa 4 del sistema operativo correspondiente a la
seccién de procesos de usuario. En ambos casos tanto para la prueba manejando 16 colas de
planificacién véase la Figura 11.18 y 8 colas véase Figura 11.19 el tiempo de vida es bastante corto
debido a que este tipo de operaciones son manejadas con bastante velocidad por el procesador.

time .raltacpuuser

Programa con alta carga de CPU e jecutandose a mivel de usuario
0.03 real 0.01 user 0.01 sys

Figura 11.18 Resultados altacpuuser.c (16 Colas de planificacién)

time .raltacpuuser
rograma con alta carga de CPU e jecutandose nivel de usuario.

0.03 real 0.01 user

Figura 11.19 Resultados altacpuuser.c (8 Colas de planificacion)

altacpuserver.c: este programa es ejecutado en la capa 3 del sistema operativo, correspondiente a la
seccién de procesos servidores. En ambos caso tanto para la prueba manejando 16 colas de
planificacién véase la Figura 11.20 y 8 colas véase Figura 11.21 el tiempo de vida es igual al anterior
podemos deducir dicho comportamiento debido a que el tiempo necesario por el proceso servidor para
culminar la ejecucién de dicha tarea debe ser igual al tiempo necesario por un proceso de usuario, por lo

tanto, el proceso servidor no consume su quantum de tiempo asignado para poder culminar la tarea.

time .raltacpuserver
ista es una llamada al

sultado de altacpuser
0.03 real

Figura 11.20 Resultados altacpuserver.c (16 Colas de planificacion)

172

time .rsaltacpuserwver
proceso servidor de alta cpu.

esultado de altacpuserver:[0]

0.03 real 0.00 user

Figura 11.21 Resultados altacpuserver.c (8 Colas de planificacion)

altacpukernel.c: este programa es ejecutado en la capa 1 del sistema operativo, correspondiente a la
seccion de procesos del nicleo. En ambos casos tanto para la prueba manejando 16 colas de
planificacién véase Figura 11.22 y 8 colas véase Figura 11.23 el tiempo de vida de es ligeramente mayor
a los programas anteriores y podemos explicar este comportamiento debido a la sobrecarga que se debe
afadir por el manejo de pase de mensajes, se debe recordar que la comunicaciéon de este programa
inicia en la capa 4 enviando un mensaje al proceso servidor que se encuentra en la capa 3 y luego es
este Ultimo proceso que tiene la permisologia suficiente para comunicarse con los procesos del nicleo
que estén alojados en la capa 1, todo este proceso ocurre desde el inicio del programa y luego se repite

,pero de manera ascendente para presentar los resultados.

time .-saltacpukernel
ilta CPU en el Kernel.

lesultado de la llamada es:[0], valor salida:[15]

0.05 real Q.00 user 0.05 sys

Figura 11.22 Resultados altacpukernel.c (16 Colas de planificacion)

time .raltacpukernel
Alta CPU en el Kernel.
esultado de la llamada es:[0]1, valor salida:[15]

0.03 real 0.00 user 0.03 sys

Figura 11.23 Resultados altacpukernel.c (8 Colas de planificacidn).

173

174

12 Conclusiones

Los sistemas operativos instruccionales son herramientas educativas extensas que pueden englobar una
amplia gama de tdpicos sobre sistemas operativos, desde el proceso de inicio hasta la seguridad; es por
esto que permite ahilar la parte practica de cualquier curso de sistemas operativos. Ademas, es una
herramienta pedagogica que ofrece un entorno de desarrollo probado. Y lo mas importante adn permite
modificar realmente un sistema operativo, cosa que pocos estudiantes en ciencias de la computacion han

podido realizar.

