
Universidad Central de Venezuela

Facultad de Ciencias

Escuela de Computación

Laboratorio de ICARO

Seminario

Presentado ante la ilustre

Universidad Central de Venezuela

Por los Bachilleres:

Dumar De León

C.I.:18.465.540

E-mail:dumardeleon@gmail.com

José España

C.I.:16.115.715

E-mail:espana.jose.manuel@gmail.com

Tutor: David Pérez

Caracas, Marzo de 2011

DISEÑO, IMPLEMENTACIÓN Y

ADECUACIÓN DE UNA HERRAMIENTA

EDUCATIVA BASADA EN MINIX PARA

CURSOS DE SISTEMAS OPERATIVOS

1

Universidad Central de Venezuela

Facultad de Ciencias

Escuela de Computación

Laboratorio de ICARO

ACTA DEL VEREDICTO

Quienes suscriben, Miembros del Jurado designado por el Consejo de la Escuela de Computación para

examinar el Trabajo Especial de Grado, presentado por los Bachilleres Dumar De León C.I.:18.465.540 y

José España C.I.: 16.115.715, con el título “DISEÑO, IMPLEMENTACIÓN Y ADECUACIÓN DE UNA

HERRAMIENTA EDUCATIVA BASADA EN MINIX PARA CURSOS DE SISTEMAS OPERATIVOS”, a

los fines de cumplir con el requisito legal para optar al título de Licenciado en Computación, dejan

constancia de lo siguiente:

Leído el trabajo por cada uno de los Miembros del Jurado, se fijó el día 8 de Abril de 2011, a las 3:00 PM,

para que sus autores lo defendieran en forma pública, en Laboratorio de Internet II, lo cual estos

realizaron mediante una exposición oral de su contenido, y luego respondieron satisfactoriamente a las

preguntas que les fueron formuladas por el Jurado, todo ello conforme a lo dispuesto en la Ley de

Universidades y demás normativas vigentes de la Universidad Central de Venezuela. Finalizada la

defensa pública del Trabajo Especial de Grado, el jurado decidió aprobarlo.

En fe de lo cual se levanta la presente acta, en Caracas el 8 de Abril de 2011, dejándose también

constancia de que actuó como Coordinador del Jurado el Profesor Tutor David Pérez

Prof. David Pérez

(Tutor)

 Prof. Carlos Acosta Prof. Jaime Parada

2

3

 Carlos Acosta Jaime Parada

RESUMEN

Título:

DISEÑO, IMPLEMENTACIÓN Y ADECUACIÓN DE UNA HERRAMIENTA EDUCATIVA BASADA EN

MINIX PARA CURSOS DE SISTEMAS OPERATIVOS

Autor(es):

Dumar De León y José España

Tutor:

Prof. David Pérez

En el siguiente Trabajo Especial de Grado se plantea la inserción del sistema operativo Minix 3 al curso

ofertado por la Escuela de Computación de la UCV con el objetivo de solventar la poca sincronización

entre la planificación teórica-práctica existente. Es decir, no existe ninguna metodología que permita

reforzar ambas dinámicas durante la ejecución del mismo. La solución propuesta es adecuar el sistema

operativo Minix 3 a partir de un conjunto de siete laboratorios que abarcan tópicos asociados a los temas

impartidos por el curso de Sistemas Operativos actual. Los laboratorios tienen los siguientes títulos:

Instalación de Minix y entorno de desarrollo, Introducción a Minix 3, Estudio del proceso de arranque,

Implementación de un intérprete de comandos, Implementación de llamadas al sistema, Implementación

de semáforos y Modificación del planificador de procesos. De cada laboratorio se desarrollo la estructura

y solución, dejando una sólida documentación en distintos medios (documentos, implementación del

código necesario y videos tutoriales). Por último, se adecuo una aplicación para el manejo de proyectos

(wiki) la cual apoya al curso y permite integrar toda la información recopilada, tanto para el grupo docente

como para los estudiantes. Al culminar este Trabajo Especial de Grado se logró completar los objetivos

planteados desde el inicio a través de las soluciones anteriormente descritas, es por ello que se desea

que el trabajo realizado sea tomado en consideración por la Escuela de Computación para impartir

cursos futuros; dándole a mismo la didáctica de los cursos de las principales universidades a nivel

mundial.

Palabras Claves: Sistema Operativo Instruccional, Minix 3, Laboratorio, implementación, documentación.

4

5

Tabla de contenido

Índice de Figuras ... 13

Índice de Tablas .. 17

1 Introducción .. 19

1.1 Planteamiento del problema .. 20

1.2 Objetivos .. 20

1.2.1 Objetivo general .. 20

1.2.2 Objetivos específicos .. 21

1.3 Justificación .. 21

1.4 Distribución del documento .. 21

2 Marco teórico .. 25

2.1 Sistema Operativo .. 25

2.2 Llamadas al sistema .. 26

2.3 Procesos e Hilos .. 27

2.4 Exclusión mutua ... 28

2.4.1 Semáforos ... 29

2.5 Gestión de memoria ... 29

2.5.1 Reubicación .. 30

2.5.2 Protección ... 30

2.5.3 Compartición ... 30

2.5.4 Organización lógica .. 30

2.5.5 Organización física ... 31

2.5.6 Particionamiento de la memoria ... 31

2.6 Sistemas de archivos ... 32

2.7 Herramientas de enseñanza en Sistemas Operativos. ... 33

2.8 ¿Qué es un Sistema Operativo Instruccional (SOI)? ... 34

2.9 Herramientas de virtualización, simulación y emulación ... 36

2.10 Sistemas Operativos Instruccionales ... 36

6

2.10.1 OS/161 .. 37

2.10.2 NachOS ... 37

2.10.3 Minix .. 37

2.10.4 GeekOS .. 38

2.10.5 JOS ... 38

2.11 Comparación entre los Sistemas Operativos Instruccionales ... 38

3 Adecuación de Minix 3 a la UCV .. 43

3.1 Laboratorio 0 – Instalación de Minix y entorno de desarrollo .. 43

3.1.1 Motivación ... 43

3.1.2 Objetivos ... 43

3.1.3 Grupo docente .. 43

3.1.4 Estudiantes ... 44

3.1.5 Entregables ... 44

3.1.6 Duración .. 44

3.1.7 Documentación y ayuda ... 44

3.2 Laboratorio 1 – Introducción a Minix 3 ... 44

3.2.1 Motivación ... 44

3.2.2 Objetivos ... 44

3.2.3 Grupo docente .. 44

3.2.4 Estudiantes ... 45

3.2.5 Entregables ... 45

3.2.6 Duración .. 45

3.2.7 Documentación y ayuda ... 45

3.3 Laboratorio 2 – Estudio del proceso de arranque .. 45

3.3.1 Motivación ... 45

3.3.2 Objetivos ... 46

3.3.3 Grupo docente .. 46

3.3.4 Estudiantes ... 46

7

3.3.5 Entregables ... 46

3.3.6 Duración .. 46

3.3.7 Documentación y ayuda ... 46

3.4 Laboratorio 3 – Implementación de un intérprete de comandos ... 47

3.4.1 Motivación ... 47

3.4.2 Objetivos ... 47

3.4.3 Grupo docente .. 47

3.4.4 Estudiantes ... 47

3.4.5 Entregables ... 48

3.4.6 Duración .. 49

3.4.7 Documentación y ayuda ... 49

3.5 Laboratorio 4 – Implementación de llamadas al sistema ... 50

3.5.1 Motivación ... 50

3.5.2 Objetivos ... 50

3.5.3 Grupo docente .. 50

3.5.4 Estudiantes ... 50

3.5.5 Entregables ... 51

3.5.6 Duración .. 51

3.5.7 Documentación y ayuda ... 51

3.6 Laboratorio 5 – Implementación de semáforos ... 51

3.6.1 Motivación ... 51

3.6.2 Objetivos ... 51

3.6.3 Grupo docente .. 52

3.6.4 Estudiantes ... 52

3.6.5 Entregables ... 52

3.6.6 Duración .. 52

3.6.7 Documentación y ayuda ... 52

3.7 Laboratorio 6 – Modificación del planificador de procesos .. 53

8

3.7.1 Motivación ... 53

3.7.2 Objetivos ... 53

3.7.3 Grupo docente .. 53

3.7.4 Estudiantes ... 53

3.7.5 Entregables ... 53

3.7.6 Duración .. 54

3.7.7 Documentación y ayuda ... 54

3.8 La planificación de los laboratorios .. 55

4 Herramientas de desarrollo .. 57

4.1 Lenguaje de programación C ... 57

4.2 VMware Workstation .. 57

4.3 IDE eclipse ... 58

4.4 Camtasia Studio ... 59

4.5 Metodología ... 59

4.5.1 Evaluación y Elección ... 60

4.5.2 Proceso de desarrollo ... 60

4.5.3 Iteraciones ... 61

4.5.4 Iteración 1 ... 62

4.5.5 Iteración 2 y Iteración 3 ... 62

4.5.6 Iteración 4 ... 63

4.5.7 Iteración 5 ... 63

4.5.8 Iteración 6 y Iteración 7 ... 63

4.5.9 Iteración 8 ... 64

5 Instalación de Minix y entorno de desarrollo .. 65

5.1 Instalación de Minix .. 65

5.1.1 Configuración de la máquina virtual ... 65

5.1.2 Instalación de Minix versión 3.1.6 ... 65

5.2 Instalación del entorno de desarrollo ... 66

9

6 Introducción a Minix 3 .. 67

6.1 Sistema Operativo Minix .. 67

6.1.1 La Historia de Minix .. 67

6.1.2 Versiones de Minix .. 68

6.1.3 Acerca de Minix 3.. 69

6.1.4 ¿Es Minix 3 un SO confiable? ... 69

6.1.5 Mejoras sobre Minix 3 ... 71

6.1.6 Objetivos de Minix 3 .. 71

6.1.7 Estructura de Minix 3 .. 71

6.1.8 Ventajas de la arquitectura ... 73

6.1.9 Desventajas de la arquitectura ... 74

6.1.10 ¿Dónde se puede obtener Minix 3? .. 74

6.1.11 Requerimientos necesarios para la instalación de Minix 3. .. 74

7 Estudio del proceso de arranque ... 77

7.1 BIOS (Basic Input Output System) .. 77

7.2 Dispositivos de Almacenamiento ... 77

7.2.1 Unidad de disquete (Floppy). .. 78

7.3 Unidad de disco duro. .. 79

7.4 Modos de direccionamiento de sectores ... 80

7.4.1 CHS (Cylinder Head Sector) ... 80

7.4.2 LBA (Logical Block Addressing).. 81

7.5 Interrupción 0x13 de la BIOS ... 82

7.5.1 INT 0x13, AH = 0x00 ... 82

7.5.2 INT 0x13, AH = 0x02 ... 83

7.5.3 INT 0x13, AH = 0x08 ... 83

7.5.4 INT 0x13, AH = 0x42 ... 84

7.6 Secuencia de arranque .. 85

7.7 Masterboot ... 92

10

7.8 Bootblock ... 99

8 Implementación de un intérprete de comandos ... 107

9 Implementación de llamadas al sistema .. 113

9.1 Llamadas al sistema en Minix 3 ... 113

9.2 Implementación de Llamadas al Sistema .. 116

9.2.1 Funciones relacionadas con llamadas al sistema .. 116

9.2.2 ¿Cómo se crea una llamada al sistema? ... 119

9.2.3 Pasos para crear una llamada al sistema (enfoque directo) .. 120

9.2.4 Llamada al sistema (usando una biblioteca) .. 124

9.2.5 Llamada al sistema (extendida) .. 130

10 Implementación de semáforos ... 137

10.1 Secuencia de inicialización del árbol de procesos en Minix 3 ... 137

10.2 Comunicación entre proceso en Minix 3 .. 139

10.2.1 Mecanismo de paso de mensajes en Minix 3 ... 139

10.3 Sincronización de procesos de usuario en Minix 3 .. 140

10.3.1 Semáforos en Minix 3 ... 141

10.4 Servidor PM ... 143

10.5 Implementación de semáforos Minix 3 .. 146

11 Modificación del planificador de procesos ... 153

11.1 Criterios para la planificación: .. 154

11.2 Algoritmos de planificación .. 155

11.3 Planificación por prioridades .. 155

11.4 Planificación FIFO (First In First Out) .. 156

11.5 Planificación SJF (Shortest Job First) .. 156

11.6 Planificación SRT (Shortest Remaining Time) .. 157

11.7 Planificación RR (Round Robin) .. 157

11.8 Planificación MLQ (Multi-level Queues) ... 158

11.9 Planificación MLFQ (Multi-level Feedback Queues) .. 158

11

11.10 Planificación de procesos en Minix .. 159

11.10.1 Algoritmo de planificación en Minix v3.1.6 .. 160

11.10.2 Desarrollo de ambiente de pruebas sobre el planificador en Minix 162

11.10.3 Manejo de colas de planificación en Minix v3.1.6. .. 165

11.11 Análisis de resultados. ... 166

12 Conclusiones .. 171

12.1 Limitaciones ... 172

12.2 Trabajos futuros ... 173

12.3 Recomendaciones ... 173

13 Referencias .. 175

12

13

Índice de Figuras

Figura 2.1 Capas de un sistema de computación ... 25

Figura 4.1 Metodología de desarrollo de software .. 61

Figura 6.1 Estructura de Minix 3 ... 72

Figura 7.1 Geometría de un disquete .. 78

Figura 7.2 Geometría de un disco duro ... 79

Figura 7.3 Código de INT 0x13, AH = 0x00 .. 82

Figura 7.4 Código de INT 0x13, AH = 0x02 .. 83

Figura 7.5 Código de INT 0x13, AH = 0x08 .. 84

Figura 7.7 Estructura de un disquete. ... 85

Figura 7.6 Código de INT 0x13, AH = 0x42 .. 85

Figura 7.8 Estructura de un disco duro ... 86

Figura 7.9 Diseño de la memoria RAM luego de que Minix ha sido cargado desde el disco 87

Figura 7.10 Proceso de arranque de Minix 3 .. 88

Figura 7.11 Estructura de un disco particionado ... 89

Figura 7.12 Primer sector físico del disco duro ... 92

Figura 7.13 Diseño de una entrada de la tabla de partición ... 92

Figura 7.14 Estructura de la tripla CHS ... 93

Figura 8.1 Código fuente de un Shell simple .. 111

Figura 9.1 Flujo de información en la nueva llamada al Sistema.. 116

Figura 9.2 Función _syscall ... 117

Figura 9.3 Código fuente de lib.h .. 118

Figura 9.4 Función taskcall.c. .. 119

Figura 9.5 prueba_imprimirmsg.c .. 120

Figura 9.6 Código fuente de table.c .. 121

Figura 9.7 Código fuente de table.c (modificado) ... 121

Figura 9.8 Código fuente de proto.h .. 122

Figura 9.9 Código fuente de getset.c .. 123

file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535311
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535312
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535313
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535315
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535323
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535328

14

Figura 9.10 Llamada al sistema usando biblioteca (sencilla) .. 124

Figura 9.11 Estructura message ... 124

Figura 9.12 Código fuente de newcall.c (versión 1) .. 125

Figura 9.13 Código fuente de main.c .. 127

Figura 9.14 Llamada al sistema (extendida) ... 131

Figura 10.1 Flujo de mensajes en Minix 3... 140

Figura 10.2 Estructura del servidor semáforo ... 142

Figura 10.3 Implementación de do_semWait .. 142

Figura 10.4 Implementación de do_semSignal ... 143

Figura 10.5 Código fuente de main.c .. 145

Figura 10.6 Código fuente de main.c (continuación) .. 146

Figura 10.7 Implementación de la estructura cola .. 148

Figura 10.8 prueba_sem_wait.c .. 149

Figura 10.9 prueba_sem_signal.c ... 149

Figura 11.1 Diagrama de planificación .. 154

Figura 11.2 Diagrama de planificación RR (Round Robin) ... 157

Figura 11.3 Diagrama de planificación MLFQ ... 159

Figura 11.5 Código fuente de altaioserver.c ... 163

Figura 11.6 Código fuente de altaiokernel.c.. 163

Figura 11.4 Código fuente de altaiouser.c .. 163

Figura 11.7 Código fuente de altacpuuser.c ... 164

Figura 11.8 Código fuente de altacpuserver.c .. 164

Figura 11.10 Código fuente de /usr/src/kernel/proc.h ... 165

Figura 11.9 Codigo fuente de altacpukernel.c... 165

Figura 11.11 Código fuente de /usr/src/kernel/table.c .. 166

Figura 11.12 Resultados altaiouser.c (16 Colas de planificación) .. 166

Figura 11.13 Resultados altaiouser.c (8 Colas de planificación) .. 167

Figura 11.14 Resultados altaioserver.c (16 Colas de planificación) ... 167

file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535335
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535339
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535340
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535341
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535342
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535343
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535344
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535345
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535346
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535352
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535356
file:///C:\Documents%20and%20Settings\Christian%20Duran\Escritorio\Tesis%202011-04-17_corregido_Dumar.docx%23_Toc292535358

15

Figura 11.15 Resultados altaioserver.c (8 Colas de planificación). .. 167

Figura 11.16 Resultados altaiokernel.c (16 Colas de planificación) ... 167

Figura 11.17 Resultados altaiokernel.c (8 Colas de planificación) ... 168

Figura 11.18 Resultados altacpuuser.c (16 Colas de planificación) ... 168

Figura 11.19 Resultados altacpuuser.c (8 Colas de planificación) ... 168

Figura 11.20 Resultados altacpuserver.c (16 Colas de planificación) .. 168

Figura 11.21 Resultados altacpuserver.c (8 Colas de planificación) .. 169

Figura 11.22 Resultados altacpukernel.c (16 Colas de planificación) .. 169

Figura 11.23 Resultados altacpukernel.c (8 Colas de planificación). ... 169

16

17

Índice de Tablas

Tabla 2.1 Conceptos claves de concurrencia ... 29

Tabla 2.2 Técnicas de gestión de memoria .. 32

Tabla 2.3 Ejemplos de virtualizadores, simuladores y emuladores .. 36

Tabla 2.4 Tabla comparativa de los Sistemas Operativos Instruccionales ... 40

Tabla 3.1 Planificación de los laboratorios por semanas .. 55

Tabla 7.1 Direccionamiento CHS físico ... 80

Tabla 7.2 Direccionamiento CHS lógico .. 80

Tabla 7.3 Fórmula de conversión de CHS a LBA ... 82

Tabla 7.4 INT 0x13, AH = 0x00 ... 82

Tabla 7.5 INT 0x13, AH = 0x02 ... 83

Tabla 7.6 INT 0x13, AH = 0x08 ... 84

Tabla 7.7 INT 0x13, AH = 0x42 ... 84

Tabla 10.1 Componentes de Minix 3 ... 138

18

19

1 Introducción

Las primeras computadoras que surgieron no poseían sistemas operativos, cada programa necesitaba la

especificación completa del hardware y sus propios controladores de dispositivos periféricos para

funcionar correctamente y desempeñar sus tareas; además, la creciente complejidad del hardware y los

programas de usuarios crearon la necesidad de un software que se encargara de los inconvenientes

antes mencionados, en consecuencia surgieron los sistemas operativos. Los cuales se encargan, a groso

modo, de proporcionar a las aplicaciones una interfaz para manejar el hardware de un computador,

convirtiéndose así en una herramienta por excelencia debido al uso masivo por parte de los usuarios de

los computadores. Es por eso que el diseño, desarrollo e investigación de los sistemas operativos han

jugado un rol principal en Ciencias de la Computación.

Hay que tomar en cuenta que, implementar un sistema operativo que permita manejar el hardware,

administrar los recursos computacionales de forma eficiente, habilitar la ejecución de procesos o

aplicaciones independientes a su desarrollo como los programas de usuario, no es una tarea trivial. La

implementación de un sistema operativo es una tarea sumamente complicada que requiere de ciertas

pericias, talentos y buenas prácticas en el área de la programación. Además, de una gran inversión en

capital humano y sobre ellos un excepcional conocimiento en el área. Dada la complejidad de los

sistemas operativos, estudiar el diseño e implementación de los sistemas operativos modernos es una

tarea ardua y difícil, pero necesaria.

El conocimiento de los conceptos de sistemas operativos son considerados importantes en la mayoría de

los pensum académicos referentes a cualquier carrera profesional de computación. En estos cursos se

imparte los conceptos básicos de diseño, implementación y funcionalidad de los mismos. Existen dos

enfoques al impartir dichos conocimientos, el enfoque teórico-abstracto y el práctico. El enfoque

netamente práctico es considerado complejo debido a lo señalado con anterioridad. Por ende, es

necesaria una herramienta que mitigue dicha complejidad. Es por esto que nacen lo sistemas operativos

instruccionales.

Un sistema operativo instruccional es una herramienta educativa que permite el estudio y comprensión de

forma sencilla el diseño, desarrollo e implementación de los principales conceptos y funcionalidades de

un sistema operativo moderno. Este software es un sistema operativo sencillo y en la mayoría de las

veces incompleto, careciendo de ciertas piezas las cuales los estudiantes se encargan de implementar.

Los sistemas operativos instruccionales se desarrollan bajo dos paradigmas, realismo y simulación. El

primero (realismo) nos acerca a lo moderno, pero también a su complejidad. El segundo nos aleja de la

realidad, pero nos añade la sencillez y la facilidad durante el desarrollo de proyectos.

20

Esta investigación pretende proponer un sistema operativo instruccional como apoyo a la enseñanza del

curso de Sistemas Operativos de la Universidad Central de Venezuela de la Facultad de Ciencias de la

Escuela de Computación.

1.1 Planteamiento del problema

Los Sistemas Operativos constituyen un tópico importante en la enseñanza en Ciencias de la

Computación y acorde a la metodología pedagógica utilizada, impartir este conocimiento puede resultar

una tarea compleja. Esta dificultad recae en la abstracción del contenido. Por ende, es necesaria una

herramienta pedagógica que permita unificar los espacios teóricos-prácticos para mitigar la complejidad

de instruir sobre este tópico. Dicha herramienta también debe brindar un entorno que permita al

estudiante interactuar con los conceptos básicos de Sistemas Operativos. Como se dijo con anterioridad

esta pieza de software educativa se conoce como Sistemas Operativos Instruccionales.

En la actualidad, los cursos de Sistemas Operativos de la Universidad Central de Venezuela no cuentan

con una herramienta pedagógica que unifique y permita llevar una planificación consistente entre los

tópicos dictados en las clases de teoría y los desarrollados en los laboratorios. En síntesis, el problema

se refleja en la diacronía de la planificación entre la teoría y la práctica, es decir, no existe ninguna

metodología que permita reforzar ambas dinámicas durante la ejecución del curso. Es importante

destacar que durante los laboratorios y proyectos de la materia se utilizan distintas herramientas para

generar conocimiento, donde los estudiantes deben aprender y manejar múltiples ambientes,

plataformas, arquitecturas, etc., lo que trae como consecuencia que el curso no se centre netamente en

explicar los tópicos de sistemas operativos, ya que debe invertir parte del tiempo en explicar el

funcionamiento de cada ambiente. En conversaciones con el grupo docente se ha establecido la

necesidad de utilizar herramientas con la finalidad de mejorar el desempeño estudiantil y la didáctica de

los docentes. Con todos estos lineamientos discutidos surge la siguiente interrogante: ¿Es posible

incorporar una herramienta educativa que permita ser adaptada al curriculum académico de los

cursos de Sistemas Operativos para reforzar los tópicos dictados en las clases teóricas?

1.2 Objetivos

A continuación se describen el objetivo general y los objetivos específicos planteados para este trabajo

especial de grado.

1.2.1 Objetivo general

Adaptar al Sistema Operativo Instruccional Minix versión 3 en cuanto al contenido y objetivos de los

cursos de Sistemas Operativos de la Escuela de Computación en la Universidad Central de Venezuela,

con el fin de optimizar el proceso de aprendizaje de los estudiantes.

21

1.2.2 Objetivos específicos

 Definir la estructura de los laboratorios a impartir en el curso de SO.

 Adecuar el SOI Minix versión 3 a los laboratorios definidos con anterioridad.

 Determinar las actividades docentes a realizar en cada uno de los laboratorios soportados por el

SOI Minix versión 3.

 Desarrollar las plantillas, solución y documentación de las actividades planteadas.

 Realizar pruebas de correctitud sobre el SOI Minix versión 3 y sus componentes.

 Documentar el proceso de adecuación de la herramienta.

1.3 Justificación

Los Sistemas Operativos Instruccionales son ampliamente usados en varias universidades, como

Stanford, MIT, Berkeley, Harvard entre otras. Basados en este hecho surgen las preguntas: ¿Por qué?,

esto se debe a que se ha comprobado la eficacia como herramienta pedagógica, ya que permite a los

estudiantes implementar partes estratégicas de un sistema operativo, siendo una buena práctica de

estudio; ¿Cómo? mejorando los aspectos didácticos relacionados a los cursos tradicionales de Sistemas

Operativos, ofreciendo a docentes y estudiantes una herramienta capaz de estructurar los aspectos

prácticos relacionados al curso. Estas herramientas instruccionales permiten enseñar los conceptos más

importantes de los sistemas operativos mediante la modificación de un pequeño sistema operativo.

Además, provee la unificación de la práctica en una sola herramienta. Esto se debe a que los sistemas

operativos instruccionales proveen de una serie proyectos que pretenden enseñar cada tópico relevante

del pensum de estudio del curso.

Específicamente, en la Universidad Central de Venezuela, en la materia Sistemas Operativos de la

Escuela de Computación, no se cuenta con una herramienta educativa de este estilo. Asimismo, en sus

espacios prácticos no existe una estructura lineal que permita mejorar la comprensión del alumnado

sobre los aspectos básicos de sistemas operativos. Por todas las razones anteriormente expuestas, este

Trabajo Especial de Grado busca suplir este déficit. Para lograrlo se plantea adaptar un sistema operativo

instruccional que permita ser fuente generadora de conocimientos teóricos-prácticos.

1.4 Distribución del documento

El contenido de cada uno de los capítulos que integran este documento es el siguiente:

 Capítulo 1: Introducción. Se esboza el contexto de la investigación, permitiéndole al lector

ubicarse rápidamente en los temas a tratar y la finalidad de la misma. Asimismo se expone la

justificación, objetivos y planteamiento del problema de esta investigación.

 Capítulo 2: Marco teórico. Se introducen los principales conceptos asociados a sistemas

operativos. Además, en este capítulo se abarcan las definiciones de un sistema operativo

22

instruccional, las herramientas de virtualización, simulación y emulación; los sistemas operativos

instruccionales más usados (1), y una tabla comparativa de los mismos. Luego se explica los

motivos por los cuales el sistema operativo Minix 3 fue elegido para ser adecuado al curso de

Sistemas Operativos de la UCV.

 Capítulo 3: Adecuación de Minix 3 a la UCV. En esta sección serán descritos todos los

laboratorios propuestos para la adecuación de Minix 3 al curso de Sistemas Operativos de la

Escuela de Computación de la Universidad Central de Venezuela. Para cada laboratorio

propuesto se desarrollan los siguientes puntos: motivación, objetivos, grupo docente, estudiantes,

entregables, duración, terminando con la documentación y ayuda. Luego se expone una simple

tabla con la planificación de los laboratorios por semana propuesta por esta investigación.

 Capítulo 4: Herramientas de desarrollo. Se describen los sistemas operativos y aplicaciones

utilizadas para la adecuación del SOI Minix 3 al curso de Sistemas Operativos de pregrado de la

Universidad Central de Venezuela. Para concluir este capítulo se muestra la metodología

utilizada para el desarrollo de la herramienta educativa, especificando la misma por cada

laboratorio propuesto.

 Capítulo 5: Instalación de Minix y entorno de desarrollo. Este laboratorio esta diseñado para

sentar las bases de las herramientas necesarias para desarrollar a lo largo del curso todos los

laboratorios propuestos por el grupo docente. Este es un punto clave ya que permite engranar

todas las aplicaciones y el sistema operativo instruccional Minix 3 para facilitar en gran medida el

desarrollo de la implementación de los laboratorios. Serán descritos los pasos que se dieron para

la instalación de Minix versión 3.1.6, así como también para armar y configurar el entorno de

desarrollo.

 Capítulo 6: Introducción a Minix 3. Se realiza una breve descripción del sistema operativo

Minix, resaltando puntos como su historia, estructura, características, objetivos, ventajas,

desventajas, entre otros.

 Capítulo 7: Proceso de arranque. En este capítulo se presenta los conceptos asociados al

proceso de arranque del computador. Además, se estudia a fondo los pasos del proceso de

arranque, desde la perspectiva del diseño en el sistema operativo minix versión 3.1.6, también se

muestra una documentación a fondo de programas involucrados para dicho proceso.

 Capítulo 8: Implementación de un intérprete de comandos simple. Para comprender la

importancia de estas llamadas se propone un laboratorio que implemente el uso de las mismas,

el cual se propone realizar un intérprete de comandos simple.

 Capítulo 9: Implementación de llamadas al sistema. La idea principal es comprender el

esquema de funcionamiento y pasos a seguir para implementar las posibles llamadas al sistema

en el sistema operativo Minix versión 3.1.6.

 Capítulo 10: Implementación de semáforos. Se muestra los mecanismos de concurrencia y

23

sincronización usados por Minix versión 3.1.6. Como caso de estudio se implementa semáforos

en Minix, explicando el diseño y pasos a seguir para obtener la solución.

 Capítulo 11: Modificación del planificador de procesos. Se enseña el diseño y funcionamiento

del planificador de la CPU (Central Processing Unit) en el sistema operativo Minix versión 3.1.6.

También, se explica cómo modificar los elementos de diseño del planificador, lo cual permite

evaluar a través de ciertos parámetros los ambientes generados, diagnosticando el rendimiento

de cada uno de estos ambientes.

 Capítulo 12: Conclusión. En este capítulo se presenta las conclusiones encontradas durante el

desarrollo de este Trabajo Especial de Grado, indicando si se alcanzaron o no los objetivos

propuestos anteriormente descritos. Además, se indican de una serie de recomendaciones para

posibles trabajos futuros que se puedan iniciar a partir de esta investigación y sus limitantes.

 Capítulo 13: Referencias. Contiene el conjunto de fuentes utilizadas y/o consultadas para la

realización de este documento.

24

25

2 Marco teórico

En este capítulo se pretende introducir los principales conceptos asociados a la investigación, los cuales

permitirán al lector ubicarse en el contexto deseado para un mayor entendimiento de los conocimientos y

de la importancia de este trabajo especial de grado. Básicamente se habla de los sistemas operativos y

de los sistemas operativos instruccionales; haciendo especial énfasis en el sistema operativo

instruccional Minix 3 debido a que es la base fundamental de la investigación, destacando su historia,

objetivos, estructura, ventajas, desventajas, entre otros.

2.1 Sistema Operativo

Un Sistema Operativo (SO) es un programa que siempre está en ejecución, el cual administra el

hardware de una computadora con el objetivo de ser versátil, de fácil uso, eficiente y tener la capacidad

para evolucionar (2); las preguntas que surgen luego de esa premisa es para quién y cómo hace ésta

administración. Básicamente la administración la hace para los usuarios finales del hardware (3).

Específicamente la hace para las aplicaciones que usan los usuarios, por eso es que también se dice que

un SO es una capa de abstracción entre el hardware y el software (4). El usuario de dichas aplicaciones,

es decir, el usuario final, normalmente no se preocupa por los detalles del hardware del computador. Por

tanto, el usuario final ve un sistema de computación en términos de un conjunto de aplicaciones (5). Para

tener una idea ilustrada puede ver gráficamente en la Figura 2.1.

Hardware del computdor

Sistema Operativo

Utilidades

Programas de aplicación

Lenguaje de máquina

Compiladores Editores Intreprete de comandos

Hardware

Programas

del sistema

Usuario

1

Usuario

2

Usuario

3

Usuario

n Usuarios

finales

Figura 2.1 Capas de un sistema de computación

Una de las principales tareas de un SO es proporcionar un conjunto de primitivas para ser utilizadas por

las aplicaciones. De forma resumida, estas primitivas proporcionan servicios en las siguientes áreas:

 Ejecución de programas: Se necesita realizar una serie de pasos para ejecutar un programa. Las

instrucciones y los datos se deben cargar en memoria principal. Los dispositivos de E/S y los

archivos se deben inicializar, y otros recursos deben prepararse. Los SO realizan estas labores

de planificación para el usuario.

26

 Desarrollo de programas: proporciona una variedad de utilidades y servicios, tales como editores

y depuradores, para ayudar al programador en el desarrollo de programas.

 Acceso a dispositivos de E/S: proporciona una interfaz uniforme que oculta los detalles de forma

que los programadores y usuarios puedan acceder a dichos dispositivos utilizando lecturas y

escrituras sencillas.

 Acceso a archivos: se debe tener una compresión detallada no sólo de la naturaleza del

dispositivo de E/S, sino también de la estructura de los datos contenidos en los archivos del

sistema de almacenamiento.

 Acceso al sistema: Acceso al sistema y recursos, brindando protección a los recursos y datos,

evitando el uso no autorizado de los usuarios.

 Detección y respuesta a errores: Debe mantener un ambiente consistente al ocurrir cualquier

error. Algunas de las acciones tomadas pueden oscilar entre finalizar el programa que causó el

error hasta reintentar la operación, o simplemente informar del error.

 Contabilidad: Un buen sistema operativo recolecta estadísticas de uso de los diferentes recursos

y monitorea los parámetros de rendimiento.

2.2 Llamadas al sistema

La interfaz entre el sistema operativo y los programas de usuario está definida por un conjunto de

“operaciones extendidas” ofrecidas por el sistema operativo. Estas operaciones se definen como

llamadas al sistema, en sí, son mecanismos por el cual un proceso solicita un servicio del núcleo (2) (3).

Estas llamadas proveen funcionalidades adicionales a la aplicación, las cuales solo pueden ser

ejecutadas en modo núcleo. Es decir, las funcionalidades de cierta manera permiten a las aplicaciones

realizar un número mayor de operaciones, ya que éstas sólo se ejecutan en modo usuario.

Por encima del sistema operativo está el resto del software del sistema. Aquí se encuentra el intérprete

de comandos (también conocido como Shell), los sistemas de ventanas, los compiladores, los editores y

los demás programas independientes de la aplicación, como puede observarse en la Figura 2.1. Es

importante darse cuenta de que ciertamente estos programas no son parte del sistema operativo. Éste es

un punto crucial, pero sutil. El sistema operativo es (usualmente) la porción del software que se ejecuta

en modo núcleo o modo supervisor, en el cual se pueden ejecutar instrucciones privilegiadas y se puede

acceder a áreas de memoria protegida y a los dispositivos externos. Estas instrucciones conmutan la

máquina del modo de usuario al modo núcleo y transfiere el control al sistema operativo. Es importante

saber en su mayoría las CPUs tienen dos modos: modo núcleo para el SO, en el que permite todas las

instrucciones y el modo usuario. El modo usuario es denominado así porque los programas de usuarios

se ejecutan típicamente en este modo, es un modo que no tiene los privilegios del modo núcleo, con

restricciones para acceder a ciertas áreas de memoria y ejecutar ciertas instrucciones.

27

2.3 Procesos e Hilos

Todas las computadoras modernas pueden realizar diferentes funcionalidades al mismo tiempo. Mientras

ejecuta un programa de usuario, una computadora también puede estar leyendo de un disco y enviando

texto a una pantalla o impresora. En un sistema de multiprogramación, la CPU también cambia de un

programa a otro, ejecutando cada uno durante decenas de milisegundos. Si bien, estrictamente

hablando, en un instante dado la CPU está ejecutando sólo un programa (suponiendo que solo tiene un

procesador), en el curso de un segundo puede trabajar con varios programas, dando a los usuarios la

ilusión de paralelismo. A veces se usa el término de seudoparalelismo para referirse a esta rápida

conmutación de la CPU entre programas, para distinguirla del verdadero paralelismo de hardware de los

sistemas multiprocesador (2) (3).

El concepto de proceso es fundamental en la estructura de los SO. Cada proceso tiene asociado un

espacio de direcciones, una lista de posiciones de memoria desde algún mínimo hasta algún máximo,

que el proceso puede leer y escribir. El espacio de direcciones contiene el programa ejecutable, los datos

del programa, y su pila. A cada proceso también se asocia un conjunto de registros, que incluyen el

contador del programa, el apuntador de la pila y otros registros de hardware. Así, como todo la demás

información necesaria para ejecutar el programa. Este término de proceso tiene muchas definiciones en

las cuales tenemos:

 Un programa en ejecución, que conceptualmente tiene su CPU virtual.

 Una instancia de un programa ejecutándose en un procesador.

 La entidad que se puede asignar o ejecutar en un procesador.

 Una unidad de actividad caracterizada por un solo hilo secuencial de ejecución, un estado actual,

y un conjunto de recursos del sistema asociados.

Cada proceso tiene las siguientes dos características:

 Propiedad de recursos: Un proceso incluye un espacio de direcciones virtuales para el manejo de

la imagen del proceso; la imagen de un proceso es la colección de programa, datos, pila y

atributos definidos en el bloque de control del proceso. En ciertas ocasiones un proceso se le

puede asignar control o propiedad de recursos tales como la memoria principal, dispositivos E/S y

archivos. El sistema operativo realiza la función de protección para evitar interferencias no

deseadas entre procesos en relación con los recursos.

 Planificación/ejecución: Un proceso tiene un estado de ejecución y una prioridad de activación, la

cual es dependiente del algoritmo de planificación del sistema operativo.