Este Trabajo Especial de Grado pudo constatar que Minix version 3.1.6 se adapta al curso de Sistemas
Operativos vigente de la Escuela de Computacion, asi como también al pensum de estudios propuesto
por la ACM (Association for Computing Machinery) e IEEE (Institute of Electrical and Electronics

Engineers) para un curso de pregrado (25), a través de los siguientes puntos:

e Se comprobo a través del uso de Minix version 3.1.6 como un Sistema Operativo estable, sencillo
y de facil manejo que provee como afiadido la interaccion de los estudiantes con un Sistema

Operativo Unix-like.

e Se verifico la total compatibilidad de los laboratorios propuestos con el entorno de desarrollo, el
cual esta basado en el IDE eclipse, aplicacion usada por los estudiantes en materias de

semestres anteriores.

e Se realizo un andlisis y estudio detallado sobre la estructura y algoritmo del gestor de arranque
de Minix versiébn 3.1.6 ofreciendo los conocimientos tanto bésicos como avanzados del
funcionamiento de estos programas en un Sistema Operativo, dejando la documentacion

pertinente.

e Se hizo la implementacién de un intérprete de comandos sencillo y béasico que permite la
ejecucidon de comandos y ordenes para convertirse en una interfaz humano computador similar a

la ofertada por el intérprete de comandos de Minix.

e Se realiz6 una investigacion sobre las llamadas al sistema en Minix version 3.1.6, obteniendo los
conocimientos de la codificacion y funcién de las mismas. Ademas, se explica la implementacién
de las llamadas al sistema a los procesos servidores (capa 3) y las llamadas al nicleo (capa 1),
el cual se logra a través del mecanismo de comunicacion inter-procesos (pase de mensajes)

planteado por Minix 3.

e Se analiz6 la posibilidad incorporar a Minix 3 la estructura de datos seméforos para la
sincronizacién entre procesos. Se disefio e implemento la solucién, para posteriormente

comprobar la funcionalidad de los cambios realizados. Se realizo toda la documentacion.

175

e Se realizo una investigacion y estudio detallado sobre la programacién y funcionamiento del

algoritmo de planificaciéon de procesos en Minix. En el cual se propone la modificacion del mismo.

El Trabajo Especial de Grado desarrollado es de vital importancia dado que es el primer trabajo formal
dentro de la Universidad Central de Venezuela donde se va ofertar el uso de un Sistema Operativo
Instruccional para el curso de Sistemas Operativos de la Escuela de Computacion. Ademas ofrece una
herramienta colaborativa para la interaccion entre estudiantes, docentes e investigadores para el continuo
desarrollo de Minix versiéon 3.1.6. Sentando un precedente para las demas generaciones de estudiantes

gue quieran seguir con este tema y enfoque investigativo.

Esta investigacion permitié la elaboracién de un conjunto de laboratorios docentes para ser utilizados
como plantillas para la elaboracién de los espacios practicos del curso de Sistemas Operativos. Ademas
de proveer toda la documentacion necesaria para la formulacién y elaboracién de los laboratorios.
Asimismo la documentacion para familiarizar al docente con el trabajo realizado. La documentacion se
elaboro acorde a la dinamica de los laboratorios con esto se hace la referencia sobre si el laboratorio es

de desarrollo o es de analisis y estudio de alguna seccién particular.

12.1Limitaciones

A pesar que Minix version 3 es un Sistema Operativo comercial de cddigo abierto, su comunidad de
desarrollo y/o soporte no es tan amplia cuando la comparamos con otros sistemas operativos
comerciales de cddigo abierto como las comunidades de GNU/Linux o BSD. A pesar que parte de la
investigacion se apoyo en dicha comunidad para la resolucion de problemas, se presentaron situaciones
donde la falta de documentacién se convirtié6 en un obsticulo para que el proceso de adecuacion fuese

més sencillo. Durante el proceso de adecuacion nos enfrentamos a las siguientes situaciones:

¢ Minix 3 posee unas versiones “netamente educativas” que refuerza el estudio de la herramienta,
ya que el codigo de estas versiones es en esencia el mismo al que aparece en la publicacién
bibliografica “Systems: Design and Implementation 3™ Edition”; y son todas aquellas versiones de
Minix inferior a las version 3.1.4. El inconveniente con estas versiones se produjo en el proceso
de acoplamiento con IDE Eclipse, ya que el servicio de conexién remota SSH para la integracion

con aplicacién no funcionaba correctamente, es por esta razén que se escogio la version 3.1.6.

e Durante el proceso de disefio de los laboratorios se pensé generar un laboratorio docente donde
los estudiantes pudiesen estudiar y modificar el manejador de memoria de Minix version 3.1.6, al

generar las plantillas relacionadas al laboratorio se presentaron los siguientes inconvenientes:

o Minix version 3.1.6 posee una técnicas de gestién de memoria diferente con respecto al

encontrado en la documentacién bibliografica oficial de la herramienta. El libro menciona