28

2.4 Exclusión mutua

Hay que denotar que el sistema operativo busca coordinar las diversas actividades que la

multiprogramación
1
provee, lo que resulta ser una tarea sumamente difícil. Por ende el sistema operativo

debe lidiar y resolver las siguientes situaciones o problemas:

 Inapropiada sincronización: ocurre cuando existen fallas en el mecanismo de señalización,

provocando que las señales se pierdan o se reciban duplicadas.

 Violación de la exclusión mutua: ocurren cuando programas intentan acceder simultáneamente a

recursos compartidos y dichos accesos no son controlados.

 Interbloqueos: es posible que dos o más programas queden bloqueados esperándose entre sí.

La concurrencia es fundamental en todas estas áreas y en el diseño del sistema operativo. La

concurrencia abarca varios aspectos, entre los cuales están la comunicación entre procesos, la

compartición o competencia por recursos, y la sincronización de actividades de múltiples procesos. Hay

que tomar en cuenta que todos estos asuntos no sólo suceden en el entorno del multiprocesamiento y el

procesamiento distribuido, sino también en sistemas monoprocesador multiprogramados. Los principales

conceptos de exclusión mutua son descritos en la Tabla 2.1 (2).

sección crítica

Sección de código dentro de un proceso que requiere acceso a recursos

compartidos y que no puede ser ejecutada mientras otro proceso esté en dicha

sección de código, es decir, sólo un proceso puede ejecutarla a la vez.

interbloqueo
Situación en la cual dos o más procesos son incapaces de actuar porque cada

uno está esperando que alguno de los otros haga algo.

círculo vicioso
Situación en la cual dos o más procesos cambian continuamente su estado en

respuesta a cambios en los otros procesos, sin realizar ningún trabajo útil.

exclusión mutua

Hace referencia a la condición que define el uso simultáneo de recursos

comunes, como variables globales, por fragmentos de código conocidos como

secciones críticas.

condición de carrera

Situación en la cual múltiples hilos o procesos leen y escriben un dato

compartido y el resultado final depende de la coordinación relativa de sus

ejecuciones.

1
 Multiprogramación: gestión de múltiples procesos dentro de un sistema monoprocesador.

29

inanición

Situación en la cual un proceso preparado para avanzar es ignorado

indefinidamente por el planificador; aunque es capaz de avanzar, nunca se le

escoge.

Tabla 2.1 Conceptos claves de concurrencia

2.4.1 Semáforos

En esta sección se describen los mecanismos usados por el sistema operativo y lenguajes de

programación para proporcionar concurrencia. El primer avance fundamental en el tratamiento de los

problemas de programación concurrente fue realizado por Dijkstra. Él estaba involucrado en el diseño de

un sistema operativo representado como una colección de procesos secuenciales cooperantes, además,

con el desarrollo de mecanismos eficientes y fiables para dar soporte a la cooperación.

Dijkstra plantea en su avance que dos o más procesos pueden cooperar por medio de simples señales,

tales que un proceso pueda ser obligado a parar en un lugar específico hasta que haya recibido una

señal específica. Cualquier requisito complejo de coordinación puede ser satisfecho con la estructura de

señales apropiada. Para la señalización, se utilizan unas variables especiales llamadas semáforos. Para

transmitir una señal vía el semáforo S, el proceso ejecutará la primitiva semSignal(S). Para recibir una

señal vía el semáforo s, el proceso ejecutará la primitiva semWait(S); si la correspondiente señal no se ha

transmitido todavía, el proceso se suspenderá hasta que la transmisión tenga lugar. Para conseguir el

efecto deseado, el semáforo puede ser visto como una variable que contiene un valor entero sobre el

cual sólo están definidas tres operaciones:

 Un semáforo puede ser inicializado a un valor no negativo.

 La operación semWait(S) decrementa el valor del semáforo. Si el valor pasa a ser negativo,

entonces el proceso que está ejecutando semWait(S) se bloquea. En otro caso, el proceso

continúa su ejecución.

 La operación semSignal(S) incrementa el valor del semáforo. Si el valor es menor o igual que

cero, entonces se desbloquea uno de los procesos bloqueados en la operación semWait(S).

2.5 Gestión de memoria

Mientras se analizan varios mecanismos y políticas asociados con la gestión de la memoria, es útil

mantener en mente los requisitos que la gestión de la memoria debe satisfacer. Se sugieren cinco

requisitos:

 Reubicación.

 Protección.

 Compartición.

30

 Organización lógica.

 Organización física.

2.5.1 Reubicación

En un sistema multiprogramado, la memoria principal disponible se comparte generalmente entre varios

procesos. Es una buena práctica poder intercambiar procesos en la memoria principal para maximizar la

utilización del procesador, proporcionando un gran número de procesos para la ejecución. Una vez que

un programa se ha llevado al disco, sería bastante limitante tener que colocarlo en la misma región de

memoria principal donde se hallaba anteriormente, cuando éste se trae de nuevo a la memoria. Es por

esto que nace la reubicación, que hace referencia al hecho de poder localizar a los programas para su

ejecución en diferentes zonas de memoria.

2.5.2 Protección

Cada proceso debe protegerse contra interferencias no deseadas por parte de otros procesos, sean

accidentales o intencionadas. Por tanto, los programas de otros procesos no deben ser capaces de

referenciar sin permiso posiciones de memoria de un proceso, tanto en modo lectura como escritura. Por

un lado, lograr los requisitos de la reubicación incrementa la dificultad de satisfacer los requisitos de

protección. Por tanto, todas las referencias de memoria generadas por un proceso deben comprobarse

en tiempo de ejecución para poder asegurar que se refieren sólo al espacio de memoria asignado a dicho

proceso. Afortunadamente, los mecanismos que dan soporte a la reasignación también dan soporte al

requisito de protección.

2.5.3 Compartición

Cualquier mecanismo de protección debe tener la flexibilidad de permitir a varios procesos acceder a la

misma porción de memoria principal. Por ejemplo, si varios procesos están ejecutando el mismo

programa, es ventajoso permitir que cada proceso pueda acceder a la misma copia del programa en

lugar de tener su propia copia separada. Así como también, los procesos que estén cooperando en la

misma tarea podrían necesitar compartir el acceso a la misma estructura de datos. Por tanto, el sistema

de gestión de la memoria debe permitir el acceso controlado a áreas de memoria compartidas sin

comprometer la protección esencial.

2.5.4 Organización lógica

Casi invariablemente, la memoria principal de un computador se organiza como un espacio de

almacenamiento lineal o unidimensional, compuesto por una secuencia de bytes o palabras. A nivel

físico, la memoria secundaria está organizada de forma similar. Mientras que esta organización es similar

al hardware real de la máquina, no se corresponde a la forma en la cual los programas se construyen

normalmente.

31

2.5.5 Organización física

La memoria del computador se organiza en al menos dos niveles, conocidos como memoria principal y

memoria secundaria. La memoria principal proporciona acceso rápido a un coste relativamente alto.

Adicionalmente, la memoria principal es volátil; es decir, no proporciona almacenamiento permanente. La

memoria secundaria es más lenta, más barata que la memoria principal y normalmente no es volátil.

2.5.6 Particionamiento de la memoria

La tarea de mover la información entre los dos niveles de la memoria debería ser una responsabilidad del

sistema. Esta tarea es la esencia de la gestión de la memoria. Las principales técnicas de gestión de

memoria están descritas en la Tabla 2.2 (2).

Técnica Descripción Ventajas Desventajas

Particionamiento

fijo

La memoria principal se divide en

particiones estáticas. Un proceso se

puede cargar en una partición con

igual o superior tamaño.

Sencilla de implementar,

poca sobrecarga para el

sistema operativo.

Uso ineficiente de la

memoria, debido a la

fragmentación

interna.

Particionamiento

dinámico

Las particiones se crean de forma

dinámica, de tal forma que cada

proceso se carga en una partición del

mismo tamaño que el proceso.

No existe fragmentación

interna, uso más eficiente de

memoria principal.

Uso ineficiente del

procesador, debido a

la necesidad de

compactación para

evitar la

fragmentación

externa.

Paginación

sencilla

La memoria principal se divide en

marcos del mismo tamaño. Cada

proceso se divide en páginas del

mismo tamaño que los marcos. Un

proceso se carga a través de la carga

de todas sus páginas en marcos

disponibles, no necesariamente

contiguos.

No existe fragmentación

externa.

Una pequeña

cantidad de

fragmentación

interna.

Segmentación

sencilla

Cada proceso se divide en

segmentos. Un proceso se carga

cargando todos sus segmentos en

particiones dinámicas, no

necesariamente contiguas.

No existe fragmentación

interna; mejora la utilización

de la memoria y reduce la

sobrecargada respecto al

particionamiento dinámico.

Fragmentación

externa.

32

Paginación con

memoria virtual

Exactamente igual que la paginación

sencilla, excepto que no es necesario

cargar todas las páginas de un

proceso. Las páginas no residentes

se traen bajo demanda de forma

automática.

No existe fragmentación

externa; mayor grado de

multiprogramación; gran

espacio de direcciones

virtuales.

Sobrecarga por la

gestión compleja de

la memoria.

Segmentación

con memoria

virtual

Exactamente igual que la

segmentación, excepto que no es

necesario cargar todos los segmentos

de un proceso. Los segmentos no

residentes se traen bajo demanda de

forma automática.

No existe fragmentación

interna; mayor grado de

multiprogramación; gran

espacio de direcciones

virtuales; soporte a

protección y compartición.

Sobrecarga por la

gestión compleja de

la memoria.

Tabla 2.2 Técnicas de gestión de memoria

2.6 Sistemas de archivos

Desde el punto de vista del usuario, una de las partes más importantes de un sistema operativo es el

sistema de archivos. El sistema de archivos proporciona las abstracciones de recursos típicamente

asociadas con el almacenamiento secundario. El sistema de archivos permite a los usuarios administrar

los archivos, los cuales tienen las siguientes propiedades:

 Existencia a largo plazo: Los archivos se almacenan en disco u otro almacenamiento secundario

y no desaparece cuando un usuario se desconecta.

 Compartible entre procesos: Los archivos tienen nombres y pueden tener permisos de acceso

asociados que permitan controlar la compartición.

 Estructura: Dependiendo del sistema de archivos, un archivo puede tener una estructura interna

que es conveniente para aplicaciones particulares. Adicionalmente, los archivos se pueden

organizar en estructuras jerárquicas o más complejas para reflejar las relaciones entre los

mismos.

El sistema de archivos además de almacenar los datos organizados como archivos, también provee una

colección de funciones que se pueden llevar a cabo sobre los archivos. Algunas operaciones son las

siguientes:

 Crear: Se define un nuevo archivo y se posiciona dentro de la estructura de archivos.

 Borrar: Se elimina un archivo de la estructura de archivos y se destruye.

 Abrir: Un archivo existente se declara «abierto» por un proceso, permitiendo al proceso realizar

funciones sobre dicho archivo.

33

 Cerrar: Un determinado proceso cierra un archivo, de forma que no puede volver a realizar

determinadas funciones sobre el mismo, a no ser que vuelva a abrirlo.

 Leer: Un proceso lee de un archivo todos los datos o una porción de ellos.

 Escribir: Un proceso actualiza un archivo, bien añadiendo nuevos datos que expanden el tamaño

del archivo, bien cambiando los valores de elementos de datos existentes en el archivo.

Típicamente, un sistema de archivos mantiene un conjunto de atributos asociados al archivo. Estos

incluyen el propietario, tiempo de creación, tiempo de última modificación, privilegios de acceso, etc.

2.7 Herramientas de enseñanza en Sistemas Operativos.

En algunas casas de estudios las clases de pregrado de sistemas operativos se han impartido

tradicionalmente usando sistemas operativos instruccionales. Estos sistemas operativos están destinados

a ser simples y de fácil entendimiento, a su vez ellos carecen intencionalmente de ciertas piezas que los

estudiantes deben implementar y les sirven como ejercicios (6).

Los sistemas operativos constituyen uno de los tópicos más importantes y complejos de enseñar en

cualquier pensum de estudio en las Ciencias de la Computación. Los conceptos y definiciones asociados

a su contenido representan un reto para la metodología educativa a utilizar, cuyo objetivo primordial es

ofrecer al estudiante los conocimientos para comprender y manejar los principios básicos en los que se

fundamenta el diseño e implementación de los sistemas operativos modernos (7).

Con la finalidad de mejorar el desempeño estudiantil y la pedagogía de un curso de pregrado de sistemas

operativos surge la necesidad de utilizar una herramienta educativa. Ésta herramienta debe permitir a

cada uno de los distintos actores participar en un experiencia completa en el diseño, desarrollo y

evaluación referente a los tópicos primordiales dictados en los espacios teóricos-prácticos del curso.

A la hora de enseñar al estudiante los tópicos de los sistemas operativos, el instructor debe decidir qué

tipo de tareas realizarán los estudiantes. Estas asignaciones pueden ser puramente teóricas como

preguntas y respuestas sobre los temas. Alternativamente, un instructor puede optar por proveer tareas

prácticas. Hay una serie de posibilidades para las asignaciones de programación. Una de ellas involucra

los conceptos relacionados con los sistemas operativos sin tener que incluir la programación de un

sistema operativo. Por ejemplo, los estudiantes podrían plantear una solución al problema de la cena de

los filósofos. Sin embargo, lo ideal sería que los estudiantes puedan tener asignaciones para modificar o

desarrollar un sistema operativo; la pregunta que surge es ¿Sobre cuál sistema operativo deberían

trabajar los estudiantes?

La solución obvia es crear un sistema operativo “pequeño” que posea las características básicas

asociadas a las estructuras computacionales modernas, conceptos, diseños, además que sirva como

34

plataforma educativa, más que como un fin totalmente funcional. A estos los llamaremos sistemas

operativos instruccionales (1).

Durante las últimas dos décadas el uso de este material didáctico se ha convertido en el medio de

concepción, generación y aceptación de conocimiento sobre los diferentes paradigmas que sustentan a

los sistemas operativos modernos. Lo cual presenta una problemática mayor, como manejar el

crecimiento exponencial de estas piezas de software y como mantener las herramientas educativas

actualizadas para que puedan explicar los nuevos enfoques científicos y tecnológicos de la computación,

por supuesto sin alterar ni romper los límites académicos del curso
2
.

2.8 ¿Qué es un Sistema Operativo Instruccional (SOI)?

Los cursos de pregrado de sistemas operativos generalmente se enseñan utilizando uno de dos

enfoques: abstracto o concreto. En el enfoque abstracto, los estudiantes aprenden los conceptos

subyacentes a la teoría de los sistemas operativos, y los aplican utilizando hilos a nivel de usuario en un

sistema operativo anfitrión. En el enfoque concreto, los estudiantes aplican los conceptos para trabajar

sobre un verdadero núcleo de sistema operativo. En la más pura manifestación del enfoque concreto, los

estudiantes ponen en práctica los proyectos de sistemas operativos que se ejecutan en hardware real (8).

Un sistema operativo instruccional es un software que tiene como objetivo enseñar los conceptos más

importantes de sistemas operativos mediante el diseño e implementación de las funciones que permiten

desempeñar el trabajo del mismo a través de un enfoque concreto (7) (6). Esto se logra mediante un

conjunto de asignaciones las cuales los estudiantes deben implementar para desarrollar o mejorar el

sistema operativo instruccional (1). Finalmente, se desea que estos sistemas operativos sean lo

suficientemente realistas como para mostrar cómo funcionan los sistemas operativos reales e igualmente

sean bastante simples para que los estudiantes puedan comprenderlo y modificarlo de manera

significativa sin mayores dificultades
1
.

Estos sistemas operativos instruccionales están destinados a ser utilizado en cursos de enseñanza de

sistemas operativos. Los objetivos y mecanismos planteados por estos sistemas operativos se basan en

un conjunto de asignaciones que permiten desarrollar o mejorar el sistema operativo instruccional.

Permitiendo obtener la comprensión de la carga cognitiva de los aspectos teóricos en un ambiente o

entorno de programación sencillo y amigable que garantice el desarrollo sustentable de conocimiento.

Por ejemplo, la asignación de técnicas de programación concurrente permitiría afianzar los puntos

primordiales asociados a la concurrencia de procesos, o en otros casos con un enfoque más real

2
 “The NachOS Instructional Operating System” - http://techreports.lib.berkeley.edu/

http://techreports.lib.berkeley.edu/

35

podríamos modificar algún código asociado al manejo de procesos en el núcleo de nuestro sistema

operativo para verificar y comprender su comportamiento.

Durante las últimas dos décadas el desarrollo de los sistemas operativos ha aumentado generando un

extenso número de variantes, ya sean tanto propietarias como de código abierto. Lo que permite escoger

al más adecuado dentro de un catálogo de posibilidades con la finalidad de estudiarlo, analizarlo y

modificarlo. Los proyectos reales de los sistemas operativos modernos, su complejidad y desarrollo son

tan avanzados que pueden suprimir el objeto mismo de estudio y convertir la experiencia de aprendizaje

en una pesadilla engorrosa de miles de líneas de código fuente.

Antes de seleccionar un sistema operativo instruccional para el estudio o incluso para la creación de uno

se está en la obligación de revisar un poco la historia y los proyectos correspondientes a este tipo de

software educativo. También se debe considerar ciertos aspectos que permitirán tener una visión clara y

objetiva. Una de las problemáticas en torno a estas herramientas parten sobre las plataformas

soportadas y a su vez sobre como lo hacen. Desconocer la interacción existente entre el sistema

operativo y el hardware con el que se comunica puede originar un fuerte impacto sobre los estudiantes

durante la fase de obtención y generación de conocimiento; esto debido a que gran parte de la

comunicación hacia los dispositivos se lleva a cabo a través de lenguaje ensamblador. Por ser un entorno

de programación muy distinto a los usualmente utilizados puede causar en el estudiante desmotivación al

momento de generar un proyecto de sistema operativo.

Entre los componentes de hardware el CPU se le otorga mayor importancia por ser el principal dispositivo

en el computador moderno, dentro de la alta gama de procesadores en el mercado el más común entre

ellos es la familia de procesadores Intel x86 o x86-64, esta realidad hace necesario que los estudiantes

conozcan y dominen este tipo de arquitectura, pero presenta una desventaja debido a que dicho

procesador posee un amplio conjunto de instrucciones que le permiten mayor robustez, pero

inevitablemente mayor complejidad en su uso. Este hecho hace pensar en arquitecturas con menor

complejidad, como la ofrecida por los procesadores MIPS (Microprocessor without Interlocked Pipeline

Stages), cuya principal adversidad se presenta en la escasez de recursos y de herramientas suficientes

para su gestión (1).

Dependiendo del planteamiento seleccionado también se debe tomar en cuenta que tipo de interacción

se le ofrecerá al estudiante con respecto al hardware. Trabajar directamente con el hardware puede

acarrear ciertas desventajas tanto en el ámbito educativo como en la parte asociada a la programación,

además, estos conceptos se encuentran fuera de los tópicos básicos de sistemas operativos. Una

solución que permite evitar esta problemática es manejar emuladores, los cuales permiten establecer una

nueva capa de interacción entre el sistema operativo y el hardware o arquitectura del computador.

36

2.9 Herramientas de virtualización, simulación y emulación

El hardware x86 actual está diseñado originalmente para ejecutar un único sistema operativo y al menos

una aplicación, pero la virtualización ha acabado con estas limitaciones haciendo posible la ejecución

concurrente de varios sistemas operativos, y varias aplicaciones en el mismo computador, aumentando

con ello la utilización y la flexibilidad del hardware.

Básicamente, la virtualización permite transformar hardware en software. Utilizar software para

transformar o virtualizar los recursos de hardware de un computador x86, incluidos CPU, RAM, disco

duro, y controlador de red; para crear una máquina virtual completamente funcional que puede ejecutar

su propio sistema operativo y aplicaciones de la misma forma que lo hace un computador “real”.

Un emulador es en sí un programa que crea una capa extra entre una plataforma existente (plataforma

anfitrión) y la plataforma a ser reproducida (plataforma de objetivo)
3
. A menudo es confuso distinguir entre

un emulador y un simulador. Normalmente, un emulador se ejecuta en el hardware (aunque también se

puede ejecutar sobre software), mientras que un simulador se implementa en el software. Por ejemplo, un

emulador de router se utiliza para probar el rendimiento o errores en el hardware y software del router.

Los errores pueden incluir los tiempos de reloj, los problemas en la secuenciación de instrucciones, y la

prueba de velocidad. Un simulador se implementa solamente en el software. Como resultado, no tendrá

la capacidad de emular el entorno de hardware, tales como los tiempos de reloj, simuladores de las

pruebas de velocidad, etc. son relativamente lentos, ya que se ejecutan en el software
4
.

 Ejemplos

virtualizador OpenVZ, VMWare, VirtualBox, Virtuozzo, etc.

simulador Simics, SPIM, etc.

emulador Bochs, DOSBox, E/OS (Emulator Operating System), Qemu, etc.

Tabla 2.3 Ejemplos de virtualizadores, simuladores y emuladores

2.10 Sistemas Operativos Instruccionales

Varias universidades han desarrollado sus propias herramientas educativas, conocidas como sistemas

operativos instruccionales. Cada una de estas se han adecuado al enfoque u objetivos planteados por las

mismas. Es por ello que a lo largo del tiempo han ido creando, evolucionando o mejorando más

herramientas de este estilo. Existen distintos proyectos los más comunes se describen a continuación:

3
 “What is emulation?” - http://www.kb.nl/

4
 “Router Simulator Vs. Emulator” - http://routersimulator.certexams.com/

http://www.kb.nl/
http://routersimulator.certexams.com/

37

2.10.1 OS/161

Fue desarrollado en la Universidad de Harvard por David Holland para ser utilizado como herramienta

educativa en los cursos de sistemas operativos de esta casa de estudios superiores. Los objetivos en su

desarrollo fueron proporcionar un entorno de ejecución realista; facilitar la depuración y mantener la

simplicidad. OS/161 hace el intento de simular un sistema operativo real, y al mismo tiempo ser lo

suficientemente simple para ser manejado por estudiantes de pregrado. Es intencionadamente similar a

BSD Unix en la organización y estructura. Viene con una docena o más de los comandos básicos de Unix

y permite utilizar una interfaz para las llamadas al sistema parecida a Unix (9).

2.10.2 NachOS

Es un programa instruccional desarrollado por Christopher, Procter y Anderson en la Universidad de

California. NachOS es usado por Berkeley y numeras universidades (10). Su objetivo es proporcionar un

entorno para que los estudiantes de pregrado desarrollen un sistema operativo. Se provee a los

estudiantes un diseño básico, en este caso, de las piezas de trabajo suficientes para cargar y ejecutar un

simple programa de usuario (dicho programa es NachOS). A través de una serie de tareas, el estudiante

implementa la funcionalidad de multiprogramación, memoria virtual, y un sistema de archivos. Aunque se

trabajan sobre una máquina simulada, la máquina se basa en un procesador real, así que las cuestiones

que el estudiante debe resolver son realistas y representativas del desarrollo sistema operativo real (11).

NachOS simula un procesador real MIPS R2/3000. La primera versión de NachOS se completó en enero

de 1992 y se utilizó como un proyecto de pregrado sistemas operativos en Berkeley. La versión 3.4 se

implementó sólo en C++. La versión 4.0 introduce instrucciones en C y fue finalizada en el año 1996.

Posteriormente se implementó la versión 5.0j en Java, desarrollada en Berkeley por Hettena Dan y Rick

Cox. NachOS 5.0j es una reescritura casi total, con una estructura similar a la 4.0. Dicha versión 5.0j fue

desarrollado en 2001
5
.

2.10.3 Minix

Fue desarrollado por Andrew Tanenbaum, es un sistema operativo instruccional famoso y conocido

debido a que fue objeto de inspiración de Linus Torvalds para iniciar el sistema operativo Linux. Es un

clon del sistema operativo Unix. Es distribuido junto con su código fuente y desarrollado por el profesor

Andrew S. Tanenbaum en 1987. Gracias a su reducido tamaño, diseño basado en el paradigma del

micronúcleo, y su amplia documentación, resulta bastante apropiado para personas que desean instalar

un sistema operativo compatible con Unix en su máquina personal así como aprender sobre su

funcionamiento interno.

5
"A Guide to NachOS 5.0j" - http://www-inst.eecs.berkeley.edu/

http://www-inst.eecs.berkeley.edu/

38

2.10.4 GeekOS

Desarrollado en la Universidad de Maryland. El objetivo de GeekOS es ser una herramienta para

aprender acerca del funcionamiento del núcleo. Desde la versión 0.2.0, viene con un conjunto de

proyectos adecuados para su uso en un curso de pregrado sistemas operativos, o para el aprendizaje

autodirigido. GeekOS se ha utilizado en los cursos de varias universidades.

Sus objetivos principales son realismo, simplicidad y fácil entendimiento. Posee las siguientes

características técnicas, manejo de interrupciones, manejador de memoria, manejo de hilos de núcleo por

slots de tiempo predefinidos con un esquema de planificación estático de prioridades, manejo de

variables de condición para garantizar el procedimiento de sincronización de hilos y soporte a dispositivos

entrada/salida. Esta desarrollado bajo el lenguaje de programación C (8).

2.10.5 JOS

Es un esqueleto de un sistema operativo el cual tiene funciones al estilo Unix (ejemplo: fork, exec), con la

diferencia de que está diseñando e implementado como exonúcleo (es decir, las funciones de Unix están

implementadas en su mayoría como bibliotecas a nivel de usurario en lugar estar integradas en el

núcleo). Es usado en MIT como código fuente para que los estudiantes desarrollen a partir del mismo su

sistema operativo
6
 (12).

2.11 Comparación entre los Sistemas Operativos Instruccionales

Una vez presentado los conceptos, la finalidad, filosofía de los SOI y los distintos software de

virtualización, simulación y emulación; se tienen argumentos suficientes para establecer criterios

comparativos de estos sistemas. A partir de estos criterios se presentará un cuadro comparativo donde

se muestra los puntos claves de estos SOI de una manera concisa y precisa, permitiendo calificarlos de

manera cuantitativa, vea la Tabla 2.4. Para la Tabla 2.4 los atributos tomados a consideración son los

siguientes: SOI (nombre del SOI), desarrollador, característica principal, limitaciones, licencia y modo de

desarrollo (MDD), última versión, programado en (lenguaje(s) utilizado(s) para su implementación),

plataforma requerida (ambiente o arquitectura requerida para poder ejecutar el SOI) y plataforma destino

(arquitectura para la cual el SOI está diseñado, es la arquitectura y conjunto de instrucciones que conoce

y utiliza el SOI).

6
 “Operating System Engineering” - http://pdos.csail.mit.edu/

http://pdos.csail.mit.edu/

3
9

SOI Desarrollador Característica Principal Limitaciones
Última

versión
Lenguaje Plataforma Requerida

Plataforma

Destino

OS/161

Universidad de

Harvard.

(Cambridge -

Massachusetts)

BSD-like, OS/161 intenta dar un sentido

realista como sistema operativo, al mismo

tiempo ser lo suficientemente simple para

repartir a los estudiantes

No se puede

ejecutar

directamente sobre

el hardware.

1.14.

septiem

bre de

2005

Todo escrito

en C

Un simulador de arquitectura

MIPS, puede ser cualquiera,

pero sus desarrolladores

crearon System/161 para

este fin, el cual necesita un

SO Unix-like

MIPS

R2/2000

NachOS

Universidad de

Berkeley

(Berkeley -

California).

Núcleo monolítico. En las asignaciones se

estudian e implementan todas las áreas

de los sistemas operativos modernos

Se ejecuta como un

proceso de usuario

en el sistema

operativo. Lo que le

quita realismo.

4.0

1996

Principalmente

implementado

en C++

SunOS, Solaris, Linux,

NetBSD y FreeBSD

MIPS

R2/3000, Sun

SPARC, DEC

Alpha,

RS/6000

NachOS

(versión

en java)

Universidad de

Berkeley

(Berkeley -

California).

Núcleo monolítico. En las asignaciones se

estudian e implementan todas las áreas

de los sistemas operativos modernos.

Java es más simple que C++. Java es

relativamente portable

Se ejecuta como un

proceso de usuario

en el sistema

operativo. Lo que le

quita realismo.

5.0j

2001

Implementado

en Java

Cualquier plataforma que

soporte la máquina virtual de

Java. Se puede utilizar las

aplicaciones Eclipse o

Netbeans para desarrollar los

proyectos.

MIPS

R2/3000

Minix

Andrew

Tanenbaum

(Amsterdam -

Netherlands)

Unix-like, Está basado en una estructura

de micronúcleo. Es muy realista y

completo. Es extremadamente pequeño,

flexible, seguro y estable. También cuenta

con debugger. Tiene dos enfoques tanto

de enseñanza como comercial

Debido a su

pequeño tamaño el

código es denso, sin

embargo, su

documentación es

extensa

3.1.6

febrero

de 2010

Principalmente

implementado

en C

Directamente sobre el

hardware o usando un

emulador o máquina virtual

como virtual VMWare en

Windows, VirtualBox o Qemu

Intel 386 o

superior, pero

no soporta

x86 64-bit.

4
0

GeekOS

Universidad de

Maryland

(Maryland)

Sus características principales son

realismo, simplicidad y fácil entendimiento.

Su objetivo principal es servir como un

ejemplo sencillo, pero realista, de un

núcleo de sistema operativo.

No soporta

paginación con

memoria virtual.

0.3.0

Abril de

2005

C

Directamente sobre el

hardware o puede ejecutarse

sobre un simulador,

recomiendan Bochs. Probado

sobre las plataformas

Linux/i386, FreeBSD,

Windows con cygwin y Unix.

IA-32

JOS

Massachusetts

Institute of

Technology

(Cambridge -

Massachusetts)

Unix-like, exonúcleo, es un esqueleto de

un sistema operativo provisto por el MIT

para los estudiantes de sus cursos para

que los mismos desarrollen uno a partir de

JOS. Muy realista y provee mecanismos

para su depuración.

Poca información

acerca de la

documentación del

SO

Última

publicaci

ón en

diciembr

e de

2007

C

Directamente sobre el

hardware o puede ejecutarse

sobre Bochs.

IA-32

Tabla 2.4 Tabla comparativa de los Sistemas Operativos Instruccionales

41

A la hora de evaluar un sistema operativo instruccional se tomaron en cuenta varios aspectos, como por

ejemplo realismo, simplicidad, documentación, ambiente de depuración, vigencia, en cuantas

universidades se usa, entre otros. Fueron en gran parte estos criterios los tabuladores a la hora de

evaluar una gama de sistemas operativos instruccionales, este estudio se realizó en una investigación

previa (13), en la cual el sistema operativo instruccional Minix fue el que mejor se ajustaba al curso de

Sistemas Operativos de la Universidad Central de Venezuela.

¿Por qué utilizar Minix en la UCV? Para responder esta pregunta se tomaran en cuenta las

características de este sistema operativo instruccional, las cuales serán presentadas a continuación:

 Minix 3 es una herramienta educativa que cuenta con distintos niveles de documentación, entre

los cuales resaltan:

o Posee una lista de correo activa donde se le permite a los usuarios emitir preguntas y

soluciones que se presentan sobre este sistema operativo, la cual es soportada por la

comunidad de desarrollo.

o Posee un sitio Web donde es alojado el proyecto, y además se encuentran disponibles

todas las versiones de Minix desde su lanzamiento.

o Posee un portal dedicado a manuales de referencia para usuarios y para desarrolladores,

el primero incluye la información necesaria para la instalación, gestión e interacción con

el sistema operativo. El segundo incluye el API (Application Programming Interface) e

información para desarrollar aplicaciones en dicho sistema operativo, así como también,

información sobre su código fuente.

o Posee una publicación bibliográfica titulada “Operating System, Design and

Implementation” donde los principales autores de este SO, Andrew Tanenbaum y Albert

Woodhull, explican los principios básicos de los sistemas operativos modernos.

Asimismo, se tiene como caso de estudio a Minix 3, en donde se muestra y explica de

forma detallada su código fuente, estructuras de datos y funcionamiento del sistema

operativo.

 Debido a su grupo de desarrolladores activos es una herramienta que posee actualizaciones

continuas, un ejemplo de esto es que su última actualización fue publicada para 4 febrero de

2010. Lo cual refleja la continuidad del proyecto.

 Al ser un sistema operativo que tiene como plataforma destino IA-32 es lo suficientemente

realista como para ser instalado sobre el hardware al desnudo. Teniendo en cuenta este

escenario se pretende proveer al estudiantado una experiencia básica pero real, relacionada a

los principios concernientes a los sistemas operativos, a través de una herramienta que se puede

instalar sobre la una arquitectura popular (IA-32), sin necesidad de realizar programación de

controladores.

42

 Al ser un sistema operativo totalmente funcional, provee la ventaja de entender y modificar de

forma más sencilla su código fuente a diferencia de tener que desarrollar todo desde cero.

 Permite trabajar sobre un entorno básico de desarrollo Unix-like, el cual puede instalarse sobre

herramientas de virtualización como VMware, Virtual Box, Qemu, etc.

43

3 Adecuación de Minix 3 a la UCV

En este capítulo serán descritos todos los laboratorios propuestos para la adecuación de Minix 3 al curso

de Sistemas Operativos de la Escuela de Computación de la Universidad Central de Venezuela. Esta

sección presenta el enunciado de los laboratorios propuestos. La implementación de la solución y la

documentación de la misma serán explicadas con destalle en los capítulos posteriores.

3.1 Laboratorio 0 – Instalación de Minix y entorno de desarrollo

El primer laboratorio está diseñado para sentar las bases de las herramientas necesarias para desarrollar

a lo largo del curso todos los laboratorios propuestos por el grupo docente. Este es un punto clave ya que

permite engranar todas las aplicaciones y el SOI Minix 3 para facilitar en gran medida el desarrollo de la

implementación de los laboratorios.

3.1.1 Motivación

Este laboratorio pretende introducir el sistema operativo instruccional Minix versión 3.1.6, el cual será la

herramienta educativa a utilizar a lo largo de los laboratorios docentes de la materia Sistemas Operativos.

Igualmente se desea familiarizar a los estudiantes con el entorno de desarrollo de Minix versión 3.1.6. Es

importante señalar que Minix es ser un sistema operativo Unix-like.

3.1.2 Objetivos

Los objetivos a alcanzar es dar a conocer las herramientas a utilizar en el manejo de los laboratorios,

para esto el estudiante debe aprender a instalarlas, configurarlas y desenvolverse en las mismas.

3.1.3 Grupo docente

Para cumplir los objetivos planteados en este laboratorio el grupo docente debe encargarse de las

siguientes asignaciones:

 Proveer a los estudiantes los archivos ejecutables necesarios para la instalación del entorno de

desarrollo propuesto. Esto se logra por medio de una aplicación para control de proyectos (wiki)

desde la cual los estudiantes podrán descargarse los archivos mencionados y la imagen del

sistema operativo Minix versión 3.1.6.

 Explicar la instalación de cada una de las herramientas. Para esto se debe proveer a los

estudiantes de los parámetros de configuración y un conjunto de pasos que permitan conseguir el

entorno de programación deseado. Esto se lograra mediante el apoyo de una serie de video

tutoriales realizados por esta investigación.

 Enseñar un conjunto de órdenes básicas para el manejo del intérprete de comandos del SOI

Minix versión 3.1.6.

 El grupo docente debe explicar los requerimientos planteados para este laboratorio.

44

3.1.4 Estudiantes

El estudiante deberá asistir a su clase de laboratorio correspondiente y realizar las actividades de

instalación siguiendo las instrucciones del grupo docente y realizar las siguientes actividades

 Instalar la herramienta de virtualización VMWare Workstation versión 6.5.1.

 Instalar el Sistema Operativo Instruccional Minix versión 3.1.6.

 Instalar el IDE Eclipse (classic) versión 3.5.0 para el desarrollo del SOI Minix versión 3.1.6.

 Integrar el IDE Eclipse y el SOI Minix versión 3.1.6.

3.1.5 Entregables

Para evaluar este primer laboratorio se requiere a los estudiantes que entreguen su primera máquina

virtual la cual contiene el sistema operativo Minix versión 3.1.6 con un programa simple que imprima por

salida estándar “Hola Mundo”.

3.1.6 Duración

Este laboratorio se pretende impartir en 2 horas de clase equivalentes a una clase de laboratorios.

3.1.7 Documentación y ayuda

Como se menciono con anterioridad tanto los estudiantes como el grupo docente podrán apoyarse con

una aplicación para control de proyecto y varios videos tutoriales.

3.2 Laboratorio 1 – Introducción a Minix 3

En este laboratorio se da a conocer el SOI Minix 3, así como también, una introducción de su historia, de

su estructura, de las principales características, etc.

3.2.1 Motivación

La motivación recae en explicar de manera teórica los tópicos referentes a Minix, para que el estudiante

conozca el sistema operativo y pueda desenvolverse con fluidez en el desarrollo de los laboratorios.

3.2.2 Objetivos

El objetivo a alcanzar en este laboratorio es mostrar a los estudiantes los conceptos asociados al SOI

Minix 3, para esto se hizo especial énfasis en su historia, su estructura, principales características, etc.

3.2.3 Grupo docente

El grupo docente debe:

 Introducir los principales conceptos teóricos asociados al SOI, su objetivo, las ventajas,

desventajas, etc.

45

 Explicar el SOI Minix describiendo su estructura, de las principales características y en donde

puede obtener información del mismo.

 El grupo docente debe explicar los requerimientos planteados por este laboratorio.

3.2.4 Estudiantes

El estudiante debe asistir a la clase de laboratorio y prestar la atención necesaria para poder entregar los

requerimientos solicitados por el grupo docente.

3.2.5 Entregables

El estudiante debe entregar un informe con lo siguiente:

 Descripción del Sistema Operativo Minix 3.

 La Historia de Minix.

 Estructura de Minix 3.

 Ventajas de la arquitectura.

 Desventajas de la arquitectura.

 Descripción del proceso de instalación de Minix 3.

 Requerimientos necesarios para la instalación de Minix 3.

 Describa los comandos utilizados en clase, su sintaxis y funcionamiento.

3.2.6 Duración

Este laboratorio se pretende impartir en 2 horas de clase equivalentes a una clase de laboratorios.

3.2.7 Documentación y ayuda

El grupo docente y los estudiantes podrán apoyarse con una aplicación para control de proyecto la cual

contendrá parte de esta investigación y el seminario referente a la misma.

3.3 Laboratorio 2 – Estudio del proceso de arranque

El proceso de arranque es el inicio de la ejecución de cualquier sistema operativo, siendo este un tema

básico para iniciar el entendimiento del funcionamiento del mismo; es por esto que entre los primero

conocimientos que un estudiante de un curso de sistemas operativos debe adquirir es este proceso; ya

que garantiza un aprendizaje secuencial.

3.3.1 Motivación

Como se menciono el proceso de arranque es uno del los tópicos principales para la compresión del

funcionamiento de un sistema operativo moderno, es por ello que se decidió realizar un laboratorio

dedicado a este tema.

46

3.3.2 Objetivos

La tarea de este laboratorio es conocer a fondo cómo funciona el proceso de arranque de un SO real.

Además, al realizar este laboratorio el estudiante aprenderá los pasos necesarios para la ejecución de un

SO, en este caso Minix 3, tanto la parte de hardware como de software.

3.3.3 Grupo docente

En este laboratorio se debe explicar específicamente cuáles son los pasos que sigue Minix 3 para poder

arrancar el SO. Explicando los pasos de hardware, luego los pasos de software. Se debe hacer especial

énfasis en las particiones, como también en los archivos masterboot.s y bootblock.s.

3.3.4 Estudiantes

El estudiante debe de asistir a clases y realizar las actividades propuestas por el grupo docente de

manera de alcanzar los objetivos planteados en este laboratorio. El grupo docente debe explicar los

requerimientos planteados por este laboratorio.

3.3.5 Entregables

El estudiante debe entregar un informe con las respuestas de las preguntas señaladas. Para esto se le

solicita al estudiante la descripción de:

 ¿Cuál es el conjunto de paso que realiza un computador para poder ejecutar el SO instalado?

Describa cada paso con detalle.

 ¿Qué papel desempeña la BIOS (Basic Input Output System) en este proceso?

 ¿Cuáles son los principales dispositivos de almacenamiento que están involucrados en este

proceso y cuál es su estructura?

 ¿Cuáles son los modos de acceso a los discos e indique la razón de cada uno?

 Identifique cuales son los programas involucrados para llegar a la ejecución de Minix 3.

Posteriormente, describa a groso modo el funcionamiento de cada uno y para finalizar describa

cada instrucción que ejecutan dichos programas.

3.3.6 Duración

Este laboratorio se pretende impartir en 2 horas de clase equivalentes a una clase de laboratorios. Y se

plantea como tarea entregar el informe asociado al mismo dando un lapso de una semana.

3.3.7 Documentación y ayuda

El grupo docente y los estudiantes podrán apoyarse con una aplicación para control de proyecto la cual

contendrá parte de esta investigación y el seminario referente a la misma.

47

3.4 Laboratorio 3 – Implementación de un intérprete de comandos

Un intérprete de comandos es una pieza de software que provee una interfaz para los usuarios de un

sistema operativo que proporciona acceso a los servicios del núcleo. Se plantea en este laboratorio una

implementación sencilla de un intérprete de comandos.

3.4.1 Motivación

Las llamadas al sistema juegan un rol importante en los programas de usuario, estas llamadas proveen

funcionalidades adicionales a las aplicaciones, las cuales solo pueden ser ejecutadas en modo núcleo.

Para comprender la importancia de estas llamadas se propone un laboratorio que implemente el uso de

las mismas, el cual propone realizar un intérprete de comandos simple.

3.4.2 Objetivos

El objetivo principal es proveer la oportunidad de aprender cómo utilizar las llamadas al sistema. Para

hacer esto, se debe implementar un intérprete de comandos de Unix. Un intérprete de comandos es

simplemente un programa que permite ejecutar otros programas. El programa resultante se parecerá a

los intérpretes de comando de Unix/Linux.

3.4.3 Grupo docente

El grupo docente debe explicar cada una de las llamadas al sistema a utilizar para la implementación de

un intérprete de comandos. Además, para ayudar al desarrollo del intérprete de comandos se provee un

código base a los estudiantes, esto ayuda a la implementación de la solución, ya que provee ciertas

funcionalidades básicas que el intérprete de comandos debe cumplir. En si el grupo docente debe realizar

las siguientes actividades:

 El grupo docente debe proporcionar el enunciado de los requerimientos de este laboratorio.

Además, debe aclarar cualquier duda que del mismo pueda surgir.

 Para la inicialización de este laboratorio también debe proveer a los estudiantes de la plantilla

asociada, explicando cómo manipularla y dando una breve descripción de cada uno de los

archivos que la componen.

 Como ayuda se propone explicar las principales llamadas al sistema que deben utilizarse para la

implementación del intérprete de comandos, para esto se explica la sintaxis y semántica de las

mismas, culminando con un código de ejemplo.

 El grupo docente debe explicar los requerimientos planteados por este laboratorio.

3.4.4 Estudiantes

El estudiante debe de asistir a clases y realizar las actividades propuestas por el grupo docente de

manera de alcanzar los objetivos planteados en este laboratorio.

48

3.4.5 Entregables

El estudiante debe implementar su propio intérprete de comandos el cual debe soportar las siguientes

instrucciones:

 Para empezar el intérprete de comandos a implementar debe soportar el comando interno “exit”,

el cual terminará la ejecución del intérprete de comandos.

o Conocimientos: funcionamiento de los comandos del intérprete.

o Llamadas al sistema: exit()

o Funciones de la biblioteca estándar: strcmp()

 Un comando sin argumentos. Ejemplo: ls. El intérprete de comandos debe bloquearse hasta que

el comando complete su ejecución, si el código de retorno es anormal, debe imprimir un mensaje

indicando el error. Los comandos se almacenan en /bin y /usr/bin (aunque si se utiliza execvp()

en lugar de execv(), la ubicación de los comandos no importa).

o Conocimientos: bifurcación, espera hasta que finalice el proceso hijo, la ejecución

sincrónica.

o Llamadas al sistema: fork(), execvp(), exit(), wait()

 Un comando con argumentos. Ejemplo: ls -l

o Conocimientos: parámetros de línea de comandos. El argumento cero es el nombre del

comando, los siguientes argumentos siguen la secuencia.

 Un comando, con o sin argumentos, cuya salida se redirige a un archivo. Ejemplo: ls -l >

archivo.txt

o Conocimientos: Las operaciones de archivo, la redirección de salida. Este toma la salida

del comando y lo pone en el archivo indicado.

o Llamadas al sistema: close(), dup(), open().

 Un comando, cuya entrada es redirigida a un archivo. Ejemplo: sort < archivo.txt

o Conocimientos: redirección de entrada, las operaciones con archivos. Se utiliza el archivo

denominado como entrada al comando.

o Llamadas al sistema: close(), dup(), open()

 Un comando, con o sin argumentos, cuya resultado se redirecciona a la entrada de otro

comando. Ejemplo: ls -l | sort

o Conceptos: Tuberías. La salida del primer comando es la entrada al segundo.

o Llamadas al sistema: pipe(), close(), dup()

El intérprete de comandos debe chequear y manejar correctamente todos los valores de retorno. Esto

significa que necesita leer las páginas del manual, debe averiguar los posibles valores devueltos, qué

errores se indican, y lo que debe hacer cuando llegue ese error.

49

Su intérprete de comandos debe soportar cualquier combinación de estos caracteres en una sola línea,

siempre y cuando tenga sentido. Por ejemplo, "ls -l | sort > resultado.txt", en este caso debe ejecutar la

salida del primer comando en la entrada del segundo y redirigir la salida del segundo comando en

resultado.txt.

Una vez descrito el enunciado el estudiante debe entregar lo siguiente:

 El código fuente totalmente funcional del intérprete de comandos con los requerimientos antes

mencionados.

 Un informe de la solución explicando el uso de las principales llamadas al sistema utilizadas.

3.4.6 Duración

Este laboratorio se pretende impartir en 4 horas de clase equivalentes a dos clases de laboratorio. La

primera semana se explica el funcionamiento de las principales llamadas al sistema utilizadas para

desarrollar un intérprete de comandos. También debe explicarse cómo utilizar las plantillas provistas,

para finalizar se debe explicar el enunciado de los requerimientos, en este caso la implementación del

intérprete de comandos. La segunda clase se debe aclarar ciertas dudas y apoyar a los estudiantes en

los inconvenientes que puedan surgir a raíz de la implementación del intérprete de comandos. En la

siguiente semana se debe recibir el código funcional del intérprete de comandos solicitado.

3.4.7 Documentación y ayuda

El grupo docente y los estudiantes podrán apoyarse con una aplicación para control de proyecto la cual

contendrá parte de esta investigación, que provee la solución de todos los laboratorios, y el seminario

referente a la misma. Además, existe un video desarrollado por esta investigación que apoya de manera

audiovisual la implementación del intérprete de comandos. A continuación se describen los programas

que componen la plantilla. La plantilla o código base creará una carpeta llamada intérprete de comandos,

que proporciona los siguientes archivos Makefile, shell.l y myshell.c. Las funciones de los mismos serán

explicadas a continuación:

 Shell.l: ofrece un programa de captura por entrada estándar (la función getline()), que se puede

utilizar para controlar el flujo de entrada del usuario. No es necesario que modificar este archivo.

El getline() devuelve un arreglo de apuntadores a cadenas de caracteres (char **). Cada cadena

es una palabra que contiene letras, números, punto (.), barra (/), o una cadena de caracteres que

contiene uno de los especiales caracteres: '<', '>' y '|'.

 myshell.c: contiene un código esqueleto de un intérprete de comandos simple. En este momento

el intérprete de comandos lo único que puede realizar es leer una línea a la vez por entrada

estándar. La implementación de la solución del intérprete será desarrollada en este archivo.

50

 Makefile: contiene todo lo necesario para compilar Shell.l y myshell.c. Con el fin de compilar y

ejecutar el intérprete de comandos.

3.5 Laboratorio 4 – Implementación de llamadas al sistema

Debido a que Minix 3 está implementado con una arquitectura micronúcleo dividido en cuatro capas las

existen dos llamadas al sistema posibles a implementar en el SO, la primera la cual es atendida por el

proceso servidor indicado, dicha llamada es ejecutada en modo usuario debido a que los procesos

servidores se ejecutan en este modo. La segunda que es atendida igualmente por el proceso servidor

indicando, con la diferencia que dicho proceso redirecciona la llamada al núcleo del SO, para que

finalmente se ejecute en modo núcleo. El grupo docente debe explicar los requerimientos planteados por

este laboratorio.

3.5.1 Motivación

Este es el primer laboratorio donde los estudiantes modificaran por primera vez parte del sistema

operativo, es un paso importante en la generación de conocimientos, ya que pocos estudiantes de un

curso de sistemas operativos tienen la oportunidad de modificar un sistema operativo real.

3.5.2 Objetivos

El objetivo principal de este laboratorio es explicar cómo implementar ambas llamadas al sistema

mencionadas con anterioridad a los estudiantes, para que los estudiantes aprendan como es el

funcionamiento interno de una llamada al sistema en el SOI Minix 3 versión 3.1.6. En sí, este laboratorio

tiene la finalidad de:

 Conocer las funcionalidades relacionadas a cada capa del SOI Minix versión 3.1.6.

 Conocer el funcionamiento de las llamadas al sistema del SOI Minix versión 3.1.6.

 Implementar llamadas al sistema para la capa 3 de los procesos servidores.

 Implementar llamadas al sistema para la capa 1 de los procesos del núcleo.

3.5.3 Grupo docente

Debe explicar toda la teoría asociada a las capas y llamadas al sistema en Minix 3. Así como también,

debe mostrar como implementar las llamadas al sistema mencionadas con anterioridad, siendo detallista

con el proceso y programas involucrados. El grupo docente debe explicar los requerimientos planteados

por este laboratorio.

3.5.4 Estudiantes

El estudiante debe de asistir a clases y realizar las actividades propuestas por el grupo docente de

manera de alcanzar los objetivos planteados en este laboratorio.

51

3.5.5 Entregables

El estudiante debe entregar una maquina virtual con las llamadas al sistema implementadas y un informe

con la solución de las mismas.

3.5.6 Duración

Este laboratorio se pretende impartir en 4 horas de clase equivalentes a dos clases de laboratorio. La

primera semana se explica cómo implementar las llamadas al sistema. La segunda clase se debe aclarar

ciertas dudas y apoyar a los estudiantes en los inconvenientes que puedan surgir a raíz de la

implementación de dichas llamadas. En la siguiente semana se debe recibir los entregables planteados.

3.5.7 Documentación y ayuda

El grupo docente y los estudiantes podrán apoyarse con una aplicación para control de proyecto la cual

contendrá parte de esta investigación y el seminario referente a la misma. Además, existe un video

desarrollado por esta investigación que apoya de manera audiovisual la implementación de ambas

llamadas al sistema.

3.6 Laboratorio 5 – Implementación de semáforos

Un tópico interesante y común en sistemas operativos es la sincronización entre procesos, es por ello

que se decidió dedicar todo un laboratorio para adquirir y practicar los conocimientos adquiridos en esta

área. Es importante señalar que el método para la sincronización en Minix 3 es el pase de mensaje. Es

por esto que se propone como laboratorio la implementación de la estructura de dato semáforo.

3.6.1 Motivación

Un tópico interesante y común en sistemas operativos es la sincronización entre procesos, es por ello

que se decidió dedicar todo un laboratorio para adquirir y practicar los conocimientos adquiridos en esta

área.

3.6.2 Objetivos

Los objetivos planteados para este laboratorio son los siguientes:

 Conocer los mecanismos de concurrencia y sincronización utilizados por el sistema operativo

instruccional Minix versión 3.1.6.

 Entender la solución propuesta por el grupo de desarrollo de Minix versión 3 para la

implementación de semáforos.

 Implementar semáforos para el sistema operativo instruccional Minix versión 3.1.6.

52

3.6.3 Grupo docente

Explicar cómo los mecanismos de concurrencia y sincronización son implementados por Minix 3. Además

debe mostrar el funcionamiento de un proceso servidor, haciendo énfasis en el pase de mensajes.

También debe esbozar cómo implementar semáforos en Minix 3, mostrando los pasos a seguir para

dicha implementación; para esto debe proveer a los estudiantes la solución de semáforos en código

pseudoformal, tal y como se muestra en el capítulo 7. El grupo docente debe explicar los requerimientos

planteados por este laboratorio.

3.6.4 Estudiantes

El estudiante debe de asistir a clases y realizar las actividades propuestas por el grupo docente de

manera de alcanzar los objetivos planteados en este laboratorio.

3.6.5 Entregables

El estudiante debe entregar una maquina virtual con la estructura de datos semáforo implementada,

implementar un problema clásico de sincronización y un informe con la solución de lo anterior

mencionado. La estructura de datos semáforo debe soportar las siguientes operaciones:

 Inicialización

 Wait

 Signal

3.6.6 Duración

Este laboratorio se pretende impartir en 6 horas de clase equivalentes a tres clases de laboratorio. La

primera semana se explica los mecanismos de sincronización usados por Minix 3, así como también, el

funcionamiento de un proceso servidor. Además, se explicara la solución planteada por esta investigación

en código pseudoformal. La segunda y tercera clase son utilizadas para aclarar ciertas dudas y apoyar a

los estudiantes en los inconvenientes que puedan surgir a raíz de la implementación. En la última

semana se debe recibir los entregables planteados.

3.6.7 Documentación y ayuda

El grupo docente y los estudiantes podrán apoyarse con una aplicación para control de proyecto la cual

contendrá parte de esta investigación y el seminario referente a la misma. Además, existe un video

desarrollado por esta investigación que apoya de manera audiovisual la implementación de todo el

proceso de implementación de los semáforos.

53

3.7 Laboratorio 6 – Modificación del planificador de procesos

Este laboratorio pretende dar a conocer el algoritmo de planificación de corto plazo utilizado por el

sistema operativo instruccional Minix versión 3.1.6. Además de apoyar los conocimientos adquiridos en

teoría, este laboratorio permite constatar que es importante diseñar un buen algoritmo de planificación ya

que del mismo va a depender el uso óptimo del procesador.

3.7.1 Motivación

Una de las principales funcionalidades de un SO es gestionar la ejecución de procesos, es por esto que

se desea que los estudiantes conozcan la importancia de esta función.

3.7.2 Objetivos

Los objetivos planteados para este laboratorio son los siguientes:

 Conocer los conceptos relacionados a la planificación de procesos en los Sistemas Operativos.

 Conocer los algoritmos de planificación de corto plazo en los Sistemas Operativos.

 Conocer el algoritmo de planificación de corto plazo utilizado por el Sistema Operativo Instruccional

Minix versión 3.1.6.

 Modificar el algoritmo de planificación de corto plazo utilizado por el Sistema Operativo Instruccional

Minix versión 3.1.6.

3.7.3 Grupo docente

El grupo docente debe explicar el diseño del algoritmo de planificación de Minix 3, para luego hacer

referencia a las porciones de código donde esta implementado dicho algoritmo. El grupo docente debe

explicar los requerimientos planteados por este laboratorio.

3.7.4 Estudiantes

El estudiante debe de asistir a clases y realizar las actividades propuestas por el grupo docente de

manera de alcanzar los objetivos planteados en este laboratorio.

3.7.5 Entregables

El estudiante debe entregar lo siguiente:

 Una maquina virtual donde se encuentre las diferentes imágenes del núcleo de Minix versión 3.1.6

donde se genero el ambiente de pruebas para analizar el rendimiento del planificador de corto plazo

del sistema operativo instruccional Minix versión 3.1.6.

 Un informe describiendo de forma detallada la implementación del ambiente de pruebas sobre el

planificador de corto plazo del SOI Minix 3 y su respectivo análisis sobre los resultados obtenidos.

54

3.7.6 Duración

Este laboratorio se pretende impartir en 4 horas de clase equivalentes a dos clases de laboratorio. La

primera semana se explica el algoritmo de planificación de Minix 3 y los requerimientos funcionales del

actual laboratorio. La segunda clase es utilizada para aclarar ciertas dudas y apoyar a los estudiantes en

los inconvenientes que puedan surgir a raíz de la modificación. En la semana siguiente se debe recibir los

entregables planteados.

3.7.7 Documentación y ayuda

El grupo docente y los estudiantes podrán apoyarse con una aplicación para control de proyecto la cual

contendrá parte de esta investigación y el seminario referente a la misma. Además, existe un video

desarrollado por esta investigación que apoya de manera audiovisual la modificación del algoritmo de

planificación.

Para poder determinar el funcionamiento del planificador de corto plazo del Sistema Operativo

Instruccional Minix versión 3.1.6 debe recordar que debido a la estructura de diseño de Minix los

procesos de capas inferiores poseen mayor prioridad que aquellos en capas superiores, por lo tanto, se

debe asegurar la ejecuciones de programas en la capa de usuarios, en la capa de servidores y en la capa

del núcleo. El ambiente de pruebas a realizar es el siguiente:

 Implementar en el espacio de usuario dos programas que generen alta carga de CPU y alta carga de

peticiones de entrada/salida.

 Implementar en el espacio de servidores dos programas que generen alta carga de CPU y alta carga

de peticiones de entrada/salida.

 Implementar en el espacio de núcleo dos programas que generen alta carga de CPU y alta carga de

peticiones de entrada/salida.

Nota: Debe apoyarse en el Laboratorio 4 para generar las llamadas al sistema que permitan ejecutar

programas en la capa 3 y capa 1 respectivamente.

Además, el ambiente de pruebas a realizar debe calcularse los tiempos de ejecución de cada uno de los

programas anteriormente propuestos utilizando el planificador de corto plazo de Minix definido con 16

colas y luego este debe modificarse con 8 colas y ejecutar nuevamente las pruebas.

55

3.8 La planificación de los laboratorios

Para resumir la planificación planteada por esta investigación, la cual está diseñada para un semestre de

16 semanas vea la siguiente:

semana 1 Laboratorio 0

semana 2 Laboratorio 1

semana 3 Laboratorio 2

semana 4
Laboratorio 3

semana 5

semana 6
Laboratorio 4

semana 7

semana 8

Laboratorio 5 semana 9

semana 10

semana 11
Laboratorio 6

semana 12

Tabla 3.1 Planificación de los laboratorios por semanas

56

57

4 Herramientas de desarrollo

El presente capítulo realiza una descripción los sistemas operativos y aplicaciones utilizadas para la

adecuación del SOI Minix 3 al curso de Sistemas Operativos de pregrado de la Universidad Central de

Venezuela. Los principales sistemas operativos y aplicaciones utilizadas son el SOI Minix 3, las

aplicaciones usadas fueron VMware Workstation, el IDE (entornos de desarrollo integrados) eclipse y el

software de captura de vídeo de pantalla Camtasia Studio. Para concluir este capítulo se muestra la

metodología utilizada para el desarrollo de la herramienta educativa, especificando la misma por cada

laboratorio propuesto.

4.1 Lenguaje de programación C

El leguaje de programación C es un lenguaje de programación desarrollado entre 1969 y 1973 por Dennis

Ritchie en los Laboratorios Telefónicos Bell para su uso con el Unix sistema operativo. El origen de C

está estrechamente ligado al desarrollo del sistema operativo Unix, ya que originalmente estaba

implementado en lenguaje ensamblador para luego ser reescrito casi todo en C. La mayoría de los

sistemas operativos están escritos bajo este lenguaje ya que permite un control a muy bajo nivel, los

compiladores suelen ofrecer extensiones al lenguaje que posibilitan mezclar código en ensamblador con

código C
7
.

4.2 VMware Workstation

VMware es un sistema de virtualización por software. Un sistema virtual por software es un programa que

simula un sistema físico (un computador, un hardware) con unas características de hardware

determinadas. Cuando se ejecuta el programa (simulador), proporciona un ambiente de ejecución similar

a todos los efectos a un computador físico (excepto en el puro acceso físico al hardware simulado),

puede simular la CPU (una o más), BIOS, tarjeta gráfica, memoria RAM, tarjeta de red, sistema de

sonido, conexión USB, disco duro (puede ser más de uno también), etc. VMware Workstation se ejecuta

en Microsoft Windows, Linux y Mac OS X.

VMware Workstation permite a los usuarios ejecutar varias instancias de x86 o x86-64. VMware inserta

directamente una capa de software en el hardware del computador o en el sistema operativo host. Esta

capa de software crea máquinas virtuales y contiene un monitor de máquina virtual que asigna recursos

de hardware de forma dinámica, para poder ejecutar varios sistemas operativos de forma “simultánea” en

un único computador físico de manera transparente.

7
 “Programming in C” - http://www.cs.cf.ac.uk

http://www.cs.cf.ac.uk/

58

Además, VMware ofrece una sólida plataforma de virtualización que puede ampliarse por cientos de

dispositivos de almacenamiento y computadores físicos interconectados para formar una infraestructura

virtual completa. Es software propietario pero existen versiones gratuitas como VMware Player. VMware

Workstation 7.0.1 fue publicado el 29 de enero de 2010 y VMware Player 3.0.0 fue publicado el 4 de

diciembre de 2009
8.

En nuestra investigación se utilizó VMWare debido a que:

 Es una herramienta ampliamente utilizada en los laboratorios docentes de la Escuela de

Computación.

 Su instalación, configuración y manejo de máquinas virtuales es muy sencilla e intuitiva para los

usuarios.

 Se puede obtener fácilmente a través del Centro de Computación.

 Es una aplicación multiplataforma.

4.3 IDE eclipse

Eclipse es un entorno de desarrollo integrado de código abierto multiplataforma. Está escrito en su

mayoría en Java y se puede utilizar para desarrollar aplicaciones en Java. Además, por medio de

diversos plugins también se puede desarrollar en otros lenguajes de programación como Ada, C, C++,

COBOL, Perl, PHP, Python, Ruby (incluyendo Ruby on Rails framework), Scala y Scheme.

La base de código inicial se originó a partir de VisualAge. En su forma predeterminada, es para los

desarrolladores de Java, que consiste en las herramientas de desarrollo de Java (JDT). Los usuarios

pueden ampliar su capacidad mediante la instalación de plugins escritos para la plataforma de software

Eclipse, tales como kits de herramientas de desarrollo para otros lenguajes de programación, y puede

escribir y contribuir con sus propios plugin. Distribuido bajo los términos de la Licencia Pública de Eclipse,

Eclipse es un software libre y de código abierto. La última versión liberada es la 3.6.1 Helios, el 24 de

septiembre de 2010, la cual puede descargarse desde su página web principal
9
.

En nuestra investigación se utilizó el IDE eclipse debido a que:

 Es una aplicación multiplataforma.

 Al igual que VMware los estudiantes de la Escuela de Computación están familiarizados con el

IDE debido a que en varias materias del pensum es utilizado como herramienta de desarrollo.

8
 “VMware” - http://www.vmware.com/

9
 “eclipse” - http://www.eclipse.org/

http://www.vmware.com/
http://www.eclipse.org/

59

 Su instalación, configuración e instalación de plugins es sumamente sencillo en gran parte a su

menú de instalación.

 Se pueda descargar gratuitamente desde su página web principal.

4.4 Camtasia Studio

Camtasia Studio es un software de captura de vídeo de pantalla, publicado por TechSmith. Puede

ejecutarse sobre los sistemas operativos Windows y Mac OS X. La licencia es propietaria. Cantacsia

permite crear screencasts, los screencasts ayudan a demostrar y enseñar el manejo de un software. La

creación de un screencast ayuda a los desarrolladores de software a mostrar su trabajo, es una manera

muy fácil de enseñar los conocimientos a través de un video. Es una herramienta útil tanto para los

usuarios comunes de software, así como también, para ayudar a informar de errores o para mostrar a

otros cómo se realiza una determinada tarea en un entorno de software específico. Los screencasts son

herramientas excelentes para aprender a usar las computadoras y/o aplicaciones, y muchos tutoriales

hoy en día se encuentran con esta tecnología, que permite enseñar a los usuarios desde la comodidad

de su hogar, estudio o trabajo.

Teniendo en cuenta el alto costo de los instructores/profesores y la básica instrucción que se proporciona

en computación, probablemente los screencasting se conviertan en una técnica muy popular para impartir

conocimientos de alta calidad a un bajo costo.

Una desventaja es que la mayoría de los programas screencasting comerciales están realizados para

Microsoft Windows, lo cual es una limitante para realizar videos de aplicaciones OpenGL, aunque Demo

Builder, Fraps, y Guncam Growler puede hacer frente a esto.

Una de las ventajas de Camtasia es que el tiene una interfaz muy intuitiva. También permite editar los

videos grabados minimizando el tiempo invertido para la grabación y proporcionando una alta tolerancia a

errores por parte del usuario. Provee la facilidad de insertar audio aun cuando el video ya ha sido

grabado desligando lo visual de lo auditivo. Para el usuario también está disponible una gama de

herramientas de presentación y edición de videos. Para utilizar Camtasia el usuario define el área de la

pantalla o la ventana que se va a capturar toda la pantalla o se puede grabar en su lugar. Esto se

establece antes de empezar la grabación. Es posible grabar audio desde un micrófono o los altavoces y

Camtasia Studio le permite colocar imágenes de la webcam en la pantalla.

4.5 Metodología

Será descrita la metodología utilizada para el desarrollo de los proyectos propuestos anteriormente. Se

utilizara la siguiente metodología de adecuación de software (29).

60

4.5.1 Evaluación y Elección

En este paso inicial, se parte de la existencia de múltiples alternativas de software (NachOS, PintOS,

GeekOS, Minix, xv6 y OS/161) para resolver el problema planteado. Lo cual hace referencia a la existen

distintas alternativas que encajan con la solución que se desea tener. Considerando que estas piezas de

software pueden cumplir o no todos los requisitos funcionales, es de vital importancia evaluar cual se

adapta mejor al curriculum académico de los cursos de Sistemas Operativos de la Escuela de

Computación, ya que habrá menos esfuerzo y tiempo de adecuación. Esta parte del proceso ya fue

desarrollada durante la elaboración de este seminario y el SOI seleccionado fue Minix 3, como se

mencionó y justificó con anterioridad.

4.5.2 Proceso de desarrollo

El objetivo de esta fase en sí constituye en obtener una versión del producto, que sea estable y funcional,

a pesar de que sea una versión incompleta. En este caso, se tomó los requerimientos necesarios para

instalar Minix 3; se documento este proceso indicando los procedimientos necesarios para instalación,

configuración y manejo de la herramienta educativa. Los cuales pueden observarse en el marco teórico

de este documento. Otro objetivo de esta fase es evaluar los posibles laboratorios que se pueden

desarrollar a partir de este SOI, los cuales ya fueron descritos anteriormente. Estos laboratorios serán

llamados lista de requisitos. En cada iteración de esta metodología se generó una versión instalable,

hasta que los objetivos fueron cubiertos. Esta fase está compuesta por las siguientes etapas: Este

esquema de planificación se puede apreciar de mejor manera en la Figura 4.1

61

DesarrolloInstalación

Pruebas

Planificación

Proceso de
desarrollo

Lista de Requisitos

Elección
de

Requisitos

Código ejecutable

Depuración de errores

Código ejecutable estable

Implementación de la
solución

Generar una versión
intalable

Laboratorio a desarrollar

Evaluación y
Elección

Si existen más
requisitos

Figura 4.1 Metodología de desarrollo de software

4.5.3 Iteraciones

Esta fase comienza con la elección de uno o más objetivos, y estos deben dirigirse hacia un mismo

requerimiento funcional. Las iteraciones se proponen en periodos de 7 a 12 días. Las primeras

iteraciones se dedican principalmente en el conocimiento de parte de los desarrolladores sobre la

herramienta a utilizar como diseño, arquitectura, código fuente y estructuras de datos. Al culminar una

iteración, no siempre se genera una nueva versión. Una vez dominado la parte teórica de Minix 3, en las

primeras iteraciones. Se procede a la escogencia de un proyecto de laboratorio, para dar solución y

documentar el procedimiento. Durante una iteración se realizan las siguientes actividades:

 Planificación: se analizan los requerimientos escogidos de cada proyecto de laboratorio, en base

a la complejidad de las tareas planteadas.

 Desarrollo: esta actividad consiste en la modificación y/o desarrollo del código fuente. Se analizan

los requerimientos, se identifican los componentes que están involucrados en la obtención de la

solución. Posteriormente se implementa la solución planteada. Por último, se realizan pruebas

concernientes sobre la correctitud de los cambios aplicados.

 Pruebas: estas se pueden realizar en un primer nivel sobre los requerimientos involucrados en la

iteración y un segundo nivel sobre el funcionamiento del laboratorio.

62

 Instalación: durante esta actividad se establecen un conjunto de tareas que permitan a nivel de

usuario interactuar con la aplicación. Esta versión incluye al sistema y sus nuevos componentes.

Ahora se procederá a describir las iteraciones realizadas para alcanzar los objetivos específicos

propuestos:

4.5.4 Iteración 1

En esta iteración se empleo para estudiar y entender toda la documentación referente a Minix 3, la cual

duró 10 días.

 Planificación: se decidió utilizar las fuentes más confiables para la investigación las cuales fueron

la Página web de Minix (14) y el Libro oficial (15).

 Desarrollo: en la página web se pudo obtener la imagen de Minix versión 3.1.6, además de los

requerimientos necesarios para instalar Minix. También, se encontró información de cómo instalar

Minix y el entorno de desarrollo para la implementación de los laboratorios. En el libro se

encontró toda la información de la estructura y funcionamiento de Minix 3, así como también,

gran parte de la documentación del código fuente.

 Pruebas: para esta iteración no aplican las pruebas.

 Instalación: con la información obtenida se generó la primera versión instalable de Minix 3.

4.5.5 Iteración 2 y Iteración 3

En esta iteración se procedió a la realización del laboratorio del gestor de arranque de Minix 3, cada

iteración duró 12 días.

 Planificación: los requerimientos para esta iteración son:

o Documentar todo el proceso de arranque de un sistema operativo.

o Identificar según lo anterior las piezas claves en Minix que desarrollan esa tarea.

o Formular el laboratorio y realizar la solución del mismo.

 Desarrollo: para el desarrollo de este laboratorio se hizo una documentación minuciosa del

proceso que realiza Minix para poder ejecutar el núcleo. Además, se describió a fondo cómo

funcionan los archivos masterboot.s y bootblock.s. Para culminar se planteó como laboratorio una

serie de preguntas que los estudiantes debe responder para entregar un informe asociado.

 Pruebas: para esta iteración no aplican las pruebas.

 Instalación: no aplica instalación para esta iteración.

63

4.5.6 Iteración 4

Se planteó la realización de un laboratorio que deba implementar un intérprete de comandos simple, la

cual duró 10 días.

 Planificación: los requerimientos para esta iteración son:

o Documentar las principales llamadas al sistema que ofrece Minix 3 que dan soporte a la

implementación de un intérprete de comandos simple.

o Realizar el enunciado del laboratorio.

 Desarrollo: Se implemento un intérprete de comandos simple, y se documento las principales

llamadas al sistema que dan soporte a la implementación de uno, con eso se hace referencia a la

sintaxis y semántica de las mismas. Se redacto el enunciado asociado al laboratorio. Para

culminar se documentó todo el proceso de implementación de la solución.

 Pruebas: Se compiló el programa myshell.c para probar la implementación del intérprete de

comandos y se realizaron las pruebas necesarias para verificar su correcto funcionamiento.

 Instalación: para esta iteración no aplica instalación.

4.5.7 Iteración 5

Se sugirió la realización del laboratorio de llamadas al sistema Minix 3, la cual duró 12 días.

 Planificación: los requerimientos para esta iteración son:

o Documentar los tipos de llamadas al sistema en Minix 3, cómo es su funcionamiento y

cuáles son las características de las mismas. Además, documentar cómo se implementas

dichas llamadas.

o Identificar cuáles son los programas involucrados en la implementación de llamadas al

sistema.

o Implementar las llamadas al sistema en Minix, y realizar el enunciado del laboratorio.

 Desarrollo: Se implemento los dos tipos posibles de llamadas al sistema en Minix 3 con ayuda del

libro oficial. Además, se realizó el enunciado del laboratorio correspondiente. Concluyendo con

toda la documentación, paso por paso, de la solución.

 Pruebas: Se recompiló el núcleo y se probo el correcto funcionamiento de las llamadas.

 Instalación: como se mencionó se genero un nuevo release de Minix 3 con las llamadas al

sistema implementadas.

4.5.8 Iteración 6 y Iteración 7

Para este laboratorio se quiso modificar el núcleo para que diera soporte a semáforos, cada iteración

duró 12 días.

64

 Planificación: los requerimientos para esta iteración son:

o Identificar una manera de implementar semáforos en Minix 3 y realizarla.

o Realizar el enunciado del laboratorio.

o Documentar todo el proceso de implementación de la solución.

 Desarrollo: Se modificó el núcleo de Minix y un proceso servidor para que pudiera soportar

semáforos, en especial implementar las principales primitivas que permiten manipularlos. Se

redacto el enunciado del laboratorio y todo el proceso de implementación.

 Pruebas: Se compiló el núcleo para probar la implementación realizada y se realizaron las

pruebas necesarias para verificar su correcto funcionamiento. Se hicieron dos archivos de prueba

para verificar la implementación.

 Instalación: se recompiló el núcleo y se verifico que arrojara una nueva versión.

4.5.9 Iteración 8

Para este laboratorio se planteó modificar el algoritmo de planificación de Minix 3, la cual duró 12 días.

 Planificación: los requerimientos para esta iteración son:

o Identificar los archivos involucrados en la implementación de dicho algoritmo.

o Realizar el enunciado del laboratorio.

o Documentar todo el proceso de implementación de la solución.

 Desarrollo: Se identifico y modifico los archivos que implementan el algoritmo de planificación de

Minix 3. Y realizo el enunciado del laboratorio.

 Pruebas: Se compiló el núcleo para probar los cambios realizados y se realizaron las pruebas

necesarias, para verificar las modificaciones realizadas.

 Instalación: se recompiló el núcleo y se verifico que arrojara una nueva versión.

65

5 Instalación de Minix y entorno de desarrollo

Este laboratorio esta esbozado para sentar las bases de las herramientas necesarias para desarrollar a lo

largo del curso todos los laboratorios propuestos por el grupo docente. Este es un punto clave ya que

permite engranar todas las aplicaciones y el SOI Minix 3 para un facilitar en gran medida el desarrollo de

la implementación de los laboratorios. Serán descritos los pasos que se dieron para la instalación de

Minix versión 3.1.6, así como también para armar y configurar el entorno de desarrollo.

5.1 Instalación de Minix

Para la instalación de Minix versión 3.1.6 se utilizaron los siguientes programas:

 La imagen de Minix versión 3.1.6

 El sistema de virtualización VMware Workstation versión 6.5.1

5.1.1 Configuración de la máquina virtual

Se debe crear una máquina virtual en VMware siguiendo la configuración típica configurando las

siguientes características:

 Indicarle a la máquina que debe iniciar desde la imagen .iso de Minix versión 3.1.6

 La memoria RAM (Random Access Memory)debe ser de al menos 16 MB, 600 MB como mínimo

de disco duro y un procesador Pentium o compatible.