176

que Minix 3 implementa la técnica de gestién de memoria segmentacion sencilla usando
el primer ajuste. Sin embargo, Minix version 3.1.6 implementa la técnicas de gestién de

memoria paginacion sencilla.

o Se propuso modificar el manejador de memoria de Minix version 3.1.6 para que este
utilizara el modulo de memoria desarrollado para la version 3.1.4 y esta solicitud se
presento a su comunidad de desarrollo donde inmediatamente se menciono que dicho
cambio es bastante complejo; ya que entre cada una de estas versiones la estructura de
los procesos servidores de Minix habia sido cambiada. Por lo que no se recomendaba
realizar el cambio sino utilizar una version inferior a Minix, pero esto no era una opcion

para los laboratorios ya que se perderia todo el entorno de programacion.

e Durante el proceso de adecuacién se propuso generar un laboratorio para el estudio de los
sistemas de archivos a pesar que este tépico no se encuentra en las recomendaciones de la
ACM para los cursos basicos de Sistemas Operativos (25). En este laboratorio se propuso
modificar el sistema de archivos de Minix para agregarle la funcionalidad de cifrado/descifrado del

mismo lo que genero una problematica similar a la expuesta el punto anterior.

12.2Trabajos futuros

Tomando como base el presente Trabajo Especial de Grado se propone establecer una comunidad o
grupo de trabajo dedicado a esta &rea de estudios cuya motivacion principal sea velar por la
actualizacion, adecuacion y desarrollo del sistema operativo instruccional Minix versiéon 3.1.6, integrada
por el grupo docente de la materia Sistemas Operativos y los estudiantes interesados en seguir
investigando sobre este punto. También se plantea como futuros trabajos de investigacion la generacion
de los laboratorios de manejo de memoria y sistemas de archivos, sin olvidar la actualizacién de los

laboratorios propuestos.

12.3Recomendaciones

A lo largo de este Trabajo Especial de Grado y la investigacién anterior realizada sobre los Sistemas
Operativos Instruccionales documento previo a este trabajo en la modalidad de seminario, debe revisarse

los siguientes puntos:

e Actualizacién del curso con respecto a la propuesta desarrollada por la ACM sobre los cursos de

sistemas operativos.

e Elaborar una nueva dindmica pedagégica del curso Sistemas Operativos que contemple los

siguientes aspectos:

177

178

o Agregar un espacio de discusidn presencial donde estudiantes y docentes puedan
reunirse para discutir los desarrollos propuestos a lo largo del curso, lo que permita
aclarar dudas, solventar fallas o problemas de las herramientas utilizadas, discusiones

para la generacién de nuevos proyectos.

o Actualizar el material didactico para que este utilice como caso de estudio al sistema
operativo instruccional Minix version 3.1.6, para que esta manera el estudiante siempre
tenga la posibilidad de reforzar sus conocimientos a través de esta herramienta

instruccional.

o Generar charlas y conferencias relacionadas al proyecto donde cualquier miembro de la
Escuela de Computacion, es decir, estudiantes y docentes puedan discutir y elaborar

nuevos temas de investigacion relacionada a los sistemas operativos.

o Modificar el plan de evaluacion del curso para generar mayor equidad entre las
evaluaciones tedricas y practicas. Este punto particular es importante ya que se pudo
constatar en su revisiébn de los cursos de Sistemas Operativos ofertados por las
principales casas de estudios superiores a nivel mundial ofrecen una calificacion de
aproximadamente un 50% para la teoria y un 50% para la practica. Se considera que la
revision debe ser pertinente para alcanzar mejores resultados académicos tanto de

docentes y estudiantes (13).

Se propone la elaboracién de un laboratorio general de desarrollo de sistemas operativos en la
Escuela de Computacion basado en Minix version 3.1.6 donde los estudiantes puedan estudiar y
desarrollar un méas a fondo el sistema operativo, basado en los conceptos ya forjados por esta

investigacion.

Se propone expandir el Sistemas Operativo Instruccional Minix versiéon 3.1.6 para que se
desarrollen herramientas tales como, un manejador de ventanas y escritorio, desarrollo de

aplicaciones para el nivel de desarrollo y de usuarios entre otros.