5.1.2 Instalación de Minix versión 3.1.6

A continuación, se exponen los pasos a seguir para la instalación de Minix 3.1.6, es importante destacar

que este procedimiento esta mejor explicado en los videos tutoriales realizados por esta investigación.

Asumiendo que el proceso de configuración de su máquina virtual se ha llevado a cabo de manera

satisfactoria. Con esto se supone que usted ha creado al menos una partición en su disco duro donde

residirá la imagen del SO. Así que los siguientes pasos describirán la instalación estándar de Minix 3:

 Se debe configurar la BIOS (Basic Input Ouput System) para que la unidad de CD-ROM sea el

primer dispositivo arrancable del sistema.

 Introduzca en la unidad de CD-ROM el Live CD de Minix o en su defecto utilizar la imagen iso

descargada desde la página Web. Todo eso con la finalidad de que al momento de arranque la

BIOS pueda cargar el SO desde esta unidad.

 Si la ejecución del disco de instalación hasta ahora ha sido efectiva entonces se presentara la

consola de comandos esperando que introduzcamos un nombre de usuario, y colocamos al

usuario “root”. Debe recordar que en los SO derivados de Unix este es el “superusuario”.

 Al ingresar al sistema se introduce el comando “setup”, para iniciar la instalación de Minix 3.

66

 Seguidamente al ejecutar el comando “setup” el sistema preguntará sobre cuál es la

configuración del teclado, colóquela según sea la misma.

 El sistema preguntará sobre el modo de instalación que se desea llevar a cabo, es decir, una

instalación estándar o avanzada, se seleccionará la primera con presionar la tecla de “enter”.

 El sistema hará un chequeo sobre los dispositivos de almacenamiento que el sistema ha

detectado y pedirá que seleccione que dispositivo se utilizará.

 Se debe escoger en cual región del disco se alojará a Minix 3, inmediatamente dará un mensaje

informativo, el cual indica que a partir de este paso el proceso de instalación se llevara a cabo y

no hay oportunidad de redimirse; Por supuesto se elige aceptar.

 Luego, se preguntara la manera en la que se va a instalar, seleccionará la opción completa o full

del sistema.

 En los siguientes pasos se preguntará el tamaño del directorio /home que es aquella partición

donde se encuentran los archivos de los usuarios del sistema.

 Ahora se requerirá el tamaño de bloque que desea manejar y muestra que la opción que por

defecto es de 4 KB (Kilobyte) y la cual es la que se usará.

 Ahora el sistema empezara a copiar los resultados de la instalación al disco.

 Luego solicitará la información sobre tarjeta de red que posee nuestro equipo. En caso de poseer

unan tarjeta de red sea soportada por Minix, el programa de instalación preguntará qué tipo de

configuración se va a manejar sea modo estático o a través de un servidor DHCP (Dynamic Host

Configuration Protocol).

 Al culminar estos pasos se nos llevara nuevamente al intérprete de comandos y debe ejecutar el

comando “reboot”, “shutdown” o “halt” para salir del programa de instalación.

5.2 Instalación del entorno de desarrollo

Para este paso es indispensable obtener el ejecutable de eclipse classic 3.5.0, posteriormente debe

instalarlo. Luego instalar los paquetes necesarios para desarrollar en el lenguaje C y para poder realizar

la conexión SSH (Secure Shell) con Minix. Por último, debe instalarle un paquete a Minix que de soporte

a la conexión SSH. Todos estos pasos son descritos en el video tutorial de instalación de Minix

desarrollado por esta investigación.

67

6 Introducción a Minix 3

En este laboratorio se da a conocer el SOI Minix 3, así como también, una introducción de su historia, de

su estructura, de las principales características, entre otros.

6.1 Sistema Operativo Minix

Minix es un sistema operativo, distribuido conjuntamente con su código fuente y desarrollado por Andrew

Tanenbaum. La última versión oficial de Minix es la 3.1.8 que se puede obtener directamente desde su

página Web oficial
10

En esta sección y las posteriores se pretende dar un esbozo acerca del funcionamiento interno de Minix

3. Se explicará el diseño y la arquitectura de Minix 3, dicha información será útil para la comprensión de

los capítulos posteriores.

Esta última versión de Minix puede ser definida, como un nuevo SO de código abierto, cuya finalidad

principal es ofrecer alta confiabilidad, flexibilidad y seguridad. Está basada en las versiones anteriores de

Minix, sin embargo, posee diferencias significativas. Minix 1 y Minix 2 fueron concebidas como

herramientas de enseñanza. Minix 3 añade nuevos objetivos con la finalidad de ser utilizado como un SO

en computadoras con recursos limitados, embebidos y para aplicaciones que requieren alta confiabilidad

en sus ambientes de ejecución. Actualmente Minix 3 se distribuye con una licencia similar a BSD, lo que

permite su estudio y modificación.

6.1.1 La Historia de Minix

En los inicios del SO Unix específicamente en su versión 6, las universidades adoptaron esta pieza de

software como herramienta educativa en sus cursos de SO debido a que podía obtener su código fuente.

Debido al auge que empezó a tener Unix, éste se convirtió en un software comercial que podría generar

ganancias a sus desarrolladores, en su caso a AT&T. Por lo que en su siguiente versión su licencia fue

modificada, limitando el acceso a su código fuente. Esta medida desfavoreció a las universidades debido

a que no podían utilizar la última versión como herramienta de estudio en los cursos de Sistemas

Operativos, ocasionando que las dinámicas pedagógicas de los mismos fuesen orientadas más a los

espacios teóricos-abstractos de la materia (15).

En búsqueda de una solución a la situación anterior, surge un proyecto que plantea la necesidad en

desarrollar una herramienta educativa capaz de generar conocimientos de diseño e implementación en

SO, la cual se conoce como SOI (Sistemas Operativos Instruccionales). Este proyecto bandera se

10
 “Minix 3” - ¡Error! Referencia de hipervínculo no válida.

68

conoció como Minix, desarrollado por Andrew Tanenbaum, quien escribió un SO completo desde cero,

que posee una interfaz de usuario similar a Unix, pero con una estructura diferente para evitar problemas

relacionados a las licencias de software.

Debido al enfoque de diseño de Minix, es decir, de carácter pedagógico, su autor y creador no permitía

que las modificaciones al mismo fuesen drásticas, motivado a que podría acarrear complicaciones en el

sistema. Además, podría impedir el estudio y comprensión durante un semestre.

Minix 3 es conocido en los ambientes académicos computacionales por ser desarrollado por uno de los

principales investigadores de los SO. A su vez, es famoso debido a que del mismo surge uno de los

proyectos de SO más populares de las últimas dos décadas conocido como Linux, que fue desarrollado

por Linus Torvalds.

El nombre de Minix viene de un juego de palabras que su autor llama como mini-Unix, es decir, es un SO

lo suficientemente pequeño que puede ser estudiado y comprendido por cualquiera que se lo proponga

sin necesidad de poseer un amplio conocimientos en computación.

6.1.2 Versiones de Minix

El SO Minix 1 en su inicio desarrollado por Andrew Tanenbaum, fue implementado para ejemplificar los

principios explicados en su libro “Sistemas Operativos: Diseño e Implementación” publicado en el año

1987. En este se puede conseguir una parte del código fuente del núcleo, el controlador de memoria y el

sistema de archivos (15).

Esta versión de Minix 1 fue desarrollada para trabajar sobre las arquitecturas IBM PC e IBM PC/AT que

eran las plataformas más comunes para la época. Minix fue actualizado para ofrecer soporte al

MicroChannel IBM/PS2 y también a las arquitecturas Motorola 68000 y SPARC. Debido a la popularidad

del proyecto surgió una modificación no oficial de Minix que fue adaptado para las arquitecturas

compatibles con Intel 80386, National Semiconductor NS32532, ARM y procesadores INMOS Transputer.

Minix 2 fue lanzado oficialmente en el año 1997, ofreciendo compatibilidad con las arquitecturas x86 y

SPARC. Al igual que su versión anterior este lanzamiento posee una publicación bibliográfica escrita por

Andrew Tanenbaum y Albert Woodhull. Minix 2 añadió compatibilidad con POSIX, soporte para

arquitecturas Intel 80386. También aparecieron modificaciones no oficiales de Minix 2 dándole soporte a

arquitecturas basadas en el 68020 ISICAD Prisma 7000 y las basadas en Hitachi SH3.

Minix-vmd es una variante de Minix 2 para procesadores compatibles con la arquitectura Intel IA-32 que

fue creado por dos investigadores de la Universidad Vrije de Amsterdam, que añadió módulos de

memoria virtual y a su vez soporte para el sistema grafico X Window.

69

Minix 3 fue anunciado públicamente en el año 2005 por Andrew Tanenbaum y al igual que sus

antecesores posee una publicación bibliográfica “Operating Systems: Design and Implementation” en su

tercera edición. Esta nueva versión fue completamente rediseñada para ser utilizada como un SO para

computadoras con recursos de hardware limitados y para aplicaciones que requieren de un ambiente de

alta confiabilidad (15).

Actualmente Minix 3 soporta solo arquitecturas derivadas a la Intel IA-32 y se encuentra disponible en

Live CD que es una características bastante común hoy día que permite utilizar el SO sin necesidad de

ser instalado en la maquina real.

6.1.3 Acerca de Minix 3

Minix 3 es un SO de código abierto cuya principal característica de diseño es la de ser un sistema

altamente confiable, flexible y seguro, como se mencionó con anterioridad. Esta versión de Minix se

puede considerar pequeña, debido a que la porción de código que se ejecuta en modo núcleo posee un

promedio de 6000 líneas de código fuente, y aquellas piezas que se ejecutan en el modo usuario se

dividen en pequeños módulos, aislados unos de otros, es decir, su ejecución es mutuamente excluyente.

Para entender el concepto anterior observe la siguiente situación, si cada controlador de un dispositivo se

ejecuta como proceso independiente entonces al ocurrir un fallo en su ambiente de ejecución este

proceso tendrá un fallo y tendrá que levantarse nuevamente. Pero sin comprometer la integridad del

sistema. Esto ocurre debido a que el código fuente del controlador no se encuentra incluido dentro del

núcleo debido al esquema micronúcleo que utiliza Minix 3. Normalmente el código fuente de los

controladores son desarrollados por terceros que desconocen en su totalidad el diseño, implementación y

desarrollo del SO en cuestión, por ejemplo OS X, Linux o Microsoft Windows (15).

De hecho, la mayoría de las veces cuando un controlador falla se sustituye automáticamente sin requerir

la intervención del usuario, sin necesidad de reiniciar el sistema, y sin afectar los programas en ejecución.

Debido a esta característica (pequeña cantidad de código del núcleo), se mejoran en gran medida la

fiabilidad del sistema.

Uno de los principales objetivos de Minix 3 es la fiabilidad. A continuación se discuten algunos de los

principios más importantes que mejoran la fiabilidad de Minix 3. Al ser mejorada la fiabilidad

intrínsecamente se mejora la seguridad, ya que la mayoría de las fallas de seguridad se deben a que los

atacantes explotan los errores en el código.

6.1.4 ¿Es Minix 3 un SO confiable?

Uno de los principales objetivos de MINIX 3 es la confiablidad. A continuación se discuten algunos de los

principios más importantes que mejoran la confiablidad de MINIX 3. Estos principios también mejoran la

70

seguridad, ya que la mayoría de las fallas de seguridad se deben a los atacantes que explotan los errores

en el código, al ser mejorada la confiablidad intrínsecamente se mejora la seguridad. Algunas de las

medidas para garantizar la confiablidad son las siguientes (15):

 Reducir el tamaño del núcleo: algunos SO que poseen núcleos monolíticos por ejemplo, BSD,

GNU/Linux y Microsoft Windows. Estos poseen núcleos que están escritos por millones de líneas

de código fuente, para verificar la correctitud del mismo el procedimiento sería engorroso. Para

solucionar esto Minix 3 tiene aproximadamente 6000 líneas de código fuente del núcleo que son

ejecutables.

 Enjaular los posibles errores: en los SO comerciales que poseen núcleos monolíticos, los

controladores de los dispositivos del computador residen en el núcleo del sistema. Lo anterior

conlleva a que en la base del sistema en su punto más crudo de ejecución es instalado código

fuente que son desarrollados por los fabricantes de los dispositivos. De los cuales no se puede

medir su calidad ya que estos son ajenos al desarrollo del SO. Lo anterior es solventado en Minix

3 porque cada controlador de dispositivo es ejecutado en el SO como un proceso independiente

de modo usuario, es decir, se garantiza de que en caso de que el código pueda contener un error

este no podrá afectar el sistema.

 Limitar el acceso a memoria por medio de los controladores: En los SO monolíticos, un

controlador puede escribir cualquier palabra en memoria, alguna de estas palabras pueden ser

erróneas. En Minix 3 el sistema de archivos o el controlador le pide al núcleo escribir a través del

descriptor, lo que hace imposible que escriban a las direcciones fuera del búfer.

 Tolerancia a bucles infinitos: si un proceso durante su ejecución entra en un bucle infinito, el

planificador gradualmente irá reduciendo su prioridad hasta que se convierta en un proceso

inactivo o IDLE (proceso con menor prioridad). Eventualmente el servidor reencarnación se

percatara que el proceso no responde a los mensajes y podrá ser reiniciado.

 Restringir el acceso a las funciones del núcleo: Los controladores de dispositivos obtienen los

servicios del núcleo a través de la realización de llamadas del núcleo. El núcleo de Minix 3 tiene

un mapa de bits para cada controlador que especifica la llamada a realizar y verifica si ésta

autorizada.

 Servidor reencarnación: un proceso especial, denominado servidor reencarnación, de forma

periódica verifica cada controlador. Si el controlador muere o no responde correctamente a las

peticiones, el servidor reencarnación automáticamente lo sustituye por una copia nueva. La

detección y el reemplazo de los controladores que no funcionan son automáticos, sin intervención

del usuario.

71

6.1.5 Mejoras sobre Minix 3

Minix 3 posee varias mejoras con respecto a su versión anterior Minix 2 y entre ellas podemos nombrar

las siguientes (15):

 Instalación del SO a través de un Live CD.

 Soporte al sistema X Window.

 Soporte de 4 GB de memoria principal.

 Inclusión de un servidor de información para procedimientos de depuración.

 El servidor reencarnación.

 El núcleo ha sido reescrito, optimizado y depurado a 6000 líneas de código fuente.

 Cada controlador de dispositivo es ejecutado como un proceso de usuario exceptuando el

manejador del reloj del procesador.

 Mecanismo de comunicación no bloqueantes, es decir, asincrónicos.

 El planificador del procesador ha sido modificado.

6.1.6 Objetivos de Minix 3

En secciones anteriores se comentó que las versiones anteriores a Minix 3 fueron desarrolladas con un

enfoque puramente educativo siendo conocido mas como un SOI que como uno comercial. Sin embargo,

Minix 3 tiene ambos enfoques, el educativo y el comercial; esto ocasiono grandes expectativas debido a

que este SO fue lanzado para satisfacer las expectativas en los siguientes mercados (14):

 Ofrecer un ambiente de ejecución para aquellas aplicaciones que requieren alta confiabilidad.

 Ofrecer un SO para los proyectos de OLPC (One Laptop per Children) y también para su

homologo el proyecto Magallanes.

 Ser utilizado como SO para sistemas embebidos.

 Como herramienta educativa, a pesar de que está apuntándose a convertirse en un SO comercial

el tamaño de núcleo es lo suficientemente pequeño para ser utilizado como herramienta

educativa en las instituciones académicas.

6.1.7 Estructura de Minix 3

El SO Minix 3 fue implementado con una arquitectura micronúcleo dividido en cuatro capas. Existen al

menos cinco maneras en las que su núcleo puede ser estructurado, tales como: monolítico, en capas,

máquina virtual, exonúcleos y arquitectura cliente/servidor (15). Minix 3 combina la estructura basada en

capas en conjunto con la arquitectura cliente/servidor. La arquitectura basada en capas divide el sistema

en una serie de niveles que implementan funciones específicas. Por lo tanto, es habitual que las capas

más altas dependan de los servicios ofrecidos por otras capas de nivel inferior. Minix 3 tiene cuatro

capas, cada una con una función específica y bien definida (15).

72

Acorde a las estructuras micronúcleo gran parte de las funcionalidades importantes del SO son

implementados como servidores que son ejecutados por separado. Entre los servicios fundamentales que

provee la estructura micronúcleo son la administración del espacio de direcciones, la administración de

hilos, comunicación entre procesos y la administración de los temporizadores del sistema.

El SO Minix implementa una arquitectura micronúcleo separada en capas como se muestra en la Figura

6.1. Además, como se ha comentado con anterioridad, Minix 3 está estructurado en cuatro capas, para

visualizar cada una vea la Figura 6.1 donde se detallan. Como puede observarse la única capa que se

ejecuta en modo núcleo es la capa 1.

Modo

Núcleo

Modo

Usuario

Núcleo
Tarea del

sistema

Tarea del

reloj

Controlador

de disco

Controlador

de tty

Controlador

de Ethernet
...

Manejador de

procesos

Sistema de

archivos

Servidor

info
...

Servidor

de red

Init
Proceso de

Usuario
...

Proceso de

Usuario

Núcleo

Controladores

de dispositivos

Procesos

Servidor

Procesos de

Usuario

1

2

3

4

Figura 6.1 Estructura de Minix 3

Capa 1 (El núcleo): Esta capa provee los servicios de más bajo nivel que son necesarios para la

ejecución del sistema. Entre ellos se incluyen la gestión de interrupciones, planificación y comunicación.

La parte que ofrece servicios de más bajo nivel de esta capa, que trata con interrupciones y otros

aspectos muy dependientes del hardware, está escrita en lenguaje ensamblador, mientras que el resto de

funcionalidades están escritas en C. Esta capa se encarga de lo siguiente:

 Gestionar las interrupciones.

 Salvar y restaurar registros.

 Planificar procesos.

 Ofrecer servicios a la capa superior.

 Funciones de comunicación y mensajes.

Capa 2 (Controladores de dispositivos): En esta capa se encuentra el código que se encarga de las

tareas de entrada/salida y da soporte a ciertas tareas que no pueden realizarse a nivel de usuario. Como

por ejemplo el controlador de disco, controlador de tty y controlador de Ethernet, etc. Además, en esta

capa se encuentran los controladores de dispositivos, para dar soporte a periféricos como discos duros,

teclados, impresoras, lectores de CD-ROM.

73

Capa 3 (Servidores): Esta capa ofrece servicios que son utilizados por los programas que se ejecutan

en la capa superior. Los procesos en esta capa pueden acceder a los servicios de la capa dos

(controladores de dispositivos) pero los programas de la capa cuatro no tienen acceso directo a los

procesos de la capa dos. Ejemplos de algunos de estos servicios incluyen: manejador de procesos,

sistema de archivos, servidor info, servidor de red, etc.

Capa 4 (Procesos de usuario): Esta capa comprende la sección de usuario de Minix 3 en la que son

ejecutados los programas de usuario. Estos programas utilizan los servicios que ofrecen las capas de

nivel inferior. Los programas que se encuentran habitualmente en esta capa incluyen demonios de varios

tipos, terminales, intérprete de comandos y cualquier otro programa que el usuario quiera ejecutar. Los

proceso de esta capa tienen el nivel más bajo de privilegios para acceder a los recursos y normalmente

acceden a ellos a través de los servicios que ofrecen las capas inferiores. Por ejemplo, un usuario podría

ejecutar la orden traceroute, que necesita usar el controlador de red. La orden traceroute no invoca

directamente al controlador de red. En su lugar, pasa a través del servidor de archivos; debido a que el

intérprete de comandos está en la capa 4 y no puede comunicarse directamente con la capa 2, en su

lugar solicita el servicio a través de los servidores (en este caso el servidor de archivos).

6.1.8 Ventajas de la arquitectura

Algunos de los beneficios más importantes de esta arquitectura de capas se describen en detalle a

continuación (15):

 Modularidad: el sistema está bien estructurado y la relación entre los diferentes componentes

está bien definida.

 Seguridad: la combinación de la estructura en capas y micronúcleo facilita la incorporación de

mecanismos de seguridad. Las capas dos y tres se ejecutan en espacio de usuario, mientras que

tan solo la capa uno se ejecuta en modo núcleo, que posee todos los privilegios necesarios para

acceder a cualquier parte del sistema.

 Extensible: para poder tener un sistema funcional, es necesaria la configuración del núcleo, así

como la de los servicios clave que son necesarios para comenzar. Todas las demás funciones

pueden ser añadidas cuando sean necesarias. Esto hace más sencillo ampliar o especializar la

función del sistema.

 Rendimiento y estabilidad: muchos problemas que provocan inestabilidad en un computador

son resultado de controladores y programas mal diseñados. La arquitectura micronúcleo permite

a estos programas ser ejecutados e implementados independientemente de los componentes

principales del SO, lo que significa que un fallo en cualquiera de los controladores de dispositivo

no es catastrófico para el sistema; puede mantenerse en ejecución, pese a los errores.

74

6.1.9 Desventajas de la arquitectura

Existen varios puntos que son considerados desfavorables para la estructura de la arquitectura, los

cuales son descritos a continuación:

 Complejidad: la arquitectura de Minix tiene una estructura complicada, lo que dificulta, en primer

lugar, su diseño y además, su evolución. A pesar de las posibles ventajas de un diseño modular a

la hora de adaptar un software a un nuevo entorno, en Minix 3 la modularidad no es total,

existiendo muchas dependencias entre sus distintas partes. La industria de la informática está

entre las más cambiantes dentro de la economía mundial y por lo tanto sufre una necesidad real

de adaptarse a los nuevos desarrollos tanto hardware como software, aspecto en el que Minix no

se ha mostrado demasiado apropiado.

 Comunicaciones y envío de mensajes: este tipo de estructura necesita una arquitectura rápida

y eficiente de comunicaciones para asegurar la máxima velocidad en la comunicación entre los

distintos procesos que se ejecutan en su espacio individual de direcciones, así como con

variados niveles de seguridad. Una mala implementación de las comunicaciones tendrá un gran

impacto en el rendimiento del sistema (15).

6.1.10 ¿Dónde se puede obtener Minix 3?

El SO Minix 3 es distribuido en su página Web oficial
11

 donde se publican todas las versiones de Minix

incluyendo la que actualmente se encuentra en la fase de desarrollo. Para la fecha, la última versión

estable es Minix 3.1.8 y la que se encuentra actualmente en la fase de desarrollo seria la Minix 3.1.9 (14).

Además, este SO como fue comentado en las secciones anteriores posee una publicación bibliográfica

escrita por el creador de Minix, en este caso Andrew Tanenbaum con el nombre de “Operating Systems:

Implementation and Design, The Minix 3rd Edition” y con la compra del mismo se entrega un CD-ROM

con la versión Minix 3.1.0.

6.1.11 Requerimientos necesarios para la instalación de Minix 3.

Al igual que sus competidores, Minix 3 posee soporte para un tipo de hardware y entre ellos listamos los

siguientes:

 CPU: Esta desarrollado para trabajar sobre la familia de procesadores x86 de 32 bits.

 Memoria: La instalación estándar o por defecto de Minix 3 requiere al menos 28 Mb (Megabyte)

de RAM (Memoria de Acceso Aleatorio) y en instalaciones más avanzadas podría tan solo usar 8

11
 “Minix 3” - http://www.minix3.org/

http://www.minix3.org/

75

Mb de RAM aunque para llevar a cabo el procedimiento de compilación del núcleo lo más

recomendable es tener 64 MB.

 Disco duro: Actualmente Minix 3 da soporte a dispositivos IDE y serial-ATA. El SO requiere de

una partición primaria y al menos 260 Mb libres en el disco duro, en caso de que se desee

obtener el código fuente completo de Minix 3 se debe manejar un espacio de al menos 1 GB.

 Tarjetas de red: Minix 3 posee un escaso soporte con respecto a estos dispositivos.

76

77

7 Estudio del proceso de arranque

En este capítulo se muestra detalladamente el proceso relacionado al arranque del computador,

incluyendo las partes relacionadas, dispositivos y sus especificaciones. Luego, se muestra la secuencia

de programas involucrados para el proceso de arranque del SO Minix 3, entre ellos se explica el

comportamiento del código masterboot.s y bootblock.s. También se expone los tipos de

direccionamientos de discos duros y la estructura lógica de los mismos para que el SO puede arrancar.

Se mostrará paso por paso el proceso de arranque de un SO. Uno de los principales actores en éste

proceso es la BIOS (Basic Input Output System) siendo un dispositivo indispensable, es por ello que se

estudia las principales interrupciones utilizadas y las estructuras de datos que esta emplea.

7.1 BIOS (Basic Input Output System)

La BIOS es una colección de rutinas y datos que el fabricante del computador proporciona para manejar

los dispositivos que componen al equipo, este código es almacenado en una memoria ROM (Read Only

Memory). Anteriormente la BIOS era almacenada en dispositivos de memoria con tecnología ROM o

EPROM (Erasable Programmable Read-Only Memory) pero actualmente se implementan sobre

memorias de clase EEPROM (Electrically-Erasable Programmable Read-Only Memory) mejor conocida

como memoria flash.

Normalmente una vez que la máquina es encendida las rutinas de la BIOS ocupan generalmente un

espacio de 256 bytes en memoria RAM, donde contiene detalles sobre el estado de Bloq Num, el búfer

de teclado, etc. La BIOS podemos dividirla en tres partes (16):

 Setup: es una utilidad del BIOS que puede utilizarse para modificar datos de configuración del

sistema, tal como la cadena de discos de arranque.

 Rutinas de servicios: son un conjunto de llamadas que le permiten a las aplicaciones o al

programador interactuar con los dispositivos del computador.

 Secuencia de arranque: es una secuencia donde se comprueban los componentes del sistema,

inicializa las estructuras de datos para poder cargar un SO en el computador.

7.2 Dispositivos de Almacenamiento

Las unidades de almacenamiento de datos son dispositivos capaces de leer o escribir datos en medios o

soportes de almacenamiento, son normalmente conocidos como la memoria secundaria de los

computadores.

En su mayoría las unidades de almacenamiento más comunes son los discos magnéticos todos ellos son

formateados o estructurados de forma similar y están divididos en áreas denominadas como (17) (18):

78

 Sectores: Las pistas se subdivide en varias secciones. Cada sección se llama sector. Los

sectores son las unidades más pequeñas de almacenamiento en un disco duro. Cada sector

contiene el mismo número de bits de datos (típicamente 512 bytes) codificados en el material

magnético.

 Pistas: Cada superficie se compone de una colección de anillos concéntricos llamados pistas,

que son delgadas tiras circulares de cinta magnética en la superficie del plato; las cuales

contienen realmente los datos.

 Cilindros: es el conjunto de pistas de todas las superficies que son equidistantes del centro del

eje.

 Cabecera: Los datos se escriben y se leen desde la superficie de un plato con un dispositivo

llamado cabecera. Naturalmente, un disco tiene dos caras y por lo tanto dos superficies en las

que los datos podrían ser manipulados, por lo general hay 2 cabezas por plato.

7.2.1 Unidad de disquete (Floppy).

Es un tipo de disco de almacenamiento magnético pequeño, flexible y barato (17). Existen disquetes de

varias capacidades, el más común es el de 3,5 pulgadas, el cual permite almacenar hasta 1,44 MB. Es

una unidad obsoleta, reemplazada por las unidades flash USB, discos duros externos, discos ópticos,

tarjetas de memoria y redes informáticas. A pesar de ser una unidad obsoleta, abarca los conceptos

relacionados a las unidades de almacenamiento más complejas, ayudando a entender los conceptos de

forma sencilla. Es importante destacar que para acceder a esta unidad en código ensamblador el registro

dl debe poseer el valor 0x00 o 0x01, el cual hace referencia a la primera o segunda unidad de disquete

posible en una máquina. Para entender mejor la geometría de un disquete vea la Figura 7.1.

Sector
Pista

Plato

Cara

Figura 7.1 Geometría de un disquete

79

7.3 Unidad de disco duro.

Son caracterizados por poseer uno o más platos rígidos girando sobre un eje (18). Los discos duros

tienen una gran capacidad de almacenamiento de información. El disco duro almacena casi toda la

información que manejamos al trabajar con una computadora. En él se aloja, por ejemplo, el SO que

permite arrancar la máquina, los programas, archivos de texto, imágenes, vídeos, etc. Dicha unidad

puede ser interna (fija) o externa (portátil). Un disco duro está formado por varios discos apilados sobre

los que se mueve una pequeña cabeza magnética que graba y lee la información. Es importante destacar

que para acceder a esta unidad en código ensamblador el registro dl debe poseer el valor 0x80, 0x81,

0x82 o 0x83, el cual hace referencia las posibles unidades de disco duro en una máquina. Para entender

mejor la geometría de un disco duro vea la Figura 7.2.

Cabecera 0

Sector
Pista
Cilindro

Plato

Cabecera 1

Cara

Figura 7.2 Geometría de un disco duro

80

7.4 Modos de direccionamiento de sectores

Existen dos métodos principales que permiten direccionar y acceder a los bloques físicos de un disco

duro, ellos son CHS y LBA, los cuales serán explicados a continuación.

7.4.1 CHS (Cylinder Head Sector)

El modo CHS es el modo tradicional de acceso a los discos. Este método permite acceder a los bloques

a través de una tripla que se define por el cilindro, cabeza y sector. Existen dos tipos de direccionamiento

CHS físico y el direccionamiento CHS lógico. El direccionamiento CHS físico solo puede direccionar

504MB (16). Para entender esta premisa vea la Tabla 7.1.

 Bits Valor máximo

teórico = 2
n

Rango

permitido

Total

utilizable

Cilindro 10 1024 0-1023 1.024

Cabeza 4 16 0- 15 16

Sector 6 64 1-63 63

Tabla 7.1 Direccionamiento CHS físico

Estos números nos conducen a un total máximo de 1024 * 16 * 63 = 1.032.192 sectores, como en todos

los discos duros cada sector es de 512 bytes, el resultado final es de 528.482.304bytes (528 MB). Este

sería el máximo espacio de disco direccionable mediante los servicios de la interrupción 0x13 estándar

BIOS, también conocida como int 13 (posteriormente se explicará dicha interrupción).

Este modo se amplió posteriormente para dar soporte hasta 8.064 MB exactamente con lo que

comúnmente se conoce como el direccionamiento CHS lógico. Debido a que dichos valores son

lógicos, los verdaderos valores correspondientes a la geometría real, son asunto exclusivamente del

controlador de la unidad (16).La nomenclatura usada por este método se puede visualizar en Tabla 7.2.

 Bits Valor máximo

teórico = 2
n

Rango

permitido

Total utilizable

Cilindro 10 1024 0-1023 1.024

Cabeza 8 256 0-255 256

Sector 6 64 1-63 63

Tabla 7.2 Direccionamiento CHS lógico

Los valores anteriores arrojan un total de 1024 * 256 * 63 = 16.515.072 sectores a direccionar. Los

servicios de la BIOS podían direccionar un máximo de 1024 * 256 * 63 * 512 = 8.455.716.864Bytes,

8.455GB. Este es el límite teórico del direccionamiento CHS directo o de la interrupción 0x13 de la BIOS

estándar.

81

Debido a esta limitante se buscó una solución que permitiera utilizar disco de mayor capacidad a la

soportada de 8.45 GB que teóricamente podía proporcionar la BIOS estándar. Una de las soluciones

provisionales fue la ECHS extended cylinder head sector, la ATA Specification (hasta 137 GB)
12

, etc. Sin

embargo, los alcances de las mismas no daban abasto al creciente aumento en la capacidad de los

discos duros.

7.4.2 LBA (Logical Block Addressing)

Debido a que la capacidad de los discos fue creciendo con el tiempo, como se mencionó anteriormente,

se hizo necesario sobrepasar también el límite de los 137 GB de la interrupción 0x13 de la BIOS que

permite el método CHS. Para esto se ideó un sistema denominado LBA que diseña un sistema distinto

para direccionar los sectores.

LBA, hoy en día es el esquema común utilizado para especificar la ubicación de los bloques de datos

almacenados en la memoria secundaria, tales como los sistemas de discos duros. LBA fue desarrollada

por primera vez para las unidades de disco duro SCSI.LBA es un esquema simple de direccionamiento

lineal; los bloques son ubicados mediante un índice, el primer bloque es LBA=0, el segundo LBA=1, y así

sucesivamente. El esquema de LBA sustituye a los regímenes anteriores, que expone los detalles físicos

del dispositivo de almacenamiento para el software del SO
13

.

El direccionamiento LBA en las unidades ATA puede ser de 28 bits o de 48 bits, lo que resulta en límites

de 128 GB (2^28 sectores * 512 bytes por sector) y 128 PB (Petabyte) (2^48 * 512 bytes por sector).

Desde luego, las BIOS que detectan el modo LBA también disponen de la traducción adecuada para

solventar las limitaciones de la combinación BIOS/ATA (saltar la limitación de 8.455 GB). Debido a que la

interrupción 0x13 no sabe nada sobre direccionamientos LBA, es la traducción la que resuelve dicho

inconveniente.

Por supuesto todas las nuevas unidades de disco soportan LBA, y cuando esta circunstancia se presenta

la BIOS la auto-detectada, estableciendo automáticamente el modo de direccionamiento y habilita la

traducción correspondiente. Las direcciones de CHS se pueden convertir en direcciones LBA utilizando la

siguiente fórmula
14

:

12
 “BIOS Disk Access” - http://oss.sgi.com/

13
 “48-bit LBA Technology” - http://www.48bitlba.com/

14
 “LBA and CHS format, LBA mapping” - http://www.boot-us.com

http://oss.sgi.com/
http://www.48bitlba.com/
http://www.boot-us.com/

82

fórmula LBA = ((C * Num_Head) + H) *Num_Sec)+ S - 1

leyenda

C = número de cilindros

H = número de cabecera

S = número de sector

LBA = es la dirección lógica del bloque

Num_Head = es el número de cabecera por cilindro

Num_Sec = es el número de sectores por pista

Tabla 7.3 Fórmula de conversión de CHS a LBA

7.5 Interrupción 0x13 de la BIOS

La interrupción int 0x13 permite acceder directamente al disco duro utilizando cualquier lenguaje de

programación de bajo nivel
15

. INT es una instrucción x86 que provoca una interrupción de software. La

BIOS generalmente establece un manejador de interrupciones de modo real, este vector es el que

proporciona la lectura y escritura de los sectores de disco duro o disquete utilizando la nomenclatura

CHS. Para tener una visión clara, se explicará en qué consiste el modo real. El modo real de direcciones

(a menudo llamado simplemente "modo real") es el modo que adopta el procesador inmediatamente

después de la iniciación. En modo real la memoria es limitada a 1 MB, además, no ofrece soporte para la

protección de memoria, multitarea, o los niveles de privilegio de código. A continuación será explicada la

interrupción 0x13 con los parámetros más comunes utilizados para el proceso de arranque del SO.

7.5.1 INT 0x13, AH = 0x00

Reinicia el sistema de disco o disquete, ya que restablece el disco duro o el controlador de disco o

disquete, obligando a la recalibración de la cabeza para la lectura/escritura (19). Para ver la

especificación de esta interrupción ver la Tabla 7.4.

Entrada
AH = 0x00

DL = dispositivo asociado

Salida
AH = estatus

CF = encendida si existe un error, sino apagada

Tabla 7.4 INT 0x13, AH = 0x00

15
 “Interrupts Page” - http://sps.nus.edu.sg

movb dl, #0x80 !dl = 0x80 hace referencia al primer disco duro
movb ah, #0x00 !ah = 0x00
nt 0x13 !realiza la llamada a la interrupción, para reiniciar el controlador del primer disco duro

Figura 7.3 Código de INT 0x13, AH = 0x00

http://sps.nus.edu.sg/

83

7.5.2 INT 0x13, AH = 0x02

Lee uno o más sectores de un disco duro o disquete para cargarlos en la memoria principal (19).Para ver

las especificaciones de esta interrupción ver la Tabla 7.5.

Entrada

AH = 0x02

AL = número de sectores a leer (debe ser distinto de cero)

CH = tiene los ocho bits menos significativos del número de

cilindro, recuerde que en CHS el número de cilindro se representa

con 10 bits.

CL = número de sector en los bits 0-5 (total de 6 bits), los dos bits

más significativos del cilindro en los bits 6-7 (solo aplica en discos

duros). Ejemplo del registro cx:

CX = CH CL

Cilindro [0-9] bits 76543210 98

sector [0-5] bits 543210

DH = número de la cabecera

DL = dispositivo asociado

ES:BX = buffer, posición de memoria donde son copiados los

sectores

Salida

AH = estatus de la operación

AL = número de sectores leídos

CF = encendida si existe un error, sino apagada

Tabla 7.5 INT 0x13, AH = 0x02

7.5.3 INT 0x13, AH = 0x08

Obtiene los parámetros del dispositivo. Ofrece la información de los parámetros de la unidad de disco,

tales como el número de cabezas, pistas y sectores por pista (19), vea la Tabla 7.6.

mov ax, #0x0201 !Código para leer, únicamente un sector; ah = 0x02 y al = 0x01
!el cilindro = 263 y el sector = 5
movb ch, #0x07 !ch[0..7] = bits menos significativos del cilindro
movb cl, #0x85 !cl[0..5] = sector, cl[6..7] = dos bits más significativos del cilindro
movb dh, #0x0A !dh = 0x0A, indica que va a leer de la cabecera 10
movb dl, #0x80 !dl = 0x80 hace referencia al primer disco duro
movb es, #0x06

movb bx, #0x00 !buffer = 0x0600, posición de memoria donde son copiados los sectores

int 0x13 !realiza la llamada a la interrupción

Figura 7.4 Código de INT 0x13, AH = 0x02

84

Entrada
AH = 0x08

DL = dispositivo asociado

Salida

Ambos

para

ambos

AH = estatus

CF = encendida si existe un error, sino apagada

CH = tiene los ocho bits más bajo del número de cilindro

CL = número de sector en los bits 0-5 (total de 6bits), los dos

bits más altos del cilindro en los bits 6-7 (solo aplica en discos

duros).

DH = número de la cabecera

disco DL = número del disco asociado

Solo

aplica

para

disquete

BL = tipo de dispositivo

DL = número del disquete asociado

ES: DI = Apuntador a la tabla de parámetros de la unidad de

disquete

Tabla 7.6 INT 0x13, AH = 0x08

7.5.4 INT 0x13, AH = 0x42

Lectura extendida de sectores del disco. Permite leer los sectores que se encuentran sobre los 8.45 GB

que permite el direccionamiento lógico de CHS (19). Para ver las especificación de esta interrupción ver

la Tabla 7.7.

Entrada

AH = 0x00

DL = dispositivo asociado

DS:SI = dirección que apunta al paquete de dirección de disco

Salida
CF = encendida si existe un error, sino apagada

AH = código de error

Tabla 7.7 INT 0x13, AH = 0x42

movb dl, #0x80 !dl = 0x80 hace referencia al primer disco duro
ovb ah, #0x08 !ah = 0x08, indica la llamada
int 0x13 !realiza la llamada a la interrupción

Figura 7.5 Código de INT 0x13, AH = 0x08

85

7.6 Secuencia de arranque

¿Cómo inicia un SO? Se utilizará un primer enfoque resumido para poder entender como inicia un SO y

luego se explicará de forma detallada el proceso. En la mayoría de las computadoras modernas existen

varios dispositivos a partir de los cuales se puede iniciar el proceso de arranque del SO, es por ello que

existe una jerarquía de arranque. Típicamente, se intenta arrancar desde la unidad de disquete, si este

intento no es exitoso, se intenta arrancar desde la unidad de CD-ROM. Si desde la unidad de CD-ROM

es fallido, se intenta arrancar desde la unidad de disco duro. El orden de esta jerarquía puede ser

configurable a través del setup de la BIOS, como se mencionó anteriormente. Adicionalmente otros

dispositivos también brindan soporte a este proceso de inicio, especialmente los de almacenamiento

removible (17).

Suponga que la computadora es encendida, si el dispositivo de arranque es un disquete, el hardware lee

el primer sector de la primera pista del disco, lo carga en memoria y ejecuta el código encontrado allí. En

el disquete, este primer sector contiene el programa bootstrap. Este programa es muy pequeño, ya que

tiene que entrar en un sector (512 bytes). El bootstrap carga un programa más grande, llamado boot,

posteriormente éste último es el encargado de cargar el SO. Para entender mejor este escenario vea la

Figura 7.7 donde aparece el diseño mencionado donde el primer sector contiene el bootblock y el disco

no está particionado.

Figura 7.7 Estructura de un disquete.

movb dl, #0x80 !dl = 0x80 hace referencia al primer disco duro
movb ah, #0x42 !ah = 0x42, indica la llamada
movb ds, #0x08

movb si, #0x00 !buffer = 0x0600, apunta a la dirección del paquete de dirección de disco

int 0x13 !realiza la llamada a la interrupción

Figura 7.6 Código de INT 0x13, AH = 0x42

86

En contraste, el disco duro requiere un paso intermedio. Un disco duro está dividido en particiones, y el

primer sector de un disco duro contiene un programa pequeño y la tabla de particiones del disco.

Colectivamente estas dos piezas son llamadas MBR (Master Boot Record). El hardware lee el primer

sector de la primera pista del primer cilindro del disco duro y lo carga en memoria. Este programa es

ejecutado para leer la tabla de particiones y seleccionar la partición activa (17). La partición activa tiene

un programa bootstrap en su primer sector, el cual es cargado y ejecutado para encontrar e iniciar una

copia del boot en la partición, exactamente como se hace cuando se arranca desde un disquete. Para

entender mejor este escenario ver la Figura 7.1.

Figura 7.8 Estructura de un disco duro

En cualquier caso, una vez cargado el boot de Minix 3, éste busca un archivo multipartes ya sea en el

disco (disquete) o partición (disco duro) y carga las partes individuales en las posiciones apropiadas de la

memoria. Esta es la boot image, para visualizarla mejor ver la Figura 7.9. La parte más importante son el

núcleo (el cual incluye el reloj y la tarea del sistema), el manejador de proceso y el sistema de archivo.

Adicionalmente algunos driver deberían ser cargados en la boot image. Esto incluye el servidor

reencarnación, el disco RAM, la consola e init.

87

0

Vector de interrupciones

Usado por la BIOS

Kernel

Reloj

Tareas del sistema

Memoria habilitada para los

programas de usuario

Boot monitor

Memoria de solo lectura y

memoria para los

adaptadores de E/S

Manejador de procesos

Sistema de archivos

Servidor rencarnación

Driver de la consola

Driver de memoria

Driver de log

Driver del disco

1K

2K inicio del kernel

55K

590K

640K

1024K

1093K

3236K

3375K

3403K

3416K

3489K

3537K

Init

Memoria habilitada para los

programas de usuario

3549K

Limite de la memoria

Figura 7.9 Diseño de la memoria RAM luego de que Minix ha sido cargado desde el disco

88

1er sector del disco

1er sector de la

partición activa

Directorio raiz

Directorio /minix

BIOS

Masterboot y tabla de

particiones

Bootblock

Boot monitor (boot

secundario)

Sistema Operativo Minix:

kernel, MM, FS init

masterboot.s

bootblock.s

boot.c

d
is

c
o

 d
u

ro

d
is

q
u

e
te

R
O

M

C
D

-R
O

M
Rutinas

Figura 7.10 Proceso de arranque de Minix 3

La secuencia de este proceso de arranque puede ser fácilmente entendido viendo la Figura 7.10 donde

además puede apreciarse donde son almacenados los ejecutables dependiendo del dispositivo de

almacenamiento. Como se aprecia se empieza por la ROM que solo almacena a la BIOS, sus estructuras

de datos y rutinas. Por otra parte, como puede observarse un disquete solo puede almacenar a bootblock

y boot. El CD-ROM puede almacenar al bootblock, boot y SO. Por último el un disco duro puede

almacenar a todos los programas mencionados anteriormente.

Ahora se explicará el proceso con una visión más detallada del mismo. Cuando el sistema esta

inicializado, el hardware (realmente, un programa en la ROM) lee el primer sector del disco de arranque,

lo copia para cargarlo en memoria y ejecuta el código encontrado allí. En un disco no particionado, como

un disquete, en el primer sector está el bootblock el cual carga el programa boot, como lo muestra la

Figura 7.7. El disco duro siempre está particionado, y el programa ubicado en el primer sector (llamado

masterboot en el sistema Minix) primero se traslada asimismo a otra región de memoria, luego lee la

tabla de particiones, recuerde que viene cargada con él desde el primer sector. Posteriormente, carga y

ejecuta el primer sector de la partición activa, como se muestra en la Figura 7.8. Normalmente una y solo

una partición está marcada como activa. Una partición de Minix 3 tiene la misma estructura de un

disquete, con un código bootblock que carga el programa boot. El código bootblock es el mismo para un

disco particionado o un disco sin partición, para entender mejor como un disco duro esta particionado en

89

Minix vea la Figura 7.11. Cuando el programa masterboot se traslada asimismo el bootblock puede ser

escrito en memoria y ejecutado en la misma dirección de memoria donde originalmente el masterboot fue

cargado, más adelante será explicado con mayor detalle (15).

sector de
arranque
maestro

m
a
st
er
b
o
o
t.
s

sector de
arranque 1

b
o
o
tb

lo
ck

.s

b
o
o
t.

c

Minix

sector de

arranque 2

b
o
o
tb

lo
ck

.s

b
o
o
t.

c

Minix

sector de
arranque 3

b
o
o
tb

lo
ck

.s

b
o
o
t.

c

Minix

sector de

arranque 4

b
o
o
tb

lo
ck

.s

b
o
o
t.

c

Minix

Figura 7.11 Estructura de un disco particionado

La situación real puede ser un poco más complicada de lo que muestra la Figura 7.11, en la cual se

puede visualizar que en el primer sector físico del disco duro se encuentra el MBR, y el disco esta

particionado alojando a cuatro sistemas operativos (20). Cada partición como tiene su bootstrap o

cargador primario llamado bootblock.s en el caso de Minix. También, tiene su cargador secundario o boot

monitor que puede estar disperso en varios bloques llamados boot.

Se dice que puede ser más complicada la situación debido a que una partición puede contener

subparticiónes. En tal caso el primer sector de la partición será otro masterboot record conteniendo la

tabla de particiones para las subparticiónes. No obstante, tarde o temprano se transferirá el control a un

sector de arranque, el primer sector de un dispositivo que no tiene más subdivisiones. En un disquete el

primer sector siempre es el sector de arranque. En un disquete el primer sector siempre es un sector de

arranque. Minix permite una forma de subdivisión de un disquete, pero no se brindará esa información

aquí.

El sector de arranque de Minix se modifica en el momento en que se escribe en el disco a través de un

comando, el programa alojado en este sector (bootblock) es el encargado de encontrar un programa

llamado boot en su partición o subpartición. Una vez encontrado debe cargar en memoria los sectores

que comprenden a éste (boot) y darle el control, para que sea luego el boot pueda cargar al SO

finalmente. Esta introducción es necesaria porque antes de que se cargue el SO no es posible usar el

directorio y nombres de archivo para encontrar un archivo. Se utiliza un programa especial llamado

90

installboot para realizar la introducción y la escritura del sector de arranque. Boot es el cargador

secundario para Minix, pero puede hacer más que simplemente cargar el SO, ya que es un programa

monitor que permite al usuario modificar, establecer y guardar diversos parámetros.

Boot examina el segundo sector de su partición en busca de un conjunto de parámetros que usará. Minix,

al igual que el UNIX estándar, reserva el primer bloque de 1 KB de todos los dispositivos de disco como

bloque de arranque, pero el cargador de arranque en ROM o el sector maestro de arranque sólo carga un

sector de 512 bytes, así que hay 512 bytes disponibles para guardar ajustes. Éstos controlan la operación

de arranque, y también se pasan al SO mismo. Los ajustes por omisión presentan un menú con una sola

opción, iniciar Minix, pero es posible modificarlos de modo que presenten un menú más complejo que

permita la iniciación de otros sistemas operativos (cargando y ejecutando sectores de arranque de otras

particiones), o iniciar Minix con diversas opciones. También podemos modificar los ajustes por omisión de

modo que pasen por alto el menú e inicien Minix de inmediato.

Boot no es parte del SO, pero es lo suficientemente inteligente para usar la estructura de datos del

sistema de archivo y encontrar la imagen real de SO. La imagen de Minix cargada por boot no es más

que una concatenación de los archivos individuales producidos por el compilador cuando compila los

programas del núcleo, el administrador de memoria y el sistema de archivos. A partir de la información

contenida en la cabecera de cada parte, boot determina cuánto espacio debe reservar para datos no

inicializados después de cargar el código ejecutable y los datos inicializados de cada parte, con objeto de

que la siguiente parte pueda cargarse en la dirección correcta.

Para saber de forma detallada como se inicia un SO, se presenta a continuación los pasos que sigue este

proceso. Cada fabricante de placa base o tarjetas madres disponen de su propia BIOS, a pesar de

posibles diferencias entre ellas, existe un procedimientos o patrón de arranque común. La secuencia de

arranque es la siguiente (20):

 La fuente de poder lleva a cabo una auto-prueba. Cuando los niveles de voltaje son aceptables,

la fuente de poder envía la señal Power Good al procesador, hasta que el mismo comience a

iniciar. El tiempo provisto para este paso es de 0,1 y 0,5 segundos.

 El procesador Intel ha sido diseñado para que siempre al iniciar ejecute el código que se

encuentre en la posición de memoria 0xFFFF0. Sin embargo, antes de eso debe cagar en

memoria las instrucciones que va a ejecutar. Es por ello que el procesador carga en la posición

0xFFFF0 el programa de arranque de la BIOS, que son 16 bytes y está en el tope de la memoria

ROM o EPROM de la misma, específicamente en la posición de memoria 0xF000FFF0.

 Cualquier error que se producen en este punto del proceso de arranque se informará por medio

de "códigos bip" porque el subsistema de vídeo aún no se ha inicializado.

91

 Se busca el adaptador de video, razón por la cual esta información se muestra por pantalla antes

que la información de arranque. La rutina de inicio de la BIOS escanea las direcciones

0xC0000000 hasta la 0xC7800000 para encontrar la ROM de video.

 Para determinar si se trata de un inicio en caliente (cuando se reinicia la computadora) o en frío

(cuando se enciende por primera vez) la rutina de inicio de la BIOS comprueba si el valor de dos

bytes situados en posición de memoria 0x00000472. Cualquier valor distinto de 0x1234 indica

que se trata de un arranque en frío.

 La BIOS busca y ejecuta otras ROM BIOS en los adaptadores de dispositivo. Normalmente los

discos duros IDE/ATA tienen su BIOS en la dirección 0xC800.

 Se establece el ambiente Post-PC realizando un conjunto de pruebas POST (Power On Self

Test). El POST se puede dividir en tres componentes:

o La BIOS realiza un inventario de los dispositivos existentes, entre ellos el teclado y los

puertos seriales y paralelo.

o Prueba de memoria, prueba los chips de memoria y muestra una suma continua de

memoria instalada.

o La identificación del BIOS, muestra la versión del BIOS, el fabricante y la fecha.

 La BIOS muestra en forma de tabla un resumen de la configuración del sistema. Esta tabla indica

los problemas surgidos en el arranque, si los hubiese. Los errores que se producen durante el

POST se pueden clasificar como grave o no graves. En un error no grave generalmente se

muestra un mensaje de error en la pantalla y permite que el sistema siga el proceso de arranque.

En un error grave, en cambio, detiene el proceso de arranque del computador y es generalmente

denotado por una serie de códigos de pitido.

 Si la BIOS soporta el estándar "Plug and Play (PnP)", detecta y asigna recursos a los dispositivos

PnP. Muestra un mensaje por cada uno que encuentra.

 La BIOS comienza a buscar un dispositivo desde el que arrancar el sistema. Normalmente

comenzando por los disquetes, los discos duros y los CD, dependiendo de cómo se ha

parametrizado la cadena de arranque en el programa de configuración de la BIOS. Entonces

carga en memoria el primer sector del dispositivo en la dirección 0x00007C000. A continuación,

la BIOS comprueba que los últimos dos octetos del sector son 0xAA55. Si no lo son, significa que

el primer sector del disquete o disco duro no es un sector de arranque.

 En un disco duro el MBR ocupa el sector de la primera en el cilindro 0, cabeza 0, sector 1. Es 512

bytes de tamaño. Si este sector se encuentra, se carga en memoria en la dirección 0x00007C00

y se prueba para identificar si posee la firma válida. Una firma válida sería el valor 0x55AA en los

últimos dos bytes del sector. Al carecer de un MBR o una firma válida el proceso de arranque se

detiene con un mensaje de error.

92

Luego de estos pasos el proceso de arranque de Minix 3 es el mismo descrito en la Figura 7.10. En la

siguiente sección se muestra en detalle los programas involucrados en el proceso de arranque de Minix

7.7 Masterboot

Como se mencionó anteriormente el MBR (Master Boot Record) está compuesto por un programa

pequeño contenido en el primer sector de un disco duro y la tabla de particiones. Este programa es el

encargado de cargar la partición activa. Está estructurado de la siguiente forma los primeros 446 bytes

están destinados al programa, y si es el caso un poco de relleno; a partir de allí se encuentra a la tabla de

particiones la cual ocupa 64 bytes, conteniendo 4 registros de 16 bytes, los cuales definen entradas a la

tabla de particiones. En ellos se almacena toda la información básica sobre la partición. Para finalizar, los

2 últimos bytes representan a la firma o número mágico, el cual indique si el dispositivo es de arranque.

Para entender mejor la estructura ver la Figura 7.12 y la Figura 7.13.

512

bytes

446

bytes
Código del gestor de arranque

64 bytes

16 bytes Primera partición

16 bytes Segunda partición

16 bytes Tercera partición

16 bytes Cuarta partición

2 bytes Firma de unidad arrancable = 0x55AA

Figura 7.12 Primer sector físico del disco duro

16 bytes

1 byte

Define si la partición está activa, verificando que el

bit 7 tenga el valor 1. En otras palabras (0x00 =

Inactiva; 80h = Activa)

3 bytes CHS de inicio

1 byte Tipo de partición

3 bytes CHS final

4 bytes
LBA = en formato little-endian, indica el número

del sector de arranque (contando desde 0)

4 bytes

Tamaño en sectores = en formato little-endian,

indica el tamaño de la partición representado en

sectores

Figura 7.13 Diseño de una entrada de la tabla de partición

Se muestra la forma en que se guarda las triplas de CHS de inicio y de CHS final, el primer bytes de los

tres contiene el número de la cabecera. Los dos siguientes se muestran en la Figura 7.14.

93

Estructura de la tripla CHS

Primer byte
7 6 5 4 3 2 1 0

bits del 7-0 de cabecera

Segundo byte

8 9 5 4 3 2 1 0

bits 9-8
cilindro

bits 5-0 del sector

Tercer byte
7 6 5 4 3 2 1 0

bits 7-0 del cilindro

Figura 7.14 Estructura de la tripla CHS

El tipo de partición define el formato que tiene una partición para que el SO pueda gestionar los datos

contenidos en su interior. Una vez comprendida la secuencia de arranque y los principales programas de

Minix involucrados en este proceso se presentará ahora el código de los mismos, empezando en esta

sección con el masterboot.s. Primero se mostrará los pasos que sigue el masterboot.s y luego el código

fuente del mismo.

 Una vez cargado el primer sector en la posición 0x7C00 (recuerde que la BIOS es quien lo

carga), el masterboot.s se copia asimismo a la posición desde la posición 0x7C00 a la 0x0600 y

saltar a esta última posición. Esto es realizado por seguridad, ya que el próximo código

(bootblock.s) será cargado en la posición 0x7C00 nuevamente por la BIO0053.

 Busca el dispositivo donde está alojado el bootstrap, para esto verifica el dispositivo en el registro

dl. De ser un disquete, carga el primer sector del mismo y le sede el control. Si en un disco duro,

busca en la tabla de particiones la partición activa, y almacena la dirección en los registros de

donde comienza dicha partición en el disco duro.

o Se leen las características de la unidad elegida (cabeza, cilindro y sector si se trata de un

disco duro).

o Se carga el primer sector físico de la unidad.

 Si existe error, se reintenta la lectura del primer sector tres veces. Si falla, se

muestra un mensaje en pantalla: “Error de lectura”; quedándose en un bucle

infinito.

 Si la lectura tiene éxito, el siguiente paso consiste en comprobar si es de

arranque:

 Si no está la firma de arranque, se muestra un mensaje en pantalla:

“Unidad no arrancable” y se queda en un bucle infinito.

 Si está la firma, se continúa con el programa.

 Se salta al código cargado (bootstrap).

La primera instrucción de este código fuente es cargada en memoria principal con un desplazamiento de

94

0x7C00.La variable LOADOFF=0x7C00 indica la primera posición de memoria donde será cargado el

programa masterboot. La variable BUFFER=0x0600 indica la siguiente posición donde el programa

masterboot será copiado debido a que debe darle espacio en memoria para cargar el bootblock.

Para identificar a los discos duros se utiliza la siguiente notación: hd0 identifica al primer dispositivo y hd1

identifica a la primera partición primaria del primer dispositivo. Como solo se pueden manejar 4

particiones primarias entonces podemos decir que hd[1-4] identifican a las particiones primarias del

primer dispositivo. hd5 identifica al segundo dispositivo. Si las particiones de un dispositivo han sido

subparticionadas entonces hd1a sería la primera subpartición de la primera partición del primer disco.

bootind=0 !Boot indicator.

sysind=4 !System indicator. Indica el tipo de partición si es primaria o lógica.

lowsec=8 !Logical first sector. Dirección lógica del primer sector, es decir, LBA.

.text !Inicia el conjunto de instrucciones relacionadas a la ejecución del código fuente.

master: !Creación del entorno de trabajo.

xor ax, ax !Inicializa el registro ax=0.

mov ds, ax !Asigna al registro ds el valor de ax=0.

mov es, ax !Asigna al registro es el valor de ax=0.

cli !Esta instrucción me permite deshabilitar las interrupciones enel procesador.

mov ss, ax !Asigna al registro ss el valor de ax=0.

mov sp, #LOADOFF !Desplazamiento de la pila.

sti !Esta instrucción me permite habilitar las interrupciones en elprocesador.

mov si, sp !Asigna al registro si el valor de sp = #LOADOFF = 0x7C00. Se llama a la instrucción ret después de bootstrap

push si !Se apila el valor contenido en el registro si. Para almacenar la información de retorno.

mov di, #BUFFER !Se asigna al registro di = #BUFFER = 0x0600.

mov cx, #512/2 !Se asigna al registro cx = 256.

cld !Limpia las banderas.

rep movs !Esta instrucción se va encargar de copiar tantas palabras de2Bytes como lo indique el registro cx iniciando !desde la dirección

ds=0x0000:si=0x7C00 hacia es=0x0000:di=0x0600.

jmpf BUFFER+migrate, 0 !Esta instrucción es para al ya ser copiado esta sección de código a su nueva locación en memoria

!principal, este retoma su ejecución en la etiqueta migrate

LOADOFF=0x7C00 !En el espacio de memoria 0x0000:0x7C00 el código será cargado.

BUFFER=0x0600 !Inicia el primer espacio de memoria libre.

PART_TABLE=446 !Ubicación de la tabla de particiones. (Revisar estructura del Master Boot Record).

PENTRYSIZE=16 !Cada entrada en la tabla de particiones es de 16Bytes de tamaño.

MAGIC=510 !Ubicación de la firma 0xAA55 identifica si un dispositivo es arrancable o no.

95

migrate:

findactive:

testb dl, dl !Activa la bandera si el parámetro es negativo.

jns nextdisk !Verifica el estado de la bandera sign o signo, y realiza el salto si esta se encuentra activada.

mov si, #BUFFER+PART_TABLE !Le asigna a si la ubicación de la tabla de particiones.

find:

cmpb sysind(si), #0 !Se verifica el tipo de partición es igual a cero, y si lo es entonces significa que la partición esta vacía.

jz nextpart !En caso de que la partición este vacía, este salta a la etiqueta nextpart para verificar la siguiente partición.

testb bootind(si), #0x80 !Al verificar que la partición no está vacía, ahora verifica si la partición se encuentra activa.

jz nextpart !En caso de que la partición no este activa, este salta a la etiqueta nextpart para verificar la siguiente partición.

loadpart:

call load !Se realiza la llamada a load para cargar el bootstrap (sea el bootblock o un nuevo masterboot).

jc error1 !En caso de errores.

bootstrap:

ret !Cuando retorna de la llamada load, le cede el control al bootstrap.

nextpart:

add si, #PENTRYSIZE !Se le añaden 16bytes a si para acceder ala siguiente entrada de la tabla de particiones.

cmp si, #BUFFER+PART_TABLE+4*PENTRYSIZE !Verifica si ya se revisaron todas las entradas 4 de la tabla de particiones.

jb find !En caso de existir una entrada valida, salta a find.

call print !Se llama a print para comentar que no existe ninguna partición.

.ascii "No active partition\0"

jmp reboot

nextdisk: !No existen particiones activas en esta unidad arrancable entonces intenta con la siguiente

incb dl !Incrementa el valor del registro dl que contiene la siguiente unidad arrancable.

testb dl, dl !Si el parámetro dl es negativo entonces se activa la bandera de signo.

js nexthd !Si dl es negativo entonces se realiza un salto a la etiqueta nexthd.

int 0x11 !Lee la configuración de los dispositivos y el bit 6-7 tiene el número de unidades arrancables.

shl ax, #1 !Realiza un desplazamiento a la izquierda.

shl ax, #1 !Realiza un desplazamiento a la izquierda.

andb ah, #0x03 !Se aplica una máscara al registro ah para extraer los bits 6-7.

cmpb dl, ah !Si el valor de dl es menor o igual a los obtenido en ah por la interrupción 0x11 entonces la unidad existe.

ja nextdisk !En otro caso intenta con hd0

call load0 !Si falló, próximo disco por favor

jc nextdisk !It failed, next disk please

ret !Jump to the next master bootstrap

nexthd:

call load0 !Lee el bootstrap alojado en el disco duro.

error1:

jc error !En caso de error.¿No existe el disco?

ret

96

load0: !Carga el sector 0 del dispositivo actual, sea un bootstrap de disquete o un master bootstrap de disco duro.

mov si, #BUFFER+zero-lowsec !si = donde lowsec(si) es cero

load: !Cargar el sector lowsec(si) desde el dispositivo actual. Los número de cabeza, sector y cilindro son ignorados

!para favorecer de manera absoluta el comienzo de la partición.

mov di, #3 !Tres reintentos para comprobar si hay disquete

retry:

push dx !Grabar código de la unidad

push es

push di !La próxima llamada destruye es y di

movb ah, #0x08 !Código para los parámetros de la unidad

int 0x13

pop di

pop es

andb cl, #0x3F !cl = max sector number (1-origin) se lee los últimos 6 bits que tiene el número de sectores incb dh

!dh = 1 + max head number (0-origin) índice de la cabecera de la unidad, se le suma 1 porque empieza en 0

movb al, cl !al = cl = sectors per track, asigna el número de sectores

mulb dh !dh = cabeceras, ax = cabeceras* sectores

mov bx, ax !bx = sectores por cilindros = cabeceras * sectores

mov ax, lowsec+0(si) !ax = le asigna el LBA los dos primeros bytes

mov dx, lowsec+2(si) !dx:ax = sector within drive, dx = le asigna el LBA los dos últimos bytes

cmp dx, #[1024*255*63-255]>>16 !Near 8G limit?

jae bigdisk

div bx !ax = cilindro, dx = sector sin cilindro, ax = tiene el cilindro de la partición, dx = sector

xchg ax, dx !ax = sector sin cilindro, dx = cilindro

movb ch, dl !ch = ch = 8 bits inferiores de cilindro

divb cl !al = cabeza, ah = sector (0-origen)

xorb dl, dl !Desplazamiento de los bits 8-9 del cilindro en dl

shr dx, #1

shr dx, #1 !dl[6..7] = cilindro superior

orb dl, ah !dl[0..5] = sector (0-origen)

movb cl, dl !cl[0..5] = sector, cl[6..7] = cilindro superior

incb cl !cl[0..5] = sector (1-origen)

pop dx !Restablecer código de la unidad en dl

movb dh, al !dh = al = cabecera

mov bx, #LOADOFF !es:bx = donde se carga el sector

mov ax, #0x0201 !Código para leer, unicamente un sector

int 0x13 !Llamar a la BIOS para una lectura

 jmp rdeval !Evaluar los resultados de la lectura

bigdisk:

mov bx, dx !bx:ax = dx:ax = Número de sectores a leer

pop dx !Restaura el valor de la unidad en dl

97

push si !Guarda si

mov si, #BUFFER+ext_rw !si = extendida lectura/escritura usando como parámetro el paquete

mov 8(si), ax !Número de inicio del bloque = bx:ax

mov 10(si), bx

movb ah, #0x42 !Llamada a la lectura extendida

int 0x13

pop si !Restaura si para apuntar a la tabla de partición

!salta a rdeval

rdeval:

jnc rdok !Si la lectura fue exitosa

cmpb ah, #0x80 !Tiempo de espera agotado? (dispositivo disquete vacío)

je rdbad

dec di

jl rdbad !Número de reintentos vencidos

xorb ah, ah

int 0x13 !Reinicia

jnc retry !Intentar de nuevo

rdbad:

stc !Establecer la bandera carry

ret

rdok:

cmp LOADOFF+MAGIC, #0xAA55

jne nosig !Error si la firma es incorrecta

ret !Retorna con la bandera carry limpia

nosig:

call print

.ascii "Not bootable\0"

jmp reboot

!Un error de lectura se produjo

error:

mov si, #LOADOFF+errno+1

prnum:

movb al, ah !Número de error en ah

andb al, #0x0F !Inferiores 4 bits

cmpb al, #10 !A-F?

jb digit !0-9!

addb al, #7 !'A' - ':'

digit:

addb (si), al !Modificar '0' en el string

dec si

movb cl, #4 !Próximos 4 bits

shrb ah, cl

98

. jnz prnum !De Nuevo si el digito es> 0

call print

.ascii "Read error "

errno:

.ascii "00\0"

!jmp reboot

reboot:

call print

.ascii ". Hit any key to reboot.\0"

xorb ah, ah !Esperar a que se oprima una tecla

int 0x16

call print

.ascii "\r\n\0"

int 0x19

!Print a message.

print:

pop si !si = siguiente String 'call print'

prnext:

lodsb !al = *si++ es el carácter a imprimir

testb al, al !La marca de nulo señala el fin

jz prdone

movb ah, #0x0E !Impresión de caracteres en el modo de teletipo

mov bx, #0x0001 !Página 0, color de primer plano

int 0x10

jmp prnext

prdone:

jmp (si) !Continuar después de la cadena

.data

!Extendida lectura/escritura usando como parámetro el paquete

ext_rw:

.data1 0x10 !Tamaño del paquete r/w

.data1 0 !Reservado

.data2 1 !Bloques para la transferencia (sólo uno)

.data2 LOADOFF !Buffer dirección de desplazamiento

.data2 0 !Buffer dirección de desplazamiento

.data4 0 !Número inferior de inicio del bloque 32 bits

zero:

 .data4 0 !Número superiorde inicio del bloque 32 bits

99

7.8 Bootblock

En esta sección serán explicados los principales registros utilizados por el código fuente del programa

bootblock.s:

Registro Bits Descripción

DS 16 Data Segment, número apunta a los datos activos del segmento.

BP 16 Base pointer, utilizado para pasar datos desde y hacia la pila.

SP 16 Stack pointer, número que indica el desplazamiento que está utilizando la pila.

ES 16 Extra Segment, número que apunta a la participación activa del segmento extra.

SI 16 Source index, utilizado por las operaciones de cadena en las fuentes.

DI 16 Destination index, utilizado por las operaciones de cadena como destinos.

Registro Bits Descripción

AX 16 Accumulator Register, utilizado para los cálculos y para la E/S.

BX 16 Base Register, registro que solo puede ser utilizado como un índice.

CX 16 Count Register, registro utilizado para instrucciones de ciclos.

DX 16 Data Register, utilizado para la E/S, multiplicar y dividir.

Algunos datos con los que vienen configurados los registros.

Registro Bits Descripción de la función o parámetros de inicio que ellos poseen

DL 16 Registro de datos, contiene el dispositivo donde será cargado el boot secundario. Discos duros =

0x80, 0x81, 0x82, 0x83; Disquete = 0x00, 0x01.

es:bx 32 Es utilizado como buffer, representa la dirección de memoria donde serán almacenados los datos

que se están leyendo.

es:si 32 Representa la dirección donde empieza la entrada a la tabla de particiones, si es un disco duro

En la siguiente sección de código se definen un conjunto de variables globales que son de gran utilidad

para el manejo del cargador.

100

Variable Valor Descripción

LOADOFF 0x7C00 Al ser leído el primer sector de la unidad arrancable, dicha información es cargada en la

región 0x0000:0x7C00 de la memoria principal.

BOOTSEG 0x1000 Al obtenerse el boot secundario este será cargado a partir de dicha de dirección de memoria.

BOOTOFF 0x0030 Desplazamiento del boot secundario por encima de la cabecera.

BUFFER 0x0600 Dirección donde comienza los sectores de memoria libres.

LOWSEC 8 Desplazamiento del primer sector lógico en la tabla de particiones LBA

device 0 Información sobre el dispositivo de arranque.

lowsec 2 Desplazamiento de la partición dentro de la unidad, es la LBA del sector de inicio de la

partición.

secpcyl 6 El número de sectores por cilindro, número de cabezas * sectores.

Al culminar la inicialización de variables se presenta la sección de código referente a las instrucciones en

ensamblador para iniciar el procedimiento de arranque. En esta sección se prepara la memoria principal

para que esta pueda alojar el código obtenido en la unidad arrancable, al final se realiza una verificación

acorde a los valores del registro “dl” para verificar la naturaleza del dispositivo, en caso de ser un

disquete este se dirigirá a la etiqueta floppy dentro del código sino seguirá su orden secuencial, es decir,

accede a la etiquete winchester. Para entender de primer plano vea los pasos que sigue el código

bootblock.s:

 Creación del entorno de trabajo: inicializa ds=ss=ax=0, sp=bp=0x7C00.

 Se comprueba si se va a cargar de disco duro o de floppy.

o Si es un disco duro, se obtienen los parámetros de la unidad y salta a cargar el boot

secundario.

o Si es un floppy, hay que determinar qué tipo de unidad se trata. El proceso que se sigue

es sencillo, se tiene una variable que contiene los parámetros de las distintas unidades

posibles (3.5’’ alta densidad, 3.5’’ baja densidad, 5.25’’ alta densidad y 5.25’’ baja

densidad) y se lee el último sector de la primera pista, si falla la prueba se sigue con la

siguiente unidad y así sucesivamente. Cuando se determina el tipo de unidad, se salta a

cargar el boot secundario (monitor).

 El monitor se empieza a cargar en la posición 0x1000:0x0000. Se entra en un proceso iterativo:

Mientras queden sectores por leer del monitor:

o Cargar el sector especificado en la posición de memoria es:bx.

101

o Se modifica la próxima posición de memoria: es:bx+512

o Si existe error, mostrarlo en pantalla y quedarse en un bucle infinito.

 Cuando están todos los sectores del monitor cargados en memoria, se salta a la posición de

memoria adecuada (0x1000:0x0000) para ceder el control al monitor.

LOADOFF = 0x7C00 !0x0000:LOADOFFposición de memoria donde es cargado este código

BOOTSEG = 0x1000 !Donde el boot secundario (monitor) se empieza a cargar, la posición es 0x1000:0x0000.

BOOTOFF = 0x0030 !Desplazamiento del boot secundario por encima de la cabecera

BUFFER= 0x0600 !Dirección donde comienza la memoria libre

LOWSEC=8 !Desplazamiento del primer sector lógico en la tabla de particiones = LBA

device=0 !El dispositivo de arranque

lowsec=2 !Desplazamiento de la partición dentro de la unidad, utilizado para obtener valor de la pila

secpcyl =6 !Sectores por cilindro = cabezas * sectores

.text

!Inicio del procedimiento de arranque

boot: !Creación del entorno de trabajo: inicializa ds=ss=ax=0, sp=bp=0x7C00

xorax, ax !ax = 0x0000, El vector de segmento

movds, ax !ds = Segmento de datos - apunta a los datos activos del segmento

cli !Ingnora las interrupciones mientras inicializa la pila

movss, ax !ss = ds = vector segment (ss APUNTA AL SEGMENTO DE LA PILA)

movsp, #LOADOFF !Lugar usual para la pila del bootstrap - sp = indica el desplazamiento de la pila = 0x7C00

sti !habilita las interrupciones

push ax

push ax !Apila un cero en lowsec(bp), para almacenar luego a la dirección del primer sector de la partición

push dx !Apila el dispositivo de arranque almacenado en dl sera = device(bp)

movbp, sp !Actualiza el marco de la pila

push es

push si !Apila a es:si = entrada a la tabla de particiones

movdi, #LOADOFF+sectors !char *di = sectors; | di = Destination Index - utilizado por las operaciones de cadena como destino

testb dl, dl !Si el dispositivo es un disco dl >= 0x80, activa la bandera sign

jgefloppy !Si no es negativo, entonces el dispositivo es un diskette y salta a floppy

winchester:

!Obtiene el desplazamiento del primer sector de la partición de arranque desde la tabla de partición

!La tabla se encuentra en es:si, el parámetro lowsec en desplazamiento LOWSEC.

!Los 4 bytes en es:si+LOWSEC son copiados en la dirección bp+lowsec

102

eseg !eseg usa el registro es (en vez de ds) como el registro segmento

lesax, LOWSEC(si) !es:ax = LOWSEC+2(si):LOWSEC(si) | LES para cargar el registro extra segment, lee a LBA

movlowsec+0(bp), ax !Apilar los 16 bits inferiores del primer sector de la partición

movlowsec+2(bp), es !Apilar los 16 bits superiores del primer sector de la partición

!Si el dispositivo es un disco duro, obtiene los paramertos de la unidad.