Para finalizar, se propone ambiciosamente la generacion de una nueva mencién profesional para
la Escuela de Computacion cuyo principal objeto de estudios sean los Sistemas Operativos
donde se tomen cursos avanzados referente a esta area; donde se puedan estudiar, proponer y
revisar como casos de estudios de sistemas operativos comerciales tales como: Microsoft
Windows, GNU/Linux, OS X, Unix entre otros. Esta mencion deberia incluso agregar a su

curriculum académico el desarrollo de sistemas operativos embebidos y moviles.

13 Referencias

(1. Anderson, Charles y Nguyen, Minh. A Survey Of Contemporary Instructional Operating Systems For

Use in Undergraduate Courses. Oregon : Wester Oregon University, 2005.
2. Stallings, William. Sistemas Operativos. Madrid : Prentice Hall, 2005.
3. Tanenbaum, Andrew. Sistemas Operativos Modernos. México : Prentice Hall, 2003.

4. Tanenbaum, Andrew y Woodhull, Albert. Sistemas operativos - Disefio e Implementacion. Mexico :
Prentice Hall, 1999.

5. Silberchatz, Abraham, Galvin, Peter y Gagne, Greg. Fundamentos de Sistemas Operativos. Madrid :
McGraw Hill, 2006.

6. Holland, David, Lim, Ada y Nguyen, Minh. A New Instructional Operating System. Massachusetts :

Harvard University, 2002.

7. Cartereau, Michel. A Tool For Operating System Teaching. Paris : Department of Mathematics and

Computer Scienc e, 1993.

8. Hovemeyer, Howard, Hollingsworth, Jeffrey y Bhattacharjee, Bobby. Running on the Bare Metal
with GeekOS. Maryland : University of Maryland, 2003.

9. Universidad de Harvard. OS/161. [En linea] Mayo de 2010. http://www.eecs.harvard.edu.

10. Procter, Christopher y Anderson, Thomas. The NachOS Instructional Operating System.

California : University of California, Berkeley, Diciembre - 2002.

11. Gary, James. Using NachOS in a Upper Division Operating Systems Course. Western Kentucky

University : Western Kentucky University, 2001.

12. Instituto Tecnolégico de Massachusetts. xv6, A Teaching Operating System. [En linea]

http://pdos.csail.mit.edu.

13. De Le6n Dumar, Espafia José. Disefio, implementacion y adecuacion de una herramienta educativa

para cursos de Sistemas Operativos. Caracas : s.n., 2010.
14. MINIX 3. [En linea] Septiembre de 2010. http://www.minix3.org/.

15. Andrew S Tanenbaum, Albert S Woodhull. Operating Systems Design and Implementation. s.I. :

Prentice Hall, 2006. 3 edition.

179

16. Croucher, Phil. The Bios Companion: The Book That Doesn't Come With Your Motherboard. s.I. :

Electrocution Technical Publishers, 2004.
17. Stallings, William. Computer Organization and Architecture. s.l. : Prentice Hall, 2009. 8 edition.

18. Randal E. Bryant, David R. O’Hallaron. Computer Systems, A Programmer’s Perspective. s.l. :
Prentice Hall, 2003. First edition.

19. Universitat Passau. Universitat Passau. [En linea] Octubre de 2010. http://www.uni-passau.de/.

20. Universidad de Extremadura. Universidad de Extremadura. [En linea] Septiembre de 2010.

http://www.unex.es/.

21. Universidad Tecnoldgica Nacional. Disefio e implementacién de Sistemas Operativos. [En linea]
Octubre de 2010. http://www.frsf.utn.edu.ar/.

22. Jorritn. Herder, Herbertbos, Bengras, Philiphomburg, y Andrews. Tanenbaum. modular system

programming in MINIX 3. Amsterdam : s.n., 2005.

23. Joaquin Aranda, Antonia Canto Diaz y Jesus Manuel de la Cruz Garcia. Sistemas Operativos:

Teoria y Problemas.

24. J. Adridn Bravo Navarro, Héctor Cortiguera Herrera yJorge Quintas Rodriguez. Minix 3 sobre
arquitectura ARM. Madrid : s.n., 2009.

25. Association for Computing Machinery and IEEE Computer Society. Computer Science
Curriculum 2008. 2009.

180