!Si es un diskette el número de sectores se conocen y estan escritos en un arreglo llamado 'sectors'

movb ah, #0x08 !El número de la función que lee los parámetros del disco es ah = 0x08

int 0x13 !dl contiene aun el dispositivo

!La función (int 0x13) retorna el máximo número de sectores en los bits 0-6 de cl y el máximo número de !cabeceras en dh. Sin embargo,

suma una confusión, debido a que el máximo número de cabeceras tiene el !siguiente formato 0-origen, en consecuencia se debe sumar 1

al resultado

andb cl, #0x3F !cl = máximo número de sectores (1-origen)

movb (di), cl !En (di) se almacena el número de sector por pistas

incb dh !dh = 1 + máximo número de cabeceras (0-origen)

jmploadboot

!Floppy:

!Ejecuta 3 tests de lectura para determinar el tipo de unidad. Prueba para cada tipo de disquete mediante la lectura del !último sector de la

primera pista. Si esto falla, intenta un tipo que tenga menos sectores. Por lo tanto comenzamos con !1.44M (18 sectores) luego ;con 1.2M

(15 sectores) y finaliza con 720K/360K (ambos con 9 sectores). Usa el arreglo sectors

next:

incdi !Siguiente número de sectores por pista (si es necesario)

floppy:

xorb ah, ah !Resetea el dispositivo especificado por dl con la llamada a int 0x13, ah=0x00

int 0x13

movb cl, (di) !cl = número del último sector por pista

cmpb cl, #9 !No hay necesidad de hacer la prueba con los últimos tipos de diskette 720K/360K

je success

!Intenta leer el último sector en la pista 0

moves, lowsec(bp) !es = vector de segmento (lowsec = 0)

movbx, #BUFFER !es:bx buffer = 0x0000:0x0600

movax, #0x0201 !Lee un sector con la llamada a int 0x13 ah=0x02. dicha función lee sectores desde el dispositivo

!especificado y los copia a memoria

xorb ch, ch !Pista 0, último sector

xorb dh, dh !Unidad dl, cabecera 0

int0x13

jcnext !Error, intenta con el siguiente tipo de diskette

success:

103

movb dh, #2 !Carga número de cabezas para multiplicar(en diskette siempre es 2), el número de sectores está aún en cl

loadboot:

!Carga el código del boot secundario desde el dispositivo de arranque

movb al, (di) !al = (di) = sectores por pista

 mulb dh !dh = cabezas, ax = cabezas * sectores

 movsecpcyl(bp), ax !Sectores por cilindro = cabezas * sectores

movax, #BOOTSEG !Segmento para cargar dentro el código del boot secundario

moves, ax

xorbx, bx !Load first sector at es:bx = BOOTSEG:0x0000

movsi, #LOADOFF+addresses !Comienzo de la dirección del código del boot

load:

movax, 1(si) !Obtiene el próximo número de sector: 16 bits inferiores

movb dl, 3(si) !Bits 16-23 para tu disco de 8GB

xorb dh, dh !dx:ax = sector sin la partición

addax, lowsec+0(bp)

adcdx, lowsec+2(bp) !dx:ax = sector dentro de la unidad | Suma con acarreo

cmpdx, #[1024*255*63-255]>>16 !Cerca del límite de 8G?

jaebigdisk !El salto se realiza si cf esta desactivada

divsecpcyl(bp) !ax = cilindro, dx = sector dentro del cilindro

xchg ax, dx !ax = sector dentro del cilindro, dx = cilindro | xchg intercambia el contenido de los registros

movb ch, dl !ch = 8 bits inferiores del cilindro

divb (di) !al = cabecera, ah = sector (0-origin)

xorb dl, dl !Desplazar los bits 8-9 del cilindro en dl

shrdx, #1 !desplaza todos los bits (tantas posiciones como lo indique el inmediato) hacia la derecha e inserta cero en la izquierda

shrdx, #1 !dl[6..7] = cilindro superior

orbdl, ah !dl[0..5] = sector (0-origin)

movb cl, dl !cl[0..5] = sector, cl[6..7] = cilindro superior

incb cl !cl[0..5] = sector (1-origin)

movb dh, al !dh = al = cabecera

movb dl, device(bp) !dl = dispositivo para leer

movb al, (di) !Sectores por pista – Número de sector (0-origen)

subb al, ah != Sectores que restan en la pista

cmpb al, (si) !Compara con el número de sectores a leer

jberead !No puede leer después del final del cilindro?

movb al, (si) !(si) < Sectores que restan en la pista

read:

push ax !Apila al = sectores para leer

movb ah, #0x02 !Código para leer del disco !ah = 0x02 Lee sectores de un dispositivo, al = contador de sectores a leer, ch = pista, !cl =

sector, dh = cabecera, dl = dispositivo, ES:BX = buffer

int 0x13 !Call the BIOS for a read

Popcx !Restore al in cl

104

jmprdeval

bigdisk:

movb cl, (si) !Número de sectores a leer

push si !Apila a si

movsi, #LOADOFF+ext_rw !si = si = extendida lectura/escritura usando como parámetro el paquete

movb 2(si), cl !Rellena # bloques para la transferencia

mov4(si), bx !Direction del Buffer

mov8(si), ax !Número de inicio del bloque = bx:ax

mov10(si), dx

movb dl, device(bp) !dl = dispositivo a leer

movb ah, #0x42 !Lectura extendida

int 0x13 !AH = 0x42 número de la función para la lectura extendida

popsi !Restaurar si para que apunte a la dirección del arreglo

!jmp rdeval

rdeval:

jcerror !Si ocurrio un error salta a error

movb al, cl !Restarura al = rectores a leer

addb bh, al !bx += 2 * al * 256 (suma los bytes leidos)

addb bh, al !es:bx = donde el siguiente sector debe ser copiado

 !Si se añade a 2 bh, es equivalente a la adición de 512 a bx (recuerde que un sector = 512 bytes).

add1(si), ax !Actualizar la dirección del sector a leer

adcb 3(si), ah !No olvidar los bits 16-23 (sumar ah = 0)

subb (si), al !Decrementar el contador de sector por sectores leídos

jnzload !Sino todos los sectores han sido leídos

addsi, #4 !Siguiente par (dirección , contador)

cmpb ah, (si) !Cuando no hay sectores a lee

jnzload !Lee el siguiente trozo del código del boot secundario

done:

!Llama al boot secundario, asumiendo una cabecera larga a.out (48 bytes).

!La cabecera a.out es normalmente pequeña (32 bytes), pero el boot

!secundario tiene dos puntos de entrada: Uno es el desplazamiento 0, para

!la cabecera larga, y el otro es el ;desplazamiento 16 para la cabeceracorta.

!dl=Dispositivo Boot.

!es:si= Entrada de la tabla de partición si es el disco duro.

popsi !Restablecer es:si = entrada en la tabla de partición

popes !dl está aún cargado

jmpf BOOTOFF, BOOTSEG !Saltar al sector del boot (saltando a la cabecera), aqui es donde al fin le sede el control a boothead.s

!Read error: imprimir mensaje, bucle infinito | cuando ocurre algun error

error:

movsi, #LOADOFF+errno+1

105

prnum:

movb al, ah !Número de error en ah

andb al, #0x0F !4 bits inferiores

cmpb al, #10!A-F?

jbdigit!0-9!

addb al, #7 !'A' - ':'

digit:

addb (si), al !Modificar '0' en string

decsi

movb cl, #4 !Proximos 4 bits

shrb ah, cl

jnzprnum !De nuevo si digit > 0

movsi, #LOADOFF+rderr!String a imprimir

print:

lodsb !al = *si++ es el carácter a ser imprimido

testbal, al !byte null marca que indica fin

hang:

jzhang !Manejador siempre esperando CTRL-ALT-DEL

movb ah, #0x0E !Imprimir caracter en modo teletype

movbx, #0x0001 !Pagina 0, color de primer plano

int0x10 !Llama a BIOS VIDEO_IO

jmpprint

.data

rderr:

.ascii"Read error "

errno:

.ascii"00 \0"

errend:

!Varios sectores por pista dependiendo del tipo de disquete 1.44M, 1.2M and 360K/720

sectors:

.data118, 15, 9!Número de sectores por disco

!Comandos extendicos de lectura/escritura que requiren un paquete de parametros

ext_rw:

.data10x10 !Tamaño del paquete r/w

.data10 !Reservado

.data20 !Bloques para la transferencia

.data20 !Buffer dirección de desplazamiento

.data2BOOTSEG !Buffer dirección del segmento

.data40 !Número inferior de inicio del bloque 32 bits

.data40 !Número superior de inicio del bloque 32 bits

.align2

addresses:

!El espacio ocupado luego de este código es para las direcciones de disco para unprograma de boot

!secundario (en el peor de los casos, cuando el archivo está fragmentado). Esto debería ser suficiente.

106

107

8 Implementación de un intérprete de comandos

Un intérprete de comandos es un software que proporciona una interfaz para los usuarios de un sistema

operativo, el cual provee acceso a los servicios del núcleo. El nombre intérprete de comandos viene dado

por el hecho de ser una capa externa (interfaz) entre el usuario y sistema operativo (funcionamiento

interno del núcleo).

El intérprete de Minix3 no es parte del SO, pero utiliza fuertemente muchas de las características del SO,

por lo cual es un buen ejemplo de uso de las llamadas al sistema. Si el usuario escribe cualquier orden

válida, el intérprete de comandos crea un proceso hijo y el cual es el que ejecuta el programa para

satisfacer la orden recibida. Mientras el hijo está corriendo, el intérprete de comandos espera a que

termine. Cuando el hijo termina, el intérprete de comandos pone el prompt y nuevamente queda

esperando un mandato en la entrada estándar (la terminal en este caso).

Para completar este laboratorio los estudiantes deben implementar un programa intérprete de comandos.

El programa resultante es muy parecido a los intérpretes de comando de Unix/Linux. Para la

implementación de este laboratorio, se utilizara un código plantilla que consiste en tres archivos:

 Shell.l: ofrece un programa de captura por entrada estándar (la función getline()), que se puede

utilizar para controlar el flujo de entrada del usuario.

 myshell.c: contiene un código esqueleto de un intérprete de comandos simple.

 Makefile: contiene todo lo necesario para compilar Shell.l y myshell.c.

La solución debe satisfacer los requerimientos mencionados en el capítulo Adecuación de Minix 3 a la

UCV, como se allí se menciona la solución debe ser implementada en myshell.c, la cual puede

observarse a continuación en la Figura 8.1. Cabe destacar que existe también para este laboratorio un

video tutorial el cual utiliza como solución el código que se muestra a continuación. Para dicha

implementación se usaron las siguientes llamadas al sistema:

 Fork

 Execvp

 Wait

 Exit

 Close

 Dup

 Pipe

108

#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <errno.h>
#include <string.h>
#include <sys/wait.h>
#include <stdlib.h>
#include <sys/select.h>
/* Funcion que permite obtener la cadena introducida
 * en la consola
 */
extern char **getline(void);
char **args;
pid_t pid,childpid;
int logArch,logPipe,logFuente;
char *archivo,*archivo1;
int file;
int i,inicio,fin;
char *ejecutar[100];
int logError;

/* Dicha funcion solo le asigna
 * el valor de args a ejecutar
 */
void cambiar(void){
 int j,k;
 k=0;
 for(j = inicio; j < fin ; j++) {
 if(args[j]!=NULL){
 ejecutar[k++]=args[j];
 }
 }
 ejecutar[k++] = NULL ;
}

/* Una vez obtenida la cadena desde la consola
 * se busca el primer comando valido a ejecutar,
 * si activan las banderas si existe un caracter
 * '>' o '|' para poder trabajarlos de manera
 * especial
 */
int obtenerInstruccion(void){
 for(i = inicio; args[i] != NULL ; i++) {

 if(strcmp(args[i],">") == 0){
 if(args[i+1]!= NULL){
 archivo = args[i+1];
logArch=1;
 break;
 }else{
 printf("Error en sixtaxis: no se esperaba nueva linea\n");
 logError=1;
 break;
 }
}else if(strcmp(args[i],"<") == 0){
 if(args[i+1]!= NULL){
 archivo1 = args[i+1];
 logFuente=1;
 break;

109

}else{
 printf("Error en sixtaxis: no se esperaba nueva linea\n");
 logError=1;
 break;
 }
 }else if(strcmp(args[i],"|") == 0){
 if(args[i+1]!= NULL){
 logPipe=1;
 break;
 }else{
 printf("Error en sixtaxis: no se esperaba nueva linea\n");
 logError=1;
 break;
 }
 }
 }

 if(logError){
 return 0;
 }else{
 fin=i;
 return 1;
 }
}

/* Ya obtenida la instruccion a ejecutar
 * se realiza un fork y luego un excec
 * para poder ejecutar el comando obtenido.
 * Esta funcion es recursiva para poder ejecutar
 * tantas instrucciones como el comando lo
 * amerite
 */
int Ejecutar(void){
 int status,hacer,j;
 pid_t pid;
 int fd[2];
 hacer=obtenerInstruccion();

 if(hacer){
 switch(pid = fork()){
 case -1:
 perror("fork error");
 break;
 case 0:
 cambiar();
 if(logPipe==1){
 pipe(fd);
 if((childpid = fork()) == -1){
 perror("fork");
 exit(1);
 }
 if(childpid == 0){
 close(fd[0]);
 dup2(fd[1],1);
 close(fd[1]);
 execvp(ejecutar[0], ejecutar);
 }else{
 close(fd[1]);
 dup2(fd[0],0);
 close(fd[0]);
 inicio=fin;
 inicio++;
 hacer=obtenerInstruccion();
 cambiar();

110

 if(logArch){
 file = open(archivo, O_CREAT | O_RDWR);
 close(1);
 dup(file);
 close(file);
 }
 execvp(ejecutar[0], ejecutar);
 }

 }else{
 if(logArch){
 file = open(archivo, O_CREAT | O_RDWR);
 close(1);
 dup(file);
 close(file);
 }
 if(logFuente){
 file = open(archivo1,O_RDONLY);
 close(0);
 dup2(file,0);
 close(file);
 }
 execvp(ejecutar[0], ejecutar);

 /* Sino se puedo ejecutar el comando con
 * la instuccion anterior se usa lo siguiente
 */

 execve(strcat ("/usr/bin/",ejecutar[0]), ejecutar, ejecutar);

 if(execvp(ejecutar[0], ejecutar) == -1){
 printf("******* Error: comando no encontrado *******\n");
 exit(0);
 }
 }

 default:

 if ((pid = wait(&status)) == -1){

 perror("wait error");
 }else{
 if(WIFSIGNALED(status) != 0){
 }else if(WIFEXITED(status) != 0){
 }else{
 }
 }
 }
 inicio=fin;
 if(logPipe==1){
 logPipe=0;
 inicio++;
 hacer=obtenerInstruccion();
 inicio=fin;
 inicio++;
 }
if(logArch==1){

 logArch=0;
 inicio+=2;
 }

111

 if(logFuente==1){

 logArch=0;
 inicio+=2;
 }

 if(args[inicio]!=NULL){
 Ejecutar();
 return 1;
 }
 return 0;
 }
 return 0;
}
/* cilo infinito a la espera de comandos
 * a ejecutar, sale del ciclo si el usuario
 * intenta ejecutar "exit" o "quit"
 */
void main(void) {

 while(1) {
 logArch = 0;
 logPipe = 0;
 logError = 0;
 inicio = 0;
 logFuente = 0;
 fin = 0;

 printf("MiShell-$ ");

 args = getline();

 if(args[0]==NULL){
 continue;
 }

 if(strcmp(args[0],"exit") == 0 || strcmp(args[0], "quit") == 0){
 printf("Saliendo del Shell...\n");
 sleep(1);
 exit(0);
 }

 Ejecutar();

 }
}

Figura 8.1 Código fuente de un Shell simple

112

113

9 Implementación de llamadas al sistema

Una llamada al sistema es la forma en la cual un proceso requiere de un servicio al núcleo (al cual

generalmente no tiene permisos para ejecutar). Las llamadas al sistema proporcionan la interfaz entre un

proceso y el SO. La mayoría de las operaciones para interactuar con el sistema requieren permisos, los

cuales no están disponibles para un proceso en la capa de usuario. Por ejemplo, realizar una operación

de E/S (Entrada/Salida) con un dispositivo en el sistema, o cualquier otra forma de comunicación con

otros procesos se requiere del uso de las llamadas al sistema (2).

Existe la posibilidad de que el uso inadecuado de la llamada al sistema pueda afectar la ejecución del

SO. El diseño de la arquitectura del microprocesador en prácticamente todos los sistemas modernos (con

excepción de algunos sistemas embebidos) ofrece modos de ejecución de la CPU (Unidad Central de

Procesamiento). Esto ofrece niveles de privilegio, uno de ellos es el modo usuario, donde las aplicaciones

tienen limitaciones en el espacio de direcciones debido a que no pueden acceder o modificar otras

aplicaciones en ejecución, ni al propio SO. También impide el acceso directo de las aplicaciones hacia los

dispositivos del computador. Pero las aplicaciones, obviamente, necesitan estas habilidades, por lo tanto,

las llamadas al sistema ofrecen estos servicios a través del SO. El SO tiene más privilegios y se ejecuta

en modo protegido, esto permite a las aplicaciones solicitar servicios mediante las llamadas al sistema,

que a menudo se implementan a través de las interrupciones.

En general, se ofrece una biblioteca que se define entre los programas de usuarios y el SO. Existe una

confusión entre los términos llamada al sistema y las funciones de la biblioteca estándar C. Hay que tener

claro que en las llamadas al sistema se transfiere el control al núcleo.

9.1 Llamadas al sistema en Minix 3

El SO Minix 3 está basado la estructura micronúcleo (a diferencia de la estructura monolítica la cual es

más común). Teniendo este tipo de núcleo significa que es menor el código que se ejecuta en el modo

privilegiado de la CPU (también se conoce como modo núcleo). La mayoría del código se ejecuta con

menos privilegios (en espacio de usuario). Además, Minix 3 está diseñado en capas, como se explico en

el capítulo 2, estas capas pueden verse en la Figura 6.1.

El micronúcleo maneja las comunicaciones entre los procesos, realiza la planificación de los mismos,

maneja interrupciones y provee algunos mecanismos básicos para la administración de procesos. El

manejo de sistemas de archivo, funciones de red, administración de procesos y demás servicios a

usuarios, son provistos por servidores especializados fuera del micronúcleo.

114

La comunicación entre los diferentes componentes es a través de pase de mensajes. Una ventaja de este

enfoque es que la parte del SO que se ejecuta en modo privilegiado es mínima, por lo tanto, más fáciles

de mantener libre de errores. Los errores en la parte del SO que se ejecuta en el espacio de usuario no

tiene la capacidad afectar la estabilidad del sistema.

Una desventaja de este enfoque es que hay una reducción del rendimiento debido a que el pase de

mensajes implica una sobrecarga, relacionada a la construcción, copia y envío. En caso de un núcleo

monolítico sólo tiene un espacio de direcciones, esto implica que cualquier porción de código interna al

núcleo puede obtener el control del SO, es decir, como estas porciones son ejecutadas en modo

privilegiado no tienen ningún tipo de restricciones. Por ejemplo, en Minix 3, el FS (Servidor de Archivos),

PM (Servidor Manejador de Procesos) y otros componentes del SO (incluyendo los controladores de

dispositivo) se ejecutan como procesos en espacio de usuario, por lo tanto, ellos dependen de las

llamadas al sistema para poder realizar operaciones privilegiadas.

Una de las funciones principales del micronúcleo es proveer un conjunto de funciones a los controladores

de dispositivos y a los servidores que están en las capas inmediatamente superiores, estas funciones son

denominadas llamadas al sistema. La encargada de atender y realizar esas llamadas es la Tarea de

Sistema o System Task.

Desde el punto de vista del núcleo, todos los procesos de las capas superiores son tratados casi de la

misma forma: todos son planificados por el núcleo, están limitados a usar instrucciones en modo usuario,

ninguno puede acceder directamente a puertos de E/S y ninguno puede acceder a direcciones de

memoria fuera del espacio asignado a sí mismo.

La diferencia entre los procesos que pertenecen a las distintas capas radica, principalmente, en la

posibilidad de realizar llamadas al núcleo siendo los de la capa 2 los más privilegiados, seguidos en

orden decreciente por la capa 3 y 4. Por ejemplo, los procesos de capa 2 (Controladores de Dispositivos)

tienen permitido requerirle al System Task que lea y escriba datos en los puertos de E/S o que copie

datos en el espacio de direcciones de otro proceso.

Es importante distinguir entre llamadas al núcleo y llamadas al sistema POSIX (POSIX System calls). Las

primeras son llamadas de bajo nivel provistas por la System Task para permitirle hacer su trabajo a los

controladores de dispositivos y a los Procesos Servidores. En contraste las llamadas al Sistema POSIX

son llamadas de alto nivel definidas por el estándar POSIX y están disponible para los procesos de

usuario en la capa 4 (1).

El controlador de dispositivo o proceso servidor tiene permitido intercambiar mensajes con un grupo

acotado de otros procesos. Los mensajes pueden fluir entre procesos de la misma capa o entre procesos

115

de capas adyacentes. Los procesos de la capa 4 no pueden enviar mensajes a otros procesos de la capa

4, sino sólo a los de capa 3.

Para entender mejor como son las llamadas al sistema en Minix 3, vea la Figura 9.1. Las flechas indican

los mensajes intercambiados entre las distintas capas de Minix 3. La idea, muy simplificada, es la

siguiente (21):

 El proceso de usuario hace una llama al sistema. Desde su punto de vista, no es más que una

función de biblioteca. En este ejemplo, la función forma parte de la libc.

 La función de la biblioteca es armar un mensaje con la petición y lo envía a uno de los procesos

servidores quedando a la espera de una respuesta. En el ejemplo, se utilizó el Process Manager

como destinatario del mensaje.

 El proceso servidor recibe el mensaje y, dependiendo del tipo de mensaje, ejecutará operaciones

predefinidas. Si la llamada al sistema puede ser resuelta en el ámbito del proceso servidor, se

genera un mensaje de respuesta d y se envía al proceso que realizó la petición. Si la llamada no

puede ser resuelta por el proceso servidor, se generará un mensaje y se enviará al manejador de

dispositivos correspondiente o, en su defecto a la SYSTASK. En el ejemplo, la petición es

realizada a la SYSTASK vía el mensaje b.

 La SYSTASK realiza las acciones que correspondan ante un mensaje del tipo b y genera,

eventualmente, un mensaje c con la respuesta a la petición. La respuesta, no está demás decirlo,

es enviada al proceso servidor que emitió el mensaje b; no al proceso de usuario.

 El proceso servidor (el PM, en el ejemplo) toma el mensaje c, lo procesa y envía la respuesta al

proceso de usuario vía el mensaje d

La función de biblioteca desempaqueta el contenido del mensaje y devuelve los resultados, posiblemente

vía parámetros pasados por referencia, al proceso de usuario.

116

Programa de usuario

Libc

PM

Libsys

SYSTASK

a

bc

d

Llamada al

sistema simple

Llamada al

sistema extendida

Figura 9.1 Flujo de información en la nueva llamada al Sistema

9.2 Implementación de Llamadas al Sistema

Minix 3 está basado en servidores, existen dos servidores importantes el FS y el PM, entre otros. El FS

se encarga del manejo de archivos (creación, eliminación, etc.) y el PM se encarga de todo lo referente a

los procesos del sistema. Estos servidores son los que van a permitir el desarrollo de la nueva llamada al

sistema. Antes de implementar las llamadas al sistema se debe conocer algunas funciones definidas en

Minix 3.

9.2.1 Funciones relacionadas con llamadas al sistema

Estas funciones ayudaran a una implementación rápida y eficaz de una llamada al sistema. La primera de

ellas es la _syscall. Esta llamada al sistema, realiza el envío de un mensaje destinado a otro proceso y se

bloquea hasta recibir una respuesta. Utilizándola es la forma más sencilla de realizar una llamada al

sistema. _syscall debe recibir tres parámetros, vea su implementación en el /usr/src/lib/other/syscall.c o

en la Figura 9.2 y su sintaxis es la siguiente:

 who: es el destinatario del mensaje, en este caso el servidor.

 syscallnr: es el número de la llamada al sistema

 msgptr: es un apuntador al mensaje a enviar. message es una estructura de datos definida por

Minix 3 en el directorio /usr/src/include/minix/ipc.h.

En _syscall si el valor de retorno es negativo será tratada como un error. Los valores estándares de error

se define en /usr/src/include/errno.h. De lo contrario el valor de retorno es debería ser 0.

PUBLIC int _syscall(int who, int syscallnr, register message *msg);

117

Figura 9.2 Función _syscall

Como puede observarse _syscall utiliza a sendrec con el destinatario who (normalmente a PM o FS).

Sendrec hace una petición la cual es recibida por get_work, y se encarga de responder a la misma a

través de reply. Las funciones get_work y reply existe tanto en las PM como en FS. Para entender mejor

a _syscall vea la siguiente llamada al sistema:

Donde MM es el número de proceso asignado al PM, vea la Figura 9.3 en la línea 26 del archivo

/usr/src/include/lib.h, donde se define dicha variable. El segundo parámetro 70, es el número de llamada

al sistema y m es el mensaje a enviar.

message m;

_syscall(MM,70,&m);

118

Figura 9.3 Código fuente de lib.h

Otra función utilizada en llamadas al sistema es _taskcall. Tiene la misma funcionalidad que _syscall

excepto que devuelve los códigos de error negativo directamente y no en errno. Esta es una mejor

interfaz para que MM y FS se comuniquen con el núcleo, la implementación de esta función está en

/usr/src/lib/syslib/taskcall.c, puede observarse en la Figura 9.4.

119

Figura 9.4 Función taskcall.c.

9.2.2 ¿Cómo se crea una llamada al sistema?

La llamada al sistema propuesta utilizará como soporte al servidor PM. La comunicación entre el proceso

de usuario y el PM involucra dos tareas:

a) La creación, por parte del proceso de usuario, de un mensaje y el envío del mismo al proceso

servidor.

b) La creación de un manejador, en el proceso servidor, que realice las acciones pertinentes cuando

llega un mensaje de ese tipo.

En cuanto a la generación del mensaje por parte del proceso de usuario, existen dos alternativas. Se

desea implementar ambas alternativas de llamadas al sistema, estás se definen por enfoques; el directo

e indirecto (a través de una biblioteca). Las llamadas al sistema propuestas serán descritas a

continuación, desglosadas por enfoque:

 Enfoque directo: Para este ejemplo el programa de usuario debe conocer, manipular y utilizar la

función _syscall, la cual será explicada posteriormente.

 Enfoque indirecto: es necesario la creación de una función dentro de una biblioteca que oculte

todo el manejo de envío y recepción de mensajes entre las capas.

En la siguiente sección se explica paso a paso el proceso para la creación de cada tipo de llamada al

sistema mencionado anteriormente.

120

9.2.3 Pasos para crear una llamada al sistema (enfoque directo)

En esta implementación se utilizará el enfoque directo. Eso significa, como se mencionó anteriormente,

que el programa de usuario va a utilizar la llamada al sistema _syscall, que realiza el envío de un

mensaje destinado a otro proceso y se bloquea hasta recibir una respuesta. Esta es la forma más sencilla

de realizar una llamada al sistema. A continuación se describe paso a paso el proceso de la creación de

una llamada al sistema en Minix 3 la cual solo imprime por pantalla: “Esta es una llamada al sistema”:

Paso 1 (Implementar prueba_imprimirmsg.c): debe implementar en primer lugar un programa de

usuario que permita invocar la llamada al sistema, el cual será denominado prueba_imprimirmsg.c, como

se indico en la tarea a). Este programa de estar alojado en el directorio /usr/src. Para crear este programa

debe crear primero el archivo a través de la consola de Minix 3 use el siguiente comando: “vi

prueba_imprimirmsg.c”. Posteriormente introduzca “:”, luego cuando aparezca en pantalla los dos puntos

teclee wq para guardarlo y salir del editor de texto. Para finalizar utilice el IDE de eclipse para

implementar el programa que puede visualizar en la Figura 9.5.

Paso 2.1 (Creación de un manejador - modificar el table.c): ahora se procede a la tarea b), para esto

se debe empezar por encontrar una ranura o entrada vacía en el archivo /usr/src/servers/pm/table.c, vea

la Figura 9.6. Para agregar una nueva llamada al sistema, se debe identificar una ranura o entrada sin

usar. Por ejemplo, el índice 69 contiene una entrada no utilizada, fácil de identificar debido a que dice

unuse. Se podría utilizar el número de ranura 69 para la llamada al sistema de do_imprimirmsg. Para

utilizar la entrada 69, se reemplaza no_sys con do_imprimirmsg, vea la Figura 9.7 en la línea 83 del

archivo /usr/src/servers/pm/table.c.

do_imprimirmsg, /* 69 = Llamada nueva = imprimirmsg */

#include <lib.h>
#include <stdio.h>

/* Programa de prueba de la llamada
 * al sistema imprimirmsg */

void main(int argc, char *argv[])
{
 int retorno;
 message m;
 retorno = _syscall(MM,69,&m);

 printf("Resultado imprimirmsg:[%d]\n", retorno);
}

Figura 9.5 prueba_imprimirmsg.c

121

Figura 9.6 Código fuente de table.c

Figura 9.7 Código fuente de table.c (modificado)

Paso 2.2 (Creación de un manejador - modificar el proto.h): El siguiente paso es declarar un prototipo

del manejador de sistema, esto se hace modificando el archivo /usr/src/servers/pm/proto.h. Este archivo

contiene los prototipos de todas las funciones manejadoras de las llamadas al sistema. Se debe añadir el

prototipo de do_imprimirmsg, esto se muestra en la línea 10 de la Figura 9.8.

122

Figura 9.8 Código fuente de proto.h

Paso 2.3 (Creación de un manejador - implementar do_imprimirmsg): Añadir la implementación de

do_imprimirmsg a un archivo nuevo o un archivo existente en /usr/src/servers/pm/. Si se agrega a un

archivo existente, no es necesario cambiar Makefile, si prefiere crear un nuevo archivo, es necesario

modificar el Makefile. En este ejemplo se utilizará un archivo existente en el directorio antes mencionado,

dicho archivo es getset.c. Debido a que la llamada al sistema do_imprimirmsg solo va a imprimir datos a

través de la salida estándar, la implementación de la misma solo tiene una llamada a la función printf. La

implementación de esta llamada puede observarse en la Figura 9.9 desde la línea 17 a la 25.

_PROTOTYPE(int do_imprimirmsg, (void));

123

Figura 9.9 Código fuente de getset.c

Paso 3 (Generar una versión): hay que recompliar el núcleo, para realizar este penúltimo paso se debe

dirigir al directorio /usr/src/tools y ejecutar los siguientes comandos:

Luego debe especificar la imagen desde donde se pretende iniciar, la misma puede verse una vez

ejecutado el comando make hdboot, aparece una vez ejecutado el comando y tiene la siguiente sintaxis

3.1.5rX, donde X es un entero que hace referencia número de release. Debe ejecutar el comando:

Paso 4 (compilación y ejecución del programa de usuario): Para concluir debe compilar el programa

prueba.c y ejecutarlo. Para esto diríjase al directorio (/usr/src/) donde se encuentra prueba_imprimirmsg.c

y ejecute los siguientes comandos:

d0p0s0> image=/boot/image/3.1.6rX
d0p0s0> boot

cd /usr/src/tools/
make hdboot

/*==*
 * ****** do_imprimirmsg ****** *
 ==/
PUBLIC int do_imprimirmsg()
{
 printf("Esta es una llamada al sistema\n");
 return OK;
}

124

9.2.4 Llamada al sistema (usando una biblioteca)

En esta implementación se utilizará el enfoque indirecto. Es necesaria la creación de una función dentro

de una biblioteca que oculte todo el manejo de envío y recepción de mensajes entre las capas. Dicha

comunicación ocurre entre el proceso de usuario (capa 4) y el PM (capa 3). De esta forma, se abstrae a

los procesos de usuario del mecanismo de comunicación interprocesos. Esta llamada al sistema solo

envía un entero y el resultado de la misma es el mismo entero multiplicado por dos, todo esto a través de

pase de mensajes. Como se muestra en la Figura 9.10 donde a es la petición y d la respuesta.

Programa de usuario

Libc

PM

ad

Llamada al

sistema simple

Figura 9.10 Llamada al sistema usando biblioteca (sencilla)

Antes de explicar los pasos de esta llamada es importante conocer la estructura de datos message. La

cual puede observarse a continuación en la Figura 6.1. Luego será explicada esta llamada al sistema

paso a paso (21).

Figura 9.11 Estructura message

125

Paso 1 (Construcción de la biblioteca): En /usr/src/lib/posix se crea un archivo llamado _newcall.c. En

este archivo se creará la función newcall, encargada de armar un mensaje y enviarlo al proceso servidor,

en este caso al manejador de procesos. Si el proceso de usuario necesitara enviar información al proceso

servidor, debería pasarla a newcall vía argumentos. De la misma forma, si el proceso servidor devuelve

un mensaje con información. Luego, newcall debería desempaquetar el mensaje y enviar la información

al proceso de usuario vía argumentos. La implementación del programa obsérvela en la Figura 9.12:

Note que la función de ejemplo no hace mucho. Solo carga el campo m1_i1 del mensaje m que se

enviará al PM y, luego de la llamada a _syscall, coloca el valor 1234 en la dirección de memoria

suministrada como segundo parámetro. Por último, retorna el valor devuelto como resultado de la

llamada a _syscall. Nota, si se quiere pasar otro tipo de dato que no es entero utilizar la estructura de

datos message y buscar el campo requerido, el procedimiento sigue siendo el mismo. Para que esta

función forme parte de la librería, se debe editar el archivo Makefile.in en el mismo directorio y agregar el

nombre del nuevo archivo a compilar como parte de la libc.

Makefile for lib/posix.

CFLAGS="-O -D_MINIX -D_POSIX_SOURCE"

LIBRARIES=libc

libc_FILES=" \
 __exit.c \
 _newcall.c \
 _access.c \
}

#include <lib.h>
#include <unistd.h>

PUBLIC long newcall (int entrada, int *salida)
{
 message m;
 int retorno;

 /* Se establece los campos del mensaje a enviar */
 m.m1_i1 = entrada;

 /* La forma de pasar un mensaje a MM es a través de:
 _syscall(MM,NEWCALL,&m);
 El mensaje de respuesta permanece en m.
 */
 retorno = _syscall(MM, NEWCALL, &m);

 /* Retornar la información contenida en el mensaje vía parametros*/
 /* *salida = m.m1_i2; */

 *salida = 1234;
 return(retorno);
}

Figura 9.12 Código fuente de newcall.c (versión 1)

126

Luego ejecutar, en ese directorio:

Esto generará un nuevo Makefile que incluye las reglas para el nuevo archivo. Como se puede observar

en la llamada a _syscall, se ha usado la macro NEWCALL en lugar de utilizar el número de llamada al

sistema. Entonces, en /usr/src/include/minix se debe editar el archivo callnr.h para agregar dicha macro:

Esto compilará e instalará la nueva librería POSIX. Ahora sólo queda agregar el prototipo de la función de

la biblioteca newcall al archivo de que corresponda (en este caso a unistd.h) para que el compilador de C

no de errores cuando deba generar el código para su llamada. En virtud de lo antes mencionado se edita

/usr/src/include/unistd.h:

Posteriormente se instala los nuevos archivos de cabecera en /usr/include/ ejecutando:

También se deben compilar las bibliotecas, para esto ejecute:

Paso 2 (Construcción del programa de prueba): En este punto, solo a los efectos de prueba, se

construirá un programa llamado /usr/src/prueba_newcall.c con el siguiente código:

#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

int retorno, entrada=5, salida=7;

retorno = newcall(entrada, &salida);

printf("Resultado newcall:[%d], valor salida:[%d] \n", retorno,salida);

return 0;

}

cd /usr/src
make libraries

cd /usr/src
make includes

_PROTOTYPE(long newcall, (int entrada, int *salida));

#define NEWCALL 70 /* El 70 esta libre en la sección posix*/

/usr/src/lib/posix

Make Makefile

127

Al compilar este programa y ejecutar prueba_newcall, se llama a la función de la librería newcall que

envía, a su vez, un mensaje al PM. Es importante notar que no hace falta recompilar el núcleo para poder

probar a la nueva llamada al sistema, hasta ahora. Como el PM no sabe qué hacer con un mensaje de

ese tipo, el resultado de la ejecución será:

Pues la llamada a _syscall() retornará -1 (error). El 1234 es cargado por la función de la librería

directamente. Lo siguiente, entonces, es aportar la funcionalidad requerida al PM.

Paso 3 (Modificación del proceso servidor): El programa principal del Process Manager

(/usr/src/servers/pm/main.c) es un ciclo infinito en el que el servidor queda a la espera de mensajes,

cuando recibe un mensaje lo atiende y luego, eventualmente, envía los resultados a quien realizó la

petición. En este procedimiento los privilegios que tienen las tareas Clock y System ya que son los

primeros atendidos por este proceso servidor (para denotar esto vea el código completo). La forma en

que se realiza la acción a cada tipo de mensaje véala en la Figura 9.13:

Figura 9.13 Código fuente de main.c

Como se ve, la función que se ejecuta es aquella que se encuentra en la posición call_nr del vector

call_vec[]. La variable call_nr, en este contexto, contiene el número de System Call solicitada. call_vec

128

es, entonces, un vector de apuntadores a una función que contiene en la posición n-ésima que debe

ejecutarse para atender la System Call número n y se encuentra definido en /usr/src/servers/pm/table.c.

Ahora para que el PM ejecute determinada función ante la llegada de un mensaje requiriendo la System

Call 70 hay que cambiar “no_sys, /* 70 = unused */”, como se ve mostro en la Figura 9.6, por:

Mediante este cambio, se indica al Process Manager que ejecute la función do_newcall. Para programar

do_newcall debe, en primera instancia, modificarse /usr/src/servers/pm/proto.h para agregar el prototipo

de la función, como se realizó en el ejemplo de la llamada al sistema anterior:

Al escribir la función do_newcall se debe tener en cuenta que:

 El mensaje de entrada está en m_in

 El mensaje de respuesta está en mp->mp_reply (mp es un apuntador a la posición de la tabla de

procesos ocupada por el proceso que originó la llamada. ver setreply en main.c)

 Si la system call puede ser atendida con los recursos del proceso servidor, do_newcall debe ser

dotada de toda la funcionalidad necesaria y completar los campos correspondientes del mensaje

que se devolverá al proceso que realizó la llamada.

 Si debe requerirse algo a la SYSTASK, debe armarse un nuevo mensaje y enviárselo vía

sys_newcall, este proceso será explicado posteriormente.

 En /usr/include/minix/ipc.h se definen los tipos relativos a mensajes.

A continuación, para no generar otro archivo, podemos escribir en la función do_newcall() en

/usr/src/servers/pm/getset.c:

Una vez programada la función do_newcall es conveniente, a los efectos de simplificar la depuración

probar lo hasta ahora lo que se ha realizado. Note que en el ejemplo, do_newcall no hace prácticamente

nada. Solo retorna en un campo del mensaje de salida, el doble de lo que se le informa en el campo

m1_i1 del mensaje de entrada m_in. Una ligera modificación a la función newcall (en la línea que esta

resaltada puede verse dicha modificación) en /usr/src/lib/posix/_newcall.c permitirá probar el escenario:

/*===*
 * ****** do_newcall ******* *
 ===/
PUBLIC int do_newcall()
{
 mp->mp_reply.m1_i2 = m_in.m1_i1 * 2;
 return OK;
}

_PROTOTYPE(int do_newcall, (void));

do_newcall, /* 70 = newcall Nueva llamada al sistema (biblioteca)*/

129

Se tiene hasta aquí una llamada al sistema que permite calcular en el PM el doble del primer valor

pasado como argumento. Ahora debe compilar las librerías vía, el PM y el núcleo:

Subsiguientemente, realice el paso explicado como Generar una versión. Luego de reiniciar se ejecuta

nuevamente prueba_newcall que dará:

Para este punto, se habrá probado que:

 El proceso de usuario puede enviar información al PM vía un mensaje.

 Que el PM puede desempaquetar la información contenida en el mensaje y hacer la tarea

necesaria para realizar la nueva system call.

 Que el PM puede enviar información de respuesta al proceso que realizó la llamada al sistema.

Es decir, se ha logrado construir una nueva llamada al sistema y se ha trasmitido información entre las

capas 3 y 4 de MINIX. La funcionalidad de la llamada creada es nula, pero el mecanismo a utilizar para

escribir cualquier nueva llamada al sistema, será muy similar al descrito.

cd /usr/src
make libraries
cd /usr/src/servers/pm
make
cd /usr/src/tools
hdboot

#include <lib.h>
#include <unistd.h>

PUBLIC long newcall(int entrada, int * salida)
{
 message m;
 int retorno;

 /* Se establece los campos del mensaje a enviar */
 m.m1_i1 = entrada;

 /* La forma de pasar un mensaje a MM es a través de:
 _syscall(MM,NEWCALL,&m);
 El mensaje de respuesta queda en m.
 */
 retorno=_syscall(MM,NEWCALL,&m);

 /* Retornar la información contenida en el mensaje vía parametros*/
 *salida = m.m1_i2;

 return(retorno);
}

130

9.2.5 Llamada al sistema (extendida)

En el caso en que el proceso servidor no tenga todos los recursos necesarios para satisfacer la llamada

al sistema, por ejemplo, porque se necesita acceder a información que está en el espacio de direcciones

del núcleo, deberá solicitar a un ente externe que realice la tarea por él.

En este ejemplo, se asume que la SYSTASK realizará la tarea, siendo especifico, la multiplicación por

tres del primer valor pasado como parámetro a newcall, se usará otro factor para distinguir los resultados

de la llamada al sistema sencilla. Este esquema de llamada al sistema puede observarse en Figura 9.14.

Es importante notar que esta función hace una invoca a _taskcall, para poder enviar un mensaje a

núcleo. También es importante señalar que un proceso a nivel de usuario no puede realizar este tipo de

llamadas debido a que el SYSTASK se encuentra en la capa 1, y los procesos de usuario solo envían

mensajes a la capa 3. Hay que resaltar que una llamada al sistema que implique un cambio de modo es

más costosa a nivel de recursos que las demás.

Además, implica otros temas como seguridad, si una llamada a nivel de usuario no está semánticamente

bien hecha puede afectar los Procesos Servidores. Sin embargo, para evitar la caída de los mismos

existe un proceso especial Proceso Servidor Reencarnación. Dicho servidor de forma periódica envía

consultas a cada controlador de dispositivo y a los procesos servidores, como el PM, FS, etc. Si el

controlador de dispositivo o proceso servidor muere o no responde correctamente a las consultas, el

servidor de reencarnación automáticamente los sustituye por una copia nueva. La detección y el

reemplazo de los controladores de dispositivo procesos servidores que no funcionan son de forma

automática, sin intervención del usuario. Este mecanismo intenta brindarle a Minix 3 tolerancia a una

caída de los controladores o procesos servidores (15).

A diferencia de una llamada al sistema que implique un cambio de modo, el servidor reencarnación no

tiene el alcance ni el mecanismo para poder brindar la tolerancia o robustez al sistema operativo. Esta es

una razón para tener precaución a la hora de implementar una llamada al sistema que implique un

cambio de modo.

131

Programa de usuario

Libc

PM

Libsys

SYSTASK

a

bc

d

Llamada al

sistema extendida

Figura 9.14 Llamada al sistema (extendida)

La función do_newcall, mencionada anteriormente, debe ahora armar un nuevo mensaje y enviarlo a la

SYSTASK. Como en el caso del programa de usuario, puede programarse al PM para:

 Enviar directamente el mensaje utilizando la llamada a _syscall

 Crear una función de biblioteca que oculte todo el manejo de mensajes.

Se optará por la segunda opción agregando una función a la biblioteca libsys. Estos pasos se explicaran

a continuación.

Paso 1 (Construcción de la función de biblioteca): En /usr/src/lib/syslib/ se creará el archivo

sys_newcall.c con el código necesario para invocar a la SYSTASK por medio de un mensaje. Para

lograrlo utiliza la función _taskcall (en la línea que esta resaltada), la cual fue explicada con anterioridad.

El cual tendrá el siguiente contenido:

132

Editar el archivo Makefile.in en el mismo directorio y agregar a sys_newcall.c en la lista de archivos que

componen la biblioteca:

Hacer el Makefile ejecutando:

 Luego, en /usr/src/include/minix/syslib.h agregar el prototipo de la función:

Activar los nuevos archivos de cabecera:

Ahora se procederá a modificar el funcionamiento de la SYSTASK para que responda a la nueva petición.

cd /usr/src/
make includes

_PROTOTYPE(int sys_newcall, (int entrada, int *salida));

cd /usr/src/lib/syslib/
make Makefile

Makefile for lib/syslib.

CFLAGS="-O -D_MINIX -D_POSIX_SOURCE"

LIBRARIES=libsys

libsys_FILES=" \
 alloc_util.c \
 assert.c \
 sys_newcall.c \
 panic.c \
 pci_attr_r16.c \
 pci_attr_r32.c \

#include "syslib.h"

int sys_newcall(int entrada, int *salida)
{
 message m;
 int retorno;

 /* Se establece los campos del mensaje a enviar */
 m.m1_i1 = entrada;

 /* La forma de pasar un mensaje a la SYSTASK es a través de:
 _taskcall(SYSTASK,SYS_NEWCALL,&m);
 El mensaje de respuesta queda en m.
 */
 retorno = _taskcall(SYSTASK,SYS_NEWCALL,&m);

 /* Retorna la información contenida en el mensaje vía parametros*/

 *salida=m.m1_i2;
 return(retorno);
}

133

Paso 2 (Modificación de la SYSTASK): Debe en primera instancia, agregar un procedimiento más al

vector de apuntadores a funciones que utiliza la SYSTASK para ejecutar las funciones que atienden a

cada system call. Se comenzará cambiando en /usr/src/include/minix/com.h la cantidad máxima de

llamadas soportada por el núcleo (NR_SYS_CALLS) y definiendo la macro SYS_NEWCALL que se utilizó

en la llamada a _taskcall. Vea primero parte del archivo:

Lo que se debe hacer es agregar syscall al final del vector, y actualizar el valor de NR_SYS_CALL. Las

modificaciones están resaltadas en el siguiente código. El archivo debe quedar de la siguiente forma:

En la función initialize en /usr/src/kernel/system.c mediante llamadas a map carga en cada posición del

vector call_vec[] un apuntador a la función que debe ejecutarse ante un mensaje de tipo n (n es el

número de llamadas). Entonces, debe agregarse una llamada a map para cargar la dirección

correspondiente a la nueva llamada:

Los cambios se muestran en la siguiente figura, específicamente en la línea que esta resaltada:

 map(SYS_NEWCALL, do_newcall); /* nueva llamada al sistema */

define SYS_RUNCTL (KERNEL_CALL + 46) /* sys_runctl() */
define SYS_SAFEMAP (KERNEL_CALL + 47) /* sys_safemap() */
define SYS_SAFEREVMAP (KERNEL_CALL + 48) /* sys_safere sys_saferevmap2*/
define SYS_SAFEUNMAP (KERNEL_CALL + 49) /* sys_safeunmap() */
define SYS_NEWCALL (KERNEL_CALL + 50) /* sys_newcall() */

#define NR_SYS_CALLS 51 /* number of system calls */
#define SYS_CALL_MASK_SIZE BITMAP_CHUNKS(NR_SYS_CALLS

134

En /usr/src/kernel/system.c, puede escribirse la función que hace el trabajo solicitado, en este caso

retorna el mensaje obtenido multiplicado por 3 (tres). Esta función es denominada do_newcall, vea su

implementación a continuación:

Ahora debe escribirse el prototipo al comienzo de /usr/src/kernel/system.c, antes del map():

Luego de esto, solo falta compilar las bibliotecas y el nuevo núcleo. Para ello:

cd /usr/src/
make includes
make libraries
cd /usr/src/tools
make hdboot

_PROTOTYPE(int do_newcall, (message *m_ptr));

/*===*
 * do_newcall *
 ===/
int do_newcall(m_ptr)
register message *m_ptr;
{
 m_ptr->m1_i2= m_ptr->m1_i1 * 3;
 return(0);
}

 /*====================================*

 * initialize *
 =====================================/
PRIVATE void initialize(void)
{
 register struct priv *sp;
 int i;

 /* Initialize IRQ handler hooks. Mark all hooks available. */
 for (i=0; i<NR_IRQ_HOOKS; i++) {
 irq_hooks[i].proc_nr_e = NONE;
 }

 /* Initialize all alarm timers for all processes. */
 for (sp=BEG_PRIV_ADDR; sp < END_PRIV_ADDR; sp++) {
 tmr_inittimer(&(sp->s_alarm_timer));
 }
/* Initialize the call vector to a safe default handler. Some system calls
 * may be disabled or nonexistant. Then explicitely map known calls to their
 * handler functions. This is done with a macro that gives a compile error
 * if an illegal call number is used. The ordering is not important here.
 */
 for (i=0; i<NR_SYS_CALLS; i++) {
 call_vec[i] = do_unused;
 callnames[i] = "unused";
 }

 map(SYS_NEWCALL, do_newcall); /* nueva llamada al sistema */

135

Paso 3 (Prueba 1 - Programa de usuario llama a system call): Se crea un nuevo archivo llamado

prueba_newcall_task.c, el cual utiliza la función sys_newcall ¿Qué pasa si invocamos a la llamada al

sistema desde el programa de prueba, que corre con permisos de usuario? Compilamos el programa de

pruebas, esta vez su código en prueba_newcall_task.c será (21):

Se compila y se enlaza con la biblioteca del sistema. Luego podemos correr a prueba_newcall y ver el

resultado en pantalla. Lo que sucede es que se obtiene un mensaje de error en la consola, y el proceso

es terminado por el SO. El mensaje es:

El 36730 es el PID del proceso creado al ejecutar el programa prueba_newcall. El mensaje dice que se

denegó el permiso para hacer IPC desde el proceso de usuario al servidor, arrojando el número de error -

2 (el RS_PROC_NR).

Paso 2 (Prueba 2 - Programa de usuario llama a system call): Para poder utilizar realmente lo

implementado debe modificar la función do_newcall en el archivo /usr/src/servers/pm/getset.c de la

siguiente manera para sea el PM el que se comunique con el SYSTASK (21).

PUBLIC int do_newcall()
{
 int retorno, input, output;
 input = m_in.m1_i1;

 retorno = sys_newcall(input, &output);
 mp->mp_reply.m1_i2 = output;

 return OK;
}

#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <minix/syslib.h>

int main(int argc, char *argv[])
{
 int retorno, entrada=5, salida=7;

 retorno = sys_newcall(entrada, &salida);

 printf("Resultado newcall:[%d], valor salida:[%d]\n", retorno, salida);

 return(0);
}

136

Luego de esto, solo falta compilar las bibliotecas y el nuevo núcleo. Para ello:

Luego implementamos el programa de pruebas, recordemos su código en prueba_newcall_task_final.c:

Para finalizar compilamos y ejecutamos el código y obtenemos los valores esperados, como se muestra a

continuación.

#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>

int main(int argc, char *argv[])
{
 int retorno, entrada=5, salida=7;

 retorno = newcall(entrada, &salida);

 printf("Resultado newcall:[%d], valor salida:[%d] \n", retorno, salida);

 return 0;
}

cd /usr/src/
make libraries

cd /usr/src/tools
make hdboot

137

10 Implementación de semáforos

El concepto de proceso es fundamental en la estructura de los SO. Cada proceso tiene asociado un

espacio de direcciones, una lista de posiciones de memoria desde algún mínimo hasta algún máximo,

que el proceso puede leer y escribir. El espacio de direcciones contiene el programa ejecutable, los datos

del programa, y su pila. A cada proceso también se asocia un conjunto de registros, que incluyen el

contador del programa, el apuntador de la pila y otros registros de hardware, así como todo la demás

información necesaria para ejecutar el programa. Este término de proceso tiene muchas definiciones en

las cuales tenemos (2):

 Un programa en ejecución, que conceptualmente tiene su CPU virtual.

 Una instancia de un programa ejecutándose en un procesador.

 La entidad que se puede asignar o ejecutar en un procesador.

 Una unidad de actividad caracterizada por un solo hilo secuencial de ejecución, un estado actual,

y un conjunto de recursos del sistema asociados.

Cada proceso tiene las siguientes dos características (2):

 Propiedad de recursos: Un proceso incluye un espacio de direcciones virtuales para el manejo de

la imagen del proceso; la imagen de un proceso es la colección de programa, datos, pila y

atributos definidos en el bloque de control del proceso. En ciertas ocasiones un proceso se le

puede asignar control o propiedad de recursos tales como la memoria principal, dispositivos E/S y

archivos. El sistema operativo realiza la función de protección para evitar interferencias no

deseadas entre procesos en relación con los recursos.

 Planificación/ejecución: Un proceso tiene un estado de ejecución y una prioridad de activación.

En la mayor parte de los sistemas operativos tradicionales, estas dos características son, realmente, la

esencia de un proceso. Sin embargo, debe quedar muy claro que estas dos características son in-

dependientes y podrían ser tratadas como tales por el sistema operativo.

10.1 Secuencia de inicialización del árbol de procesos en Minix 3

Los procesos en MINIX siguen el modelo general de procesos que se describió con anterioridad, también

procesos pueden crear subprocesos, que a su vez pueden crear más subprocesos, produciendo un árbol

de procesos. De hecho, todos los procesos de usuario del sistema forman parte de un solo árbol con init

ver la. Los servidores y controladores son un caso especial, por supuesto, ellos deberían ser inicializados

antes que cualquier proceso de usuario, incluyendo init (15).

¿Cómo se forma este árbol? Una vez cargado el sistema operativo, como se explico en el capítulo 2,

siguiendo la secuencia de ejecución del masterboot, bootblock y boot monitor. Este último busca un

138

archivo multiparte llamado boot image. El cual contiene la parte más importante del núcleo (la tarea del

reloj y la tarea del sistema), el manejador de procesos y el sistema de archivos. Adicionalmente, también

deberían estar incluidos algunos controladores. Además, hay varios programas incluidos en la boot

image, estos son: el servidor reencarnación, la consola, el disco RAM e init.

Durante su fase de inicialización, el núcleo inicia las tarea del reloj y la tarea del sistema, luego el

manejador de procesos y el sistema de archivos. Posteriormente, el manejador de procesos y el sistema

de archivos cooperan para inicializar cualquier otro servidor o controlador que son parte de la boot image.

Una vez que todos éstos se han ejecutado e inicializado a sí mismos, se bloquean, esperando algo que

hacer. Cuando todas las tareas y servidores están bloqueados, se ejecuta init, el cual es el primer

proceso de usuario. Este proceso ya está en la memoria principal, pero desde luego podría haberse

cargado del disco como programa aparte, ya que todo está funcionando para cuando se inicia. Sin

embargo, dado que init se inicia sólo esta única vez y nunca se vuelve a cargar del disco, lo más fácil es

incluirlo en el archivo de imagen del sistema junto con el núcleo, las tareas y los servidores. Los

componentes del sistema cargados en la boot image o durante la inicialización se muestran en la Tabla

10.1 (15).

Componente Descripción Cargado por

núcleo Núcleo + las tareas del reloj y del sistema En la boot image

pm Manejador de procesos En la boot image

fs Sistema de archivos En la boot image

rs Servidor reencarnación (inicio y controladores) En la boot image

memory RAM controlador de disco En la boot image

log Registro de salida del bufer En la boot image

tty Controlador de consola y teclado En la boot image

driver Controlador de disco En la boot image

init Padre de todos los procesos de usuario En la boot image

floppy Controlador del disquete /etc/rc

is Servidor de información (la depuración) /etc/rc

cmos lee reloj CMOS para ajustar la hora /etc/rc

random Generador de números aleatorios /etc/rc

printer Controlador de impresora /etc/rc

Nota: otros componentes como el controlador de Ethernet y el servidor inet pueden estar presentes en

la boot image.

Tabla 10.1 Componentes de Minix 3

139

10.2 Comunicación entre proceso en Minix 3

Minix 3 utiliza el paso de mensajes para la comunicación, en general, el paso de mensajes proporciona

un par de primitivas. Las cuales permiten la comunicación y sincronización entre procesos. Las primitivas

puede observarlas a continuación:

 send(destino, mensaje)

 receive(origen, mensaje)

Este es el conjunto mínimo de operaciones necesarias para que los procesos puedan entablar paso de

mensajes. Un proceso envía información en forma de un mensaje a otro proceso designado por destino.

El proceso recibe información ejecutando la primitiva receive indicando la fuente y el mensaje. Esta

llamada podría ser bloqueante, esto quiere decir que el proceso puede bloquearse hasta recibir un

mensaje.

10.2.1 Mecanismo de paso de mensajes en Minix 3

Debe recordar, primero que el diseño de Minix 3 es de micronúcleo. Segundo que Minix 3 está diseñado

en capas, y que la principal diferencia entre las mismas radica en la posibilidad de realizar llamadas al

núcleo siendo los de la capa 2 los más privilegiados, seguidos en orden decreciente por la capa 3 y 4. En

cuanto al paso de mensajes, las capas 2 y 3 son las únicas que pueden comunicarse con el núcleo.

También el paso de mensajes entre procesos de usuarios (capa 4) no es posible. En esta figura puede

observarse el flujo de mensajes entre las diferentes capas y actores de Minix 3. Los procesos de usuario

(capa 4) solo pueden enviar y recibir mensajes de la capa 3. Los procesos servidores (capa 3) pueden

comunicarse con las capas 2 y 1. Los controladores (capa 2) se comunican directamente con el núcleo

como los procesos servidores, sin embargo, los de esta capa tienen más prioridad (15). Para entender

mejor la situación vea la Figura 10.1.

140

M
o

d
o

K
e

rn
e

l
M

o
d

o
 U

s
u

a
ri
o

1

2

3

4Init
Proceso

de Usuario

Proceso

de Usuario

Manejador

de procesos
Sistema de

archivos
Servidor

reencarncación

Controlador

de disco

Controlador

de TTY
Controlador

de Ethernet

Tarea del

sistema
Tarea del

reloj
Kernel

Figura 10.1 Flujo de mensajes en Minix 3

10.3 Sincronización de procesos de usuario en Minix 3

El único método para sincronizar los procesos en Minix 3 es a través de paso de mensajes. Sin embargo,

debido al mecanismo de paso de mensajes surge un problema para sincronizar procesos de la capa 4.

Se requiere proporcionar una solución que permita la sincronización entre procesos de usuarios. Para

ello se propone la implementación de semáforos en Minix 3, usando como soporte el pase de mensajes.

Antes de describir esta solución conozca la estructura y todo lo referente a un semáforo.

El primer avance fundamental en el tratamiento de los problemas de programación concurrente ocurre en

1965 con el tratado de Dijkstra. Dijkstra estaba involucrado en el diseño de un sistema operativo como

una colección de procesos secuenciales cooperantes y con el desarrollo de mecanismos eficientes y

fiables para dar soporte a la cooperación. Estos mecanismos podrían ser usados fácilmente por los

procesos de usuario si el procesador y el sistema operativo colaborasen en hacerlos disponibles.

El principio fundamental es éste: dos o más procesos pueden cooperar por medio de simples señales,

tales que un proceso pueda ser obligado a parar en un lugar específico hasta que haya recibido una

señal específica. Cualquier requisito complejo de coordinación puede ser satisfecho con la estructura de

señales apropiada. Para la señalización, se utilizan unas variables especiales llamadas semáforos. Para

transmitir una señal vía el semáforo s, el proceso ejecutará la primitiva semSignal(s). Para recibir una

señal vía el semáforo s, el proceso ejecutará la primitiva semWait(s); si la correspondiente señal no se ha

141

transmitido todavía, el proceso se suspenderá hasta que la transmisión tenga lugar. Para conseguir el

efecto deseado, el semáforo puede ser visto como una variable que contiene un valor entero sobre el

cual sólo están definidas tres operaciones (2):

 Un semáforo puede ser inicializado a un valor no negativo.

 La operación semWait decrementa el valor del semáforo. Si el valor pasa a ser negativo,

entonces el proceso que está ejecutando semWait se bloquea. En otro caso, el proceso continúa

su ejecución.

 La operación semSignal incrementa el valor del semáforo. Si el valor es menor o igual que cero,

entonces se desbloquea uno de los procesos bloqueados en la operación semWait.

10.3.1 Semáforos en Minix 3

Lo anterior descrito es lo que se desea implementar en Minix 3. Pero ¿cómo la funcionalidad del

semáforo se puede agregar a MINIX 3? Los semáforos son números enteros, los cuales se inicializan

igual o mayor que cero. Y son modificados mediante dos operaciones, semSignal y semWait, para

sincronizar múltiples procesos intentan que acceder a un recurso compartido. Una operación semWait(S)

decrementa el semáforo S. Si S es menor que cero, el proceso se bloquea la llamada hasta que algún

otro proceso incrementa a S a través de una operación semSignal(S). Esta funcionalidad es normalmente

parte del núcleo de un sistema monolítico, pero puede ser realizado como un servidor independiente del

espacio de usuario en MINIX 3.

Para la implementación de la solución se requiere de un proceso servidor. La estructura del servidor

semáforo MINIX 3 se muestra en la Figura 10.2. Después de la inicialización, el servidor entra en un

bucle principal sin fin. En cada iteración el servidor se bloquea y espera hasta que llega un mensaje de

solicitud. Una vez que un mensaje ha sido recibido, el servidor examina la solicitud. Si el tipo es conocido,

la función manejadora asociada a está llamada procesa la solicitud, y el resultado se devuelve; a menos

que el proceso que llama deba ser bloqueado. Si se recibe tipos ilegales de solicitud directamente el

resultado debe indicar que es una solicitud errónea.

Un punto importante es que los procesos de usuario en Minix 3 se limitan al paso de mensajes síncrono.

Esto quiere decir que, luego de realizar la solicitud el proceso invocador se bloqueará hasta que la

respuesta haya llegado. De esta característica se puede obtener mucha ventaja a la hora de implementar

semáforos en Minix 3, sobre todo cuando se construye el servidor de semáforos. Para las operaciones

semSignal, el servidor simplemente incrementa el semáforo y directamente envía una respuesta para que

el proceso que realiza la solicitud pueda continuar. Para las operaciones semWait, por el contrario, la

respuesta es retenida, el semáforo se decrementa, bloqueando efectivamente al proceso que llama hasta

que se retorne el mensaje de respuesta (22).

142

El semáforo tiene asociado una cola FIFO (First In, First Out) de procesos para realizar un seguimiento

de los procesos que están bloqueados. Después de una operación semSignal, la cola se comprueba para

ver si un proceso espera por ser desbloqueado (22).

Todos los servidores y los controladores tienen un bucle principal similar. La función initialize() se llama

sólo una vez y antes de entrar en el bucle principal, dicha función no será explicada aquí. Las funciones

manejadoras do_semSignal y do_semWait se muestran a continuación.

Con la estructura del servidor de semáforos implementada, es necesario proveer a los procesos de

usuario la posibilidad de comunicarse con él. Una vez que el servidor se ha iniciado está listo para recibir

peticiones. En principio, el programador puede construir mensajes de solicitud y enviarlo al servidor

nuevo mediante ipc_request, pero esos detalles suelen ser convenientemente escondidos en las

bibliotecas del sistema, junto con las otras funciones POSIX, como se explicó en el capitula anterior.

int do_semWait (message *m_ptr) {
 /* Decremento al semáforo y retorna la respuesta. */
 s = s – 1; /* take a resource */

 if (s > 0) {
 return(OK); /* let the caller continue */
 }
 /* Encola al proceso solicitante y lo bloquea. */
 enqueue(m_ptr->m_source); /* lo agrega a la cola */
 return(DONTREPLY); /* indica que no retorne respuesta */
}

void semaphore_server() {
 message m;
 int result;
 /* Inicializa al Servidor Semáforo. */
 initialize();
 /* Ciclo principal del servidor. Obtiene trabajo y lo procesa. */
 while(TRUE) {
 /* Se bloquea hasta que un mensaje de petición llega. */
 ipc_receive(&m);
 /* El proceso que envío el mensaje esta bloqueado.
 * Despacho según el tipo de mensaje. */
 switch(m.m_type) {
 case semSignal: result = do_semSignal (&m); break;
 case semWait: result = do_semWait (&m); break;
 default: result = ERROR;
 }
 /* Enviar respuesta, a menos que el solicitante debe estar bloqueado. */
 if (result != EDONTREPLY) {
 m.m_type = result;
 ipc_reply(m.m_source, &m);
 }
 }
}

Figura 10.2 Estructura del servidor semáforo

Figura 10.3 Implementación de do_semWait

143

Como puede observarse en la Figura 10.3 está la implementación de la función semWait, la cual

decrementa el valor del semáforo s y verifica si esta variable queda negativa encola al proceso invocante

y lo bloquea. En la Figura 10.4 se muestra la implementación de la función semSignal, la cual incrementa

el semáforo s; después verifica si existen procesos bloqueados, en caso afirmativo bloquea al proceso

que lleva más tiempo bloqueado.

Por lo general, las llamadas a semSignal y semWait están declaradas en una nueva biblioteca que

permitiría manejar estas llamadas. Esto se explicó en el capítulo anterior. La estructura modular de MINIX

3 ayuda a acelerar el desarrollo la implementación de semáforos de varias maneras. En primer lugar, se

puede implementar de forma independiente del resto del sistema operativo, al igual que las aplicaciones

de usuario normal. Cuando haya finalizado, puede ser compilado como una aplicación independiente y de

forma dinámica comenzó a formar parte del sistema operativo. No es necesario construir un nuevo núcleo

(22).

10.4 Servidor PM

Antes de implementar la solución se debe conocer el funcionamiento del servidor PM, debido a que el

mismo se va a utilizar como soporte a la misma. El servidor PM tiene similar a la ilustrada como

semaphore_server en la Figura 10.2. La función main del servidor PM se muestra en la Figura 10.5 y

empieza con una inicialización principal sef_local_startup(). Después, el servidor entra en un bucle

principal sin fin.

En cada iteración el servidor se bloquea y espera hasta que llega un mensaje de solicitud, para esto

utiliza la función get_work(). Una vez que un mensaje ha sido recibido, el servidor examina la solicitud, a

través del switch(call_nr) para determina el tipo de llamada. Si el tipo es conocido y la llamada está

definida en /usr/src/servers/pm/table.c, el servidor busca la función mapeada a la llamada a través de la

instrucción result = (*call_vec[call_nr])(). La función manejadora asociada a está llamada procesa la

solicitud, y devuelve el resultado. Si se recibe tipos ilegales de solicitud directamente el resultado debe

int do_semSignal (message *m_ptr) {
 message m; /* Declaracion del mensaje a reponder */
 /* Agregar respuesta y desbloquear a un proceso
 * si es necesario. */
 s = s + 1; /* incrementa al semaforo */
 /* Chequea si un proceso está bloqueado por el semaforo. */
 if (queue_size() > 0) { /* pregunta si hay procesos encolados? */
 m.m_type = OK;
 m.m_source = dequeue(); /* lo elimina de la cola */
 ipc_reply(m.m_source, m); /* coloca la respueta */
 }
 return(OK);
}

Figura 10.4 Implementación de do_semSignal

144

indicar que es una solicitud errónea, para este caso el resultado como se explicó en el capítulo anterior

retorna -1. La porción de código que se encarga de retornar la respuesta la función main del servidor PM

comienza con la etiqueta send_reply, y se puede observar en la Figura 10.6, la cual es una continuación

de la función main. Para poder retornar el mensaje el servidor PM verifica si result != SUSPEND, cuando

se cumpla esta condición el mensaje es devuelto al proceso invocador, para que el mismo se

desbloquee.

El proceso antes mencionado ocurre siempre que el sistema operativo este funcionado. En caso de que

ocurra un error, existe el servidor RS (Servidor Reencarnación). El RS trabaja para reiniciar los

controladores y procesos servidores. Este servidor inicia bloqueado y espera a la llegada de un mensaje

que indica le indique que va a crear. En el proceso de arranque el proceso init ejecuta un script que emite

un comando al RS para que inicie los controladores y servidores que no están presentes en la boot

image, entonces inician como procesos hijos des servidor RS. En consecuencia, si alguno de estos

procesos falla o terminan el RS será informado y se encargará de restaurarlos.

Este mecanismo es un intento para permitirle a Minix 3 la tolerancia a fallos de los controladores y

servidores debido a que uno nuevo de estos siempre se crearan.

145

/*==*
 * main *
 ==/
PUBLIC int main()
{
/* Main routine of the process manager. */
 int result, s, proc_nr;
 struct mproc *rmp;
 sigset_t sigset;
 /* SEF local startup. */
 sef_local_startup();

 /* This is PM's main loop-get work and do it, forever and forever. */
 while (TRUE) {
 get_work(); /* wait for an PM system call */
 switch(call_nr)
 {
 case PM_SETUID_REPLY:
 case PM_SETGID_REPLY:
 case PM_SETSID_REPLY:
 case PM_EXEC_REPLY:
 case PM_EXIT_REPLY:
 case PM_CORE_REPLY:
 case PM_FORK_REPLY:
 case PM_FORK_NB_REPLY:
 case PM_UNPAUSE_REPLY:
 case PM_REBOOT_REPLY:
 case PM_SETGROUPS_REPLY:
 if (who_e == FS_PROC_NR)
 {
 handle_fs_reply();
 result= SUSPEND; /* don't reply */
 }
 else
 result= ENOSYS;
 break;
 default:
 /* Else, if the system call number is valid, perform the call. */
ir_a_call_vec:
 if ((unsigned) call_nr >= NCALLS) {
 result = ENOSYS;
 } else {
#if ENABLE_SYSCALL_STATS
 calls_stats[call_nr]++;
#endif

 result = (*call_vec[call_nr])();

 }
 break;
 }

send_reply:

Figura 10.5 Código fuente de main.c

146

10.5 Implementación de semáforos Minix 3

Una vez trazado un bosquejo de la solución para la implementación de semáforos en Minix 3, se

procederá a la explicación de la misma. Esta solución sigue el patrón de la solución explicada en el punto

anterior, sin embargo, no se implemento un nuevo servidor para el manejo de los mensajes. En contraste,

se utilizo el proceso servidor PM, para la recepción y transmisión de los mensajes con los procesos de

usuario. Cabe destacar que para la implementación de semáforos se implementaron las llamadas

sem_signal, sem_wait y sem_init para la comunicación entre los procesos de usuario y el servidor PM. En

este momento se procederá a describir la solución de la implementación de semáforos en Minix 3.

Paso 1 (Implementación de las llamadas al sistema): se debe implementar las llamadas al sistema

que permiten la comunicación entre los procesos de usuario y el servidor PM, tal y como se explicó el

capítulo anterior. Dicha implementación se llevo a cabo en el archivo /usr/src/lib/posix/_semcall.c.

Para esto se implementará como se menciono anteriormente las funciones sem_signal, sem_wait y

sem_init, las cuales reciben un entero semáforo que indica cual es el semáforo referenciado. En el caso

de sem_init también recibe un entero valor que indica el valor con el cual será inicializado el semáforo,

como se sabe el valor debe ser positivo. Todos estos parámetros se transfieren a cada llamada en

particular a través del mensaje m declarado.

send_reply:
 /* Send the results back to the user to indicate completion. */
 if (result != SUSPEND)setreply(who_p, result);

 /* Send out all pending reply messages, including the answer to
 * the call just made above.
 */
 for (proc_nr=0, rmp=mproc; proc_nr < NR_PROCS; proc_nr++, rmp++) {
 /* In the meantime, the process may have been killed by a
 * signal (e.g. if a lethal pending signal was unblocked)
 * without the PM realizing it. If the slot is no longer in
 * use or the process is exiting, don't try to reply.
 */
 if ((rmp->mp_flags & (REPLY | IN_USE | EXITING)) ==
 (REPLY | IN_USE)) {
 s=sendnb(rmp->mp_endpoint, &rmp->mp_reply);
 if (s != OK) {
 printf("PM can't reply to %d (%s): %d\n",
 rmp->mp_endpoint, rmp->mp_name, s);
 }
 rmp->mp_flags &= ~REPLY;
 }
 }
 }
 return(OK);
}

Figura 10.6 Código fuente de main.c (continuación)

147

Evidentemente, se modifico el archivo /usr/src/include/minix/callnr.h con las entradas a los macros como

se muestra, No se hará mucho énfasis entre punto debido a que se explico en el capítulo anterior.

Paso 2 (Modificación de PM): Como se mencionó con anterioridad para la implementación de

semáforos en Minix 3 no se va a crear un nuevo proceso servidor, en cambio se va a modificar el servidor

PM. Es un sutil cambio pero vital, el cual será mostrado a continuación. Solamente se agregó una

entrada al switch con el case 68. Para que a la hora de bloquear a un proceso, pueda ser determinado

mediante el parámetro que se está pasando a través de la variable m_in.m1_i2. Luego de esto se indica

que debe realizar un salto a la nueva etiqueta creada como ir_a_call_vec. Los cambios pueden verse

resaltados con el color amarillo.

/********* SEMAFOROS ***********/
#define SEM_SIGNAL 67
#define SEM_WAIT 68
#define SEM_INIT 69

#include <lib.h>
#include <unistd.h>
#include <stdio.h>

PUBLIC long sem_signal (int semaforo)
{
 message m;

 m.m1_i1=semaforo; /* pasa por parametro el semaforo asociado */
 return _syscall(MM, SEM_SIGNAL, &m);
}

PUBLIC long sem_wait (int semaforo)
{
 message m;

 m.m1_i1=semaforo; /* pasa por parametro el semaforo asociado */
 return _syscall(MM, SEM_WAIT, &m);
}

PUBLIC long sem_init (int semaforo, int valor)
{
 message m;

 if(valor >= 0){

 m.m1_i1=semaforo; /* pasa por parametro el semaforo asociado */
 m.m1_i2=valor; /* pasa el valor de inicio del semaforo */
 return _syscall(MM, SEM_INIT, &m);
 }else{
 printf("el valor de inicio debe ser mayor o igual a 0\n");
 }
}

148

Paso 3 (Implementación de semáforo): Para la implementación se modificó el archivo

/usr/src/servers/pm /getset.c. En primer lugar se implemento la estructura cola para el manejo de

procesos. Esta estructura de datos permite simular una cola FIFO, la cual es de valiosa importancia para

la implementación de semáforos. Además, se implemento las funciones encolar y desencolar para

manipulación de la cola. La cual puede observarse en la Figura 10.7.

 switch(call_nr)
 {
 case 68:
 m_in.m1_i2=who_p;
 goto ir_a_call_vec;

 case PM_SETUID_REPLY:
 case PM_SETGID_REPLY:
 case PM_SETSID_REPLY:
 case PM_EXEC_REPLY:
 case PM_EXIT_REPLY:
 case PM_CORE_REPLY:
 case PM_FORK_REPLY:
 case PM_FORK_NB_REPLY:
 case PM_UNPAUSE_REPLY:
 case PM_REBOOT_REPLY:
 case PM_SETGROUPS_REPLY:
 if (who_e == FS_PROC_NR)
 {
 handle_fs_reply();
 result= SUSPEND; /* don't reply */
 }
 else
 result= ENOSYS;
 break;
 default:
 /* Else, if the system call number is valid, perform the call */
ir_a_call_vec:
 if ((unsigned) call_nr >= NCALLS) {
 result = ENOSYS;
 } else {
#if ENABLE_SYSCALL_STATS
 calls_stats[call_nr]++;
#endif

 result = (*call_vec[call_nr])();

 }
 break;
 }

149

Tal y como se describió con anterioridad se implementaron las funciones semSignal, semWait y semInit,

sin embargo para que no se confundan estas funciones con las llamadas al sistema se denominaron:

do_incrementar, do_decrementar y do_iniciar_sem. Las cuales pueden observarse a continuación:

Figura 10.7 Implementación de la estructura cola

/*==*
 * Parte de semaforos / cola *
 ===*/

/*************** Varibles ******************************/

#define Max_Sem 10 /* numero de semaforos */
#define N 10 /* capacidad de la cola fifo */

int Sem[Max_Sem];

struct cola{
 /* el elemento 0 n es usado */
 int fifo[1+N];
 int w_idx;
 int r_idx;
}FIFO[10];

int next_index(int idx){ return --idx ? idx: N; }

int fifo_empty(struct cola *c_fifo)
{
 return c_fifo->w_idx == c_fifo->r_idx;
}

int fifo_full(struct cola *c_fifo)
{
 return next_index(c_fifo->w_idx) == c_fifo->r_idx;
}
int fifo_encolar(struct cola *c_fifo, int ch)
{
 if(fifo_full(c_fifo)) return 0;
 c_fifo->w_idx = next_index(c_fifo->w_idx);
 c_fifo->fifo[c_fifo->w_idx] = ch;

 return 1;
}

int fifo_desencolar(struct cola *c_fifo, int *ch)
{
 if(fifo_empty(c_fifo)) return 0;

 c_fifo->r_idx = next_index(c_fifo->r_idx);
 *ch = c_fifo->fifo[c_fifo->r_idx];

 return 1;
}

150

/*==*
 * do_decrementar *
 ==/
PUBLIC int do_decrementar()
{
 int Nsem,who;
 Nsem = m_in.m1_i1;
 who = m_in.m1_i2;
 Sem[Nsem]--; /* decrementa al semaforo */

 if(Sem[Nsem]>0){ /* si queda positivo */
 return OK;
 }else{ /* si queda negativo */
 if(fifo_encolar(&FIFO[Nsem],who)){ /* encola al proceso */
 return SUSPEND; /* inhabilira para recibir mensaje */
 }else{
 return -1;
 }
 }
}

/*==*
 * do_decrementar *
 ==/
PUBLIC int do_decrementar()
{
 int Nsem,who;
 Nsem = m_in.m1_i1;
 who = m_in.m1_i2;
 Sem[Nsem]--; /* decrementa al semaforo */

 if(Sem[Nsem]>0){ /* si queda positivo */
 return OK;
 }else{ /* si queda negativo */
 if(fifo_encolar(&FIFO[Nsem],who)){ /* encola al proceso */
 return SUSPEND; /* inhabilira para recibir mensaje */
 }else{
 return -1;
 }
 }
}

/*==*
 * do_incrementar *
 ==/
PUBLIC int do_incrementar()
{
 int Nsem,who;
 Nsem = m_in.m1_i1;
 Sem[Nsem]++; /* incrementa el semaforo */

 if(Sem[Nsem] <= 0){ /* hay un proceso bloqueado? */
 if(fifo_desencolar(&FIFO[Nsem],&who)){/* desencola el primero */
 setreply(who, ENOSYS);/* habilita para recibir mensaje */
 }else{
 return -1; /* si hay error retorna -1 */
 }
 }
 return OK; /* no hay, retorna ok */
}

151

Una vez modificado todos los archivos, introduzca los siguientes comandos e inicie desde la nueva

imagen creada.

Paso 4 (Implementación de programas de prueba): Para la implementación de los programas de

pruebas se utilizaran dos códigos que se muestran a continuación en la Figura 10.8y la Figura 10.9. El

primero sólo se encarga de inicializar el semáforo indicado por parámetro en cero y posteriormente de

hacer un wait del semáforo indicado por parámetro para que el programa se bloquee. El otro código sólo

hace un signal del semáforo pasado por parámetro. Ambos imprimen por salida estándar el PID del

proceso. Estos programas están ubicados en la el directorio /usr/src. Y tienen la siguiente estructura:

cd /usr/src
make libraries
cd /usr/src/servers/pm
make
cd /usr/src/tools
hdboot

/*==*
 * do_iniciar_sem *
==/
PUBLIC int do_iniciar_sem()
{
 int Nsem,valor;
 int auxiliar;

 Nsem = m_in.m1_i1;
 valor = m_in.m1_i2;

 Sem[Nsem] = valor; /* se inicializa el semaforo con el valor */
 /* se debe inicilizar la cola, r_idx = w_idx = N */
 FIFO[Nsem].w_idx = N;
 FIFO[Nsem].r_idx = N;

 return OK;
}

152

#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>
#include <lib.h>
#include <stdio.h>

int main(int argc, char *argv[])
{
 int PID;
 message m;
 /* argumentos:
 * argv[0] => puede ser [0,1] = indica el semaforo a iniciar
 * argv[1] => puede ser [0,1] = indica el semaforo a hacer sem_wait
 */
 _syscall(MM,MINIX_GETPID,&m);
 PID = m.m2_i1;
 printf("soy el proceso == %d \n",PID);
 if(atoi(argv[1])==0){
 printf("voy a iniciar el semaforo[0] en == 0\n");
 sem_init(atoi(argv[1]),0);
 }else if(atoi(argv[1])==1){
 printf("voy a iniciar el semaforo[1] en == 0\n");
 sem_init(atoi(argv[1]),0);
 }
 if(atoi(argv[2])==0){
 printf("voy a hacer un sem_wait del semaforo[0]\n");
 sem_wait (0);
 printf("soy el proceso == %d y me debloquee\n",PID);
 }else if(atoi(argv[2])==1){
 printf("voy a hacer un sem_wait del semaforo[1]\n");
 sem_wait (1);
 printf("soy el proceso == %d y me debloquee\n",PID);
 }
 return 0;
}

Figura 10.8 prueba_sem_wait.c

153

Para comprobar la correcta implementación de los semáforos implementados habilite las cuatro consolas

de minix y ubíquese en el directorio /usr/src/. Luego ejecute los programas de la siguiente forma:

 En primera instancia compile el código prueba_sem_wait.c y ejecútelo con los parámetros

mostrados en la siguiente figura. Esto hace que el programa inicialice el semáforo 0 con un valor

igual a 0. Posteriormente el programa hace un wait del semáforo y como es de esperarse el

mismo se queda bloqueado, el semáforo queda con valor igual a -1. Como puede observarse el

proceso al ejecutarse el programa tiene PID igual a 110.

 El segundo paso es ejecutar el mismo código como se muestra debajo. Esta ejecución sólo un

wait del semáforo 0, quedando con valor igual a -2. Y desde luego el proceso con PID igual a 111

queda bloqueado.

#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>
#include <lib.h>
#include <stdio.h>

int main(int argc, char *argv[])
{
 int PID;
 message m;

 /* argumentos:
 * argv[0] => [0,1] = indica el semaforo a iniciar
 * argv[1] => [0,1] = indica a que semaforo se aplica sem_wait
 */

 _syscall(MM,MINIX_GETPID,&m);
 PID = m.m2_i1;
 printf("soy el proceso == %d \n",PID);
 printf("voy a hacer un signal del semaforo[%d]\n",atoi(argv[1]));
 sem_signal (atoi(argv[1]));

 return 0;

}

Figura 10.9 prueba_sem_signal.c

154

 El tercer programa a ejecutarse sigue siendo el código de prueba_sem_wait.c, sin embargo, en

este caso se hace una inicialización del semáforo 1 con un valor igual a 0. Después, el proceso

hace un wait del mismo semáforo para quedar bloqueado. El PID del proceso es igual a 112.

 Luego se ejecuta el programa prueba_sem_signal.c. En ese caso se hace un signal del semáforo

1, y como es de esperarse el proceso con PID 112 es desbloqueado. Puede observarse a

continuación. El proceso que ejecuta el signal tiene un PID igual a 113.

 Se puede observar como el proceso con PID 112 es desbloqueado.

 Ahora se ejecutará nuevamente el programa prueba_sem_signal.c. Pero en esta oportunidad se

hace un signal del semáforo 0. Se obtiene el resultado que el proceso con PID 110 es

desbloqueado. Puede observarse a continuación. El proceso que ejecuta el signal tiene un PID

igual a 113.

155

 Se puede observar como el proceso con PID 112 es desbloqueado.

 Para culminar con la prueba se ejecutará nuevamente el programa prueba_sem_signal.c. Se

hace otro un signal del semáforo 0. Se obtiene el resultado que el proceso con PID 111 es

desbloqueado. Puede observarse a continuación. El proceso que ejecuta el signal tiene un PID

igual a 113.

 Se puede observar como el proceso con PID 111 es desbloqueado.

156

157

11 Modificación del planificador de procesos

La planificación de procesos es una característica provista por los sistemas operativos modernos que le

permite garantizar un comportamiento multiprogramado al sistema. Regularmente esta funcionalidad es

provista por una pieza de software conocida como el “planificador” encargado de asignar los recursos de

un sistema entre los múltiples procesos que lo solicitan. Siempre que exista la necesidad de tomar una

decisión referente a la asignación de recursos entrara en ejecución el planificador para definir qué

proceso recibirá el recurso. Se debe hacer hincapié que el procesador es la pieza más importante del

computador, pero sigue siendo un recurso del mismo (23).

Hay dos tipos fundamentales de planificadores [Referencia libro] que coexisten dentro del sistema

operativo, y existe un tercero que ha surgido para manejar nuevos estados de los procesos, estos son:

 Planificador de largo plazo: este determina que trabajos se admiten en el sistema para su

procesamiento y cual(es) serán alojados en la memoria principal. Además, es el principal

responsable que se cumplan las condiciones definidas referentes al manejo del procesador y los

dispositivos de entrada/salida.

 Planificador de corto plazo: este determina que proceso del sistema que se encuentre en un

estado activo (en espera de procesador) lo selecciona y lo lleva al procesador, regularmente este

es un código bastante corto debido a que es un programa que se ejecuta mucho en el sistema y

para garantizar un mayor rapidez del sistema operativo se exige eso. Durante la ejecución del

sistema operativo cada vez que se presenta algún evento que implica un cambio en el proceso

que debe pasar al estado activo. Los eventos que regularmente disparan la ejecución de este

planificador son los siguientes:

o Las señales de reloj del sistema.

o Las interrupciones.

o La finalización de las operaciones de entrada/salida.

o Las llamadas al sistema operativo.

o El envió y la recepción de señales.

o La activación de programas interactivos.

En otros casos, se divide al planificador en dos partes, el primero conocido como Schedule

que se encarga solo de manejar la cola de procesos en espera por el CPU y el dispatcher

que es aquel que lleva a cargo en si la tarea de asignar el procesador al proceso

seleccionado en la cola.

 Planificador a medio plazo: este planificador surge en el hecho de que en algunos casos es

conveniente llevar a la memoria secundaria algún proceso que se encuentre en un estado de

158

suspendido lo que permite liberar espacio en la memoria principal para albergar a un proceso que

requiera el procesador.

Para tener un mejor entendimiento de estos conceptos vea la Figura 11.1 en la donde se puede observar

los escenarios de cada uno de los planificadores son ejecutados (23).

Cola de lotes

Cola del estado

bloqueado

Cola de lotes
Lote de

trabajos
CPU

PLP

Programas

interactivos

PMP

PCP

Cola del

estado

bloqueado

Salida

Figura 11.1 Diagrama de planificación

11.1 Criterios para la planificación:

Un algoritmo de planificación de corto plazo tiene distintas propiedades dependiendo de los criterios o

fundamentos con los que este haya sido diseñado, lo que conlleva a que siempre existirá un tipo de

proceso que se verá discriminado porque este no cumple en su totalidad con la característica impuesta

en la implementación del algoritmo para su escogencia.

Así que antes de mostrar cual(es) son los algoritmos de planificación debe revisarse los criterios más

importantes referentes al diseño o escogencia de un algoritmo para la gestión de la planificación. Alguno

de estos criterios son los siguientes:

 Eficacia: se expresa como el porcentaje o la media de utilización del procesador.

 Rendimiento: es una medida que expresa el número de procesos culminados por unidad de

tiempo.

 Tiempo de retorno: es el intervalo de tiempo delimitado por el inicio del proceso al sistema y su

finalización y salida del mismo.

 Tiempo de espera: es el tiempo que espera el proceso para poder usar el procesador.

159

 Tiempo de respuesta: se denomina así al intervalo de tiempo que transcurre desde que se

señala un evento hasta que se ejecuta la primera instrucción de la rutina de servicio de dicho

evento.

11.2 Algoritmos de planificación

Existen un número elevado de algoritmos propuestos para llevar a cabo la tarea de planificación en los

Sistemas Operativos cuya adecuación depende precisamente del tipo de planificación que se desee

manejar y de los objetivos que se persigan con la misma. Hoy día debido a la diversidad de sistemas

podríamos conseguir muchos de estos en herramientas modernas. Enfocado a este estudio el enfoque va

dedicado a analizar aquellos algoritmos orientados directamente al comportamiento del planificador a

corto plazo.

Antes de mostrar algún algoritmo debemos definir un concepto importantísimo en dichos algoritmos

referentes a lo que se llama un algoritmo apreciativo.

Un algoritmo de planificación es catalogado como apreciativo cuando el proceso que se encuentra en

ejecución o mejor dicho que posee al recurso procesador este puede ser interrumpido por el sistema

operativo y colocarlo en un estado de listo o preparado nuevamente. A diferencia que aquellos de

naturaleza no apropiativa donde el proceso activo permanece con el recurso procesador hasta que

culmine toda su labor en el sistema o hasta que el proceso en si lo libere, la ejecución del planificador a

corto plazo en este tipo de algoritmos no es tan frecuente como el anterior debido a que la cantidad de

veces que se seleccionara a algún proceso del estado preparado a llevarlo al procesador dependerá

exclusivamente del tiempo de ejecución del proceso activo.

11.3 Planificación por prioridades

Este algoritmo consiste en asignarle prioridades a los procesos y el de mayor prioridad que se encuentra

en la cola de procesos preparados o disponibles será el que tome el uso del procesador. El valor inicial

de esta prioridad puede ser asignada por el usuario a través de algún utilitario como lo es el comando

nice en los Sistemas Operativos Unix-like o es asignada directamente por el sistema. La asignación de

este valor puede ser (23):

 Estática: en este caso la prioridad asignada al proceso no cambia a lo largo de su estadía en el

sistema.

 Dinámica: en este caso la prioridad asignada al proceso puede cambiar a lo largo de su estadía

en el sistema, este cambio puede venir de parte del sistema o del usuario, un ejemplo seria el

uso del utilitario renice de los Sistemas Operativos Unix-like que le permite al usuario modificar la

prioridad de un proceso residente en el sistema.

160

Los algoritmos por prioridades pueden ser apropiativos o no apropiativos, es decir, en el primer caso si

llega a la cola de procesos preparados un proceso que posee mayor prioridad que aquel que se

encuentra ejecutándose en el procesador entonces el planificador a corto plazo toma la decisión de

quitarle el recurso procesador y asignárselo al proceso de mayor prioridad que ha llegado al sistema.

Regularmente los algoritmos por prioridades que manejen este enfoca deben tener sumo cuidado en no

relegar a los procesos de menor prioridad a lo que se llama muerte por inanición, es decir, los procesos

de menor prioridad se ejecutaran muy poco o incluso no llegaran nunca a ejecutarse, por lo tanto, sus

tareas no podrán ser realizadas y además estos consumen recursos del sistema. Para minimizar esta

consecuencia se plantea el uso de prioridades dinámicas en el algoritmo para que aquellos procesos que

tienen mucho tiempo en el sistema puedan ir aumentando su prioridad para poder acceder al procesador

o por el contrario, para aquellos procesos que han utilizado continuamente el procesador se le

decrementa su prioridad para que la competencia con el procesador sea más equitativa.

11.4 Planificación FIFO (First In First Out)

Es el algoritmo de planificación más sencillo de implementar es aquel que la cola de procesos preparados

es evaluada siempre seleccionando al proceso que se encuentre en la primera posición de la misma y los

procesos se irán encolando acorde a su tiempo de llegada.

Este método es rara vez utilizado aunque existen algunas implementaciones como las colas multinivel

donde cada cola representa una prioridad en el sistema, y como todos los procesos que se encuentren

en una cola particular comparten características similares entonces utilizar FIFO sería una forma sencilla

y equitativa de atenderlos.

11.5 Planificación SJF (Shortest Job First)

Es un algoritmo no apropiativo en la que cada proceso se le asocia una estimación del tiempo que le

resta para finalizar su ejecución y su selección en la cola de procesos preparados es llevada a cabo con

dicho parámetro. En caso de que existan dos procesos cuyo tiempo restante sean iguales entonces se

procede la escogencia por el parámetro de tiempo de llegada a la cola.

Este algoritmo de planificación podría ser optimo e incluso podríamos catalogarla como de los mejores

diseños el problema recurre en como determinar o mejor dicho estimar el tiempo restante de ejecución de

un proceso lo que requiere algún proceso que se encargue de calcular estos tiempos ,por lo tanto, eso

cuesta tiempo de ejecución para una tarea que luego me va a permitir seleccionar al proceso que

realmente llevara a cabo una tarea específica en el sistema y además si se desea manejar un histórico

para agilizar los cálculos entonces la problemática se presentara para aquellos procesos sean nuevos en

el sistema ,por lo tanto, es muy complicada de implementar y la misma podría ser muy costosa.

161

11.6 Planificación SRT (Shortest Remaining Time)

Este algoritmo es muy similar al presentado anteriormente su principal diferencia es que este método de

planificación es apropiativo. El algoritmo de igual manera que el anterior selecciona a los procesos de la

cola de preparados o activo de igual manera, pero si a esta cola llega un proceso cuyo tiempo de

finalización sea menor que el del proceso que se está ejecutando en el procesador entonces el

planificador toma la decisión de sacar a dicha tarea del procesador y asignárselo al proceso que ha

llegado a la cola de preparados o activos.

La limitante de este algoritmo sigue siendo la misma que la del anterior, calcular el tiempo restante de

ejecución del proceso sería sumamente costoso.

11.7 Planificación RR (Round Robin)

Este algoritmo le asigna a todos los procesos ubicados en la cola de procesos listos un quantum de

tiempo donde este define el tiempo que dicho proceso podrá utilizar el procesador y la asignación del

mismo se va realizando de manera secuencial. Si algún proceso requiere de la asignación de un nuevo

quantum de tiempo entonces el planificador a corto plazo se lo asigna y lo coloca al final de la cola de

procesos preparados o listos véase la Figura 11.2

C CPU FinalizaciónBCA

Lista del estado preparado

Figura 11.2 Diagrama de planificación RR (Round Robin)

El diseño de este algoritmo exige la existencia de un temporizador que sea capaz de llevar el control de

los quantum de tiempos asignados y además de generar la interrupción en el sistema para que se pueda

indicar la finalización del quantum de tiempo para que el procesador sea asignado al siguiente proceso

en la cola de espera o listos.

162

La principal problemática que presenta este algoritmo es referente a de que tamaño será el quantum de

tiempo a asignar a los procesos ya que acorde a la definición de esta variable se podrá observar el buen

o no uso del procesador.

11.8 Planificación MLQ (Multi-level Queues)

En este algoritmo se plantea una estrategia para llevar a cabo alguna clasificación de los procesos se

encuentran en el sistema y dependiendo de ella los procesos ingresaran a la cola correspondiente, a su

vez cada una de estas colas puede ejecutar un algoritmo de planificación diferente.

El diseño de esta estrategia de planificación se basa principalmente en como categorizar a los procesos y

manejar cual será el orden o prioridad en el que se van a manejar la elección de alguna de estas colas

para luego decidir acorde al algoritmo de planificación particular de dicha cola como se seleccionan a los

procesos que allí se encuentren.

Regularmente, la elección de la cola se lleva a cabo por prioridades donde se examinan cada una de las

colas de forma secuencial y en caso de existir en alguna de ellas procesos en espera por el procesador

entonces esa será la cola que se va a manejar. Esto puede presentar un problema con aquellos procesos

que residan en las colas de menor prioridad ocasionando las consecuencias de los algoritmos de

planificación por prioridades donde estos procesos tendrán la posibilidad de morir por inanición en el

sistema.

11.9 Planificación MLFQ (Multi-level Feedback Queues)

En este algoritmo al igual que el anterior se debe plantear una estrategia para llevar a cabo alguna

clasificación de los procesos para que estos sean asignados a las colas que les corresponden. El

algoritmo anterior no trae la limitante de que los procesos siempre irán a la misma cola y nos trae la

consecuencia de la muerte por inanición, por lo tanto, este algoritmo plantea la necesidad de que los

procesos dependiendo de un parámetro puedan ir siendo asignados a diferentes colas para que el uso

del procesador sea lo más equitativo posible entre todos los procesos del sistema.

Un ejemplo bastante sencillo sería el siguiente, se tiene un algoritmo de planificación MLFQ que está

definido por tres colas, la primera se gestiona a través de RR con un quantum de 10ms, la segunda cola

al igual que la anterior, pero con un quantum de 20ms y por último la tercera cola es manejada por

planificación FIFO. El planificador a corto plazo ira chequeando por cada una de las colas por la

existencia de procesos en espera entonces supongamos un proceso de la primera cola siempre tendrá

mayor prioridad que el anterior y en caso de que su tiempo de vida en el sistema es extremadamente

largo entonces los procesos de las otras colas se verán discriminados en el uso del procesador, por lo

tanto, cuando este proceso se le acaba su quantum de tiempo y resulta que requiere de un nuevo

163

quantum para seguir su ejecución este en vez de ser asignado en la primera cola este es asignado a la

segunda cola al final y se le da acceso al procesador ahora a los procesos de esta cola, y nuevamente

ocurre el mismo escenario el proceso llega al procesador aun no logra culminar su ejecución en el

sistema, por lo tanto, el planificador a corto plazo lo asigna a una cola FIFO donde este tendrá la

posibilidad de culminar su tarea y no discriminara a ningún proceso en el sistema, véase la Figura 11.3

donde se muestra un diagrama de lo anterior planteado (23).

Nivel 1

10 ms

Nivel 1

20 ms

Nivel 3

FCFS

CPU

Figura 11.3 Diagrama de planificación MLFQ

Existen muchos algoritmos posibles de planificación MLFQ que pueden definirse de forma más general

por los siguientes parámetros:

 El numero de colas a implementar.

 El algoritmo de planificación de cada una de las colas.

 Los métodos o condiciones que determinan el movimiento de los procesos entre las distintas

colas.

11.10 Planificación de procesos en Minix

Dentro de la amplitud de la gestión de procesos en un sistema operativo, la parte que se lleva a cabo

dentro del micronúcleo es la tarea de planificación. Un sistema multiprogramado se basa en las

interrupciones, que permite al núcleo gestionar las peticiones de entrada/salida de los procesos y además

controlar los tiempos de ejecución de cada proceso.

Los procesos se bloquean cuando hacen peticiones de entrada/salida, permitiendo la ejecución de otros

procesos. Cuando la petición ha sido resuelta, el proceso en ejecución es interrumpido por el disco, el

teclado o cualquier otra pieza de hardware, y deja de estar activo mientras el dispositivo atiende su

petición. El reloj también genera interrupciones, utilizadas para garantizar que un proceso que no ha

164

realizado entrada/salida libere la CPU en algún momento y permita la ejecución de otros procesos. Es

tarea de las capas más bajas de Minix 3 ocultar esas interrupciones transformándolas en mensajes.

Desde el punto de vista de los procesos, cuando una operación de E/S termina, envía un mensaje a

algún proceso, despertándolo y marcándolo como listo para ejecutar.

Las interrupciones también pueden ser generadas por software, caso en el que suelen ser llamadas

traps. Las operaciones send y receive que son traducidas por la librería del sistema como interrupciones

software, que tienen exactamente el mismo efecto que las interrupciones generadas por hardware -el

proceso que lanza una interrupción software se bloquea inmediatamente y el núcleo se activa para

procesar la interrupción. Los programas de usuario no invocan directamente send o receive, pero las

llamadas al sistema implicadas ejecutan sendrec y generan una interrupción software.

Cada vez que un proceso es interrumpido (ya sea por un dispositivo E/S convencional o por el reloj) o

debido a la ejecución de una interrupción software, existe una oportunidad para determinar nuevamente

el proceso que tiene más derecho a ejecutarse. Por supuesto, esto también debe realizarse cada vez

Que un proceso termina, pero en un sistema como Minix 3 las interrupciones debidas a E/S, el reloj o el

paso de mensajes ocurren de manera más frecuente que la finalización de un proceso.

11.10.1 Algoritmo de planificación en Minix v3.1.6

El platicador de Minix 3 utiliza un sistema de varios niveles de colas, cada una con distinta prioridad. Se

deñen dieciséis colas, aunque puede recompilarse para usar más o menos colas de manera sencilla. La

cola de menor prioridad es utilizada únicamente por el proceso IDLE, que se ejecuta cuando no hay nada

más que hacer. Los procesos de usuario comienzan por defecto en una cola varios niveles de prioridad

por encima de la más baja.

Los servidores normalmente se planifican en colas con prioridades más altas que las permitidas a los

procesos. Los controladores de dispositivos en colas con prioridades mayores que los servidores y Clock

Task y System Task se planifican en las colas de máxima prioridad. No tienen por qué estar en uso las

dieciséis colas en un momento determinado.

Los procesos se inician únicamente en algunas de ellas. Un proceso puede ser movido a una cola de

prioridad diferente por el sistema o por un usuario que invoque la orden nice. Además de la prioridad

determinada por la cola en la que se coloca un proceso, se utiliza otro mecanismo para dar ventaja a

unos procesos sobre otros: el quantum, un intervalo de tiempo mínimo que puede ejecutar un proceso

antes de ser expropiado, aunque no es idéntico para todos los procesos. Los procesos de usuario tienen

un quantum relativamente bajo, mientras que los controladores y los servidores normalmente se ejecutan

hasta que ellos mismos se bloquean.

165

Sin embargo, como medida contra el funcionamiento incorrecto de los mismos, se han programado de

manera en que puedan ser expropiados, pero se les asigna un quantum mayor. Tienen permitido ejecutar

por un periodo largo, pero finito, de tiempo, pero si utilizan todo su quantum son expropiados para evitar

que el sistema se bloquee. En estos casos, el proceso se considera preparado para ejecutar y se coloca

al final de su cola. Sin embargo, si un proceso que ha utilizado todo su quantum fue el mismo que se

ejecutó por última vez, se interpreta que puede estar bloqueado en un bucle y puede estar evitando que

otros procesos se ejecuten. En estos casos, su prioridad se ve reducida, colocándolo al final de una cola

de prioridad inferior. Si el proceso se quedase de nuevo sin tiempo, su prioridad se vería reducida de

nuevo. Tarde o temprano, algún otro proceso tendrá una oportunidad para ejecutarse.

Un proceso al que se le ha reducido su prioridad puede recuperarla. Si un proceso utiliza todo su

quantum, pero no impide que otros procesos se ejecuten, se asciende ese proceso a una cola de

prioridad superior, hasta la prioridad máxima que el proceso tenga permitida.

Los procesos son planificados utilizando un RR ligeramente modificado (24). Si un proceso no ha

utilizado todo su quantum cuando pasa a estar en estado no ejecutable, se interpreta que el proceso se

ha bloqueado esperando a E/S, y cuando vuelva a estar listo para ejecutar, se colocará en la cabeza de

su cola, pero tan solo con la cantidad de quantum que le quedaba cuando se bloqueó. La idea es

proporcionar a los procesos de usuario una respuesta rápida a la E/S. Un proceso que es expropiado

porque ha terminado su quantum se coloca al final de su cola, siguiendo el esquema RR.

Con las tareas situadas en la prioridad más alta, los controladores después, los servidores detrás de los

controladores, y los procesos de usuario al final, un proceso de usuario no se ejecutará hasta que ningún

proceso de sistema tenga nada que hacer, y un proceso de usuario no puede evitar que un proceso de

sistema se ejecute.

Cuando se selecciona un proceso para ejecutar, el planificador comprueba si hay algún proceso

esperando en la cola de mayor prioridad. Si hay alguno listo, el que se encuentre en la cabeza de la cola

es ejecutado. Si no hay ninguno listo, se comprueba la cola de prioridad inmediatamente inferior, y así

repetida mente. Puesto que los controladores responden a peticiones de los servidores y los servidores a

peticiones de procesos de usuario, en algún momento todos los procesos de prioridad alta completarán la

tarea que estén realizando. Entonces se bloquearán sin nada que hacer hasta que algún proceso de

usuario tenga oportunidad de ejecutarse y realice más peticiones. Si no existe ningún proceso preparado,

entonces el proceso IDLE es elegido. Esto coloca a la CPU en un estado de bajo consumo hasta la

siguiente interrupción.

En cada tick de reloj, se realiza una comprobación para ver si el proceso actual ha agotado su quantum.

Si lo ha hecho, el planificador lo mueve al final de su cola. Entonces, se elige el siguiente proceso para

166

ser ejecutado, como se ha descrito anteriormente. Sólo si no hay procesos en las colas de mayor

prioridad y el proceso anterior está solo en su cola, será seleccionado para ejecutar inmediatamente.

En otro caso, el proceso en la cabeza de la cola de mayor prioridad será ejecutado. Los controladores

esenciales y los servidores tienen un quantum tan largo que normalmente no son interrumpidos jamás

por el reloj. Pero si algo va mal, su prioridad puede ser temporalmente reducida para evitar que el

sistema llegue a un bloqueo completo. Probablemente no se pueda hacer nada útil si esto sucede con un

controlador imprescindible, pero quizá sea posible apagar el sistema correctamente, evitando pérdida de

datos y recolectando información que puede ayudar en la depuración del problema.

11.10.2 Desarrollo de ambiente de pruebas sobre el planificador en Minix

En las secciones anteriores de este capítulo se ha descrito el procedimiento de planificación de forma

general, los distintos algoritmos de planificación existentes y además se ha mostrado de manera

detallada cual es el funcionamiento de todo este proceso en el Sistema Operativo Minix versión 3.1.6,

entonces ahora se procede a realizar algunas pruebas de desempeño.

Las pruebas consisten en un primer lugar en la ejecución de dos programas uno que tenga alta carga de

uso del CPU y otro que tenga una alta carga de peticiones de Entrada/Salida, véase la Figura 5.4. Estos

dos programas deberán ejecutarse en las distintas capas en las que está diseñado el Sistema Operativo

Minix v3.1.6:

 Ejecución de ambos programas en la capa 4 de Minix v3.1.6 que corresponde con el espacio de

procesos de usuario.

 Ejecución de ambos programas en la capa 3 de Minix v3.1.6 que corresponde con el espacio de

procesos servidores, véase el Capítulo 3 de este documento de investigación donde podrá ver los

pasos que debe seguir para desarrollar una llamada al sistema en la capa 3.

 Ejecución de ambos programas en la capa 1 de Minix v3.1.6 que corresponde con el espacio del

núcleo donde operan los programas Clock y SystemTask, véase el Capítulo 3 de este documento

de investigación donde podrá ver los pasos a seguir para desarrollar una llamada al sistema que

le permita ejecutar su código en la SystemTask.

Para el ambiente de pruebas se han desarrollado los siguientes programas para comprobar el

funcionamiento del planificador de Minix v3.1.6 y observar el desempeño del mismo, estos son los

siguientes:

 altaiouser.c: este programa se ejecuta en la capa de procesos de usuario realizando muchas

peticiones de Entrada/Salida (véase Figura 11.4)

167

altaioserver.c: este programa hace una llamada al sistema que se encuentra implementada en la capa

de procesos servidores donde se realizan muchas peticiones de Entrada/Salida (véase Figura 11.5)

Figura 11.5 Código fuente de altaioserver.c

 altaiokernel.c: este programa hace una llamada al sistema que se encuentra implementada en la

capa de procesos servidores, donde esta hace una llamada luego al SystemTask y luego allí se

ejecuta el programa que realiza muchas peticiones de Entrada/Salida (véase Figura 11.6).

Figura 11.6 Código fuente de altaiokernel.c

Figura 11.4 Código fuente de altaiouser.c

168

 altacpuuser.c: este programa se ejecuta en la capa de procesos de usuario generando alta

carga de CPU (véase Figura 11.7)

Figura 11.7 Código fuente de altacpuuser.c

 altacpuserver.c: este programa hace una llamada al sistema que se encuentra implementada en

la capa de procesos servidores generando alta carga de CPU (véase Figura 11.8).

Figura 11.8 Código fuente de altacpuserver.c

 altacpukernel.c: este programa hace una llamada al sistema que se encuentra implementada en

la capa de procesos servidores, donde esta hace una llamada luego al SystemTask donde allí

reside el programa que genera alta carga de CPU (véase Figura 11.9).

169

Estos código fuentes serán ejecutados manejando el numero de colas predefinidas por el Sistema

Operativo Minix v3.1.6 y luego serán modificados el numero de colas a su mitad.

11.10.3 Manejo de colas de planificación en Minix v3.1.6.

Anteriormente se realizo una explicación bien detallada sobre el algoritmo utilizado por el planificador a

corto de plazo del Sistema Operativo Minix versión 3.1.6 y en esta sección tan solo mostraremos la

ubicación de aquellos archivos fuentes donde son definidas dichas características.

En el archivo /usr/src/kernel/proc.h podemos conseguir casi al finalizar el archivo la definición del numero

de colas que manejara el planificador, la definición de las prioridades o asignaciones de colas para los

procesos del núcleo, se define la cola para el procesos IDLE ,pero principalmente se define el

comportamiento de los procesos de usuario esto debido a que existe un archivo donde se definen las

asignaciones de las colas para los procesos de capa 3 hacia abajo durante el procedimiento de arranque

del sistema operativo, véase Figura 11.10

Figura 11.10 Código fuente de /usr/src/kernel/proc.h

En el archivo /usr/src/kernel/table.c se encuentran definidos aquellos procesos que son importantes para

Figura 11.9 Codigo fuente de altacpukernel.c

170

el arranque del Sistema Operativo, este archivo debe ser modificado cuando se desee disminuir el

número de colas significativamente, véase Figura 11.11

Figura 11.11 Código fuente de /usr/src/kernel/table.c

11.11 Análisis de resultados.

Los resultados obtenidos son manejados a través del comando time proporcionado en el Sistema

Operativo Minix v3.1.6 donde se pueden observar los tiempo de vida del proceso dentro del sistema.

Los resultados debemos dividirlos en dos etapas, la primera como se comento en secciones anteriores

será ejecutar cada uno de dicho programas con la definición predeterminada por el Sistema Operativo

Minix versión 3.1.6 donde se manejan 16 colas de planificación y un segundo escenario donde se va a

reducir el número de colas a ocho.

Los siguientes son los resultados obtenidos:

altaiouser.c: este programa es ejecutado en la capa 4 del sistema operativo, correspondiente a la

sección de procesos de usuario. En ambos casos tanto para la prueba manejando 16 colas de

planificación véase la Figura 11.12 y 8 colas véase Figura 11.13 el tiempo de vida del proceso es

sumamente largo debido a que las peticiones de Entrada/Salida que este realiza son suficientes para que

su resultado sea el esperado. Se observo un decremento del tiempo de ejecución al disminuir las colas.

Figura 11.12 Resultados altaiouser.c (16 Colas de planificación)

171

Figura 11.13 Resultados altaiouser.c (8 Colas de planificación)

altaioserver.c: este programa es ejecutado en la capa 3 del sistema operativo, correspondiente a la

sección de procesos servidores. En ambos casos tanto para la prueba manejando 16 colas de

planificación véase la Figura 11.14 y 8 colas Figura 11.15 el tiempo de vida del proceso es

considerablemente menor al ejecutado en espacio de usuario debido a que estos procesos poseen mayor

prioridad en el sistema. Se observo un decremento del tiempo de ejecución al disminuir las colas del

procesador.

Figura 11.14 Resultados altaioserver.c (16 Colas de planificación)

Figura 11.15 Resultados altaioserver.c (8 Colas de planificación).

altaiokernel.c: este programa es ejecutado en la capa 1 del sistema operativo, correspondiente a la

sección de procesos del núcleo. En ambos casos tanto para la prueba manejando 16 colas de

planificación véase la Figura 11.16 y 8 colas véase Figura 11.17 el tiempo de vida es aun más corto que

las pruebas anteriores debido a que estos procesos son los que poseen mayor prioridad dentro del

sistema y además acorde a lo planteado en secciones anteriores dichos procesos no pueden ser sacados

del procesador mientras lo están utilizando razón por la cual su ejecución es extremadamente veloz.

Figura 11.16 Resultados altaiokernel.c (16 Colas de planificación)

172

Figura 11.17 Resultados altaiokernel.c (8 Colas de planificación)

altacpuuser.c: este programa es ejecutado en la capa 4 del sistema operativo correspondiente a la

sección de procesos de usuario. En ambos casos tanto para la prueba manejando 16 colas de

planificación véase la Figura 11.18 y 8 colas véase Figura 11.19 el tiempo de vida es bastante corto

debido a que este tipo de operaciones son manejadas con bastante velocidad por el procesador.

Figura 11.18 Resultados altacpuuser.c (16 Colas de planificación)

Figura 11.19 Resultados altacpuuser.c (8 Colas de planificación)

altacpuserver.c: este programa es ejecutado en la capa 3 del sistema operativo, correspondiente a la

sección de procesos servidores. En ambos caso tanto para la prueba manejando 16 colas de

planificación véase la Figura 11.20 y 8 colas véase Figura 11.21 el tiempo de vida es igual al anterior

podemos deducir dicho comportamiento debido a que el tiempo necesario por el proceso servidor para

culminar la ejecución de dicha tarea debe ser igual al tiempo necesario por un proceso de usuario, por lo

tanto, el proceso servidor no consume su quantum de tiempo asignado para poder culminar la tarea.

Figura 11.20 Resultados altacpuserver.c (16 Colas de planificación)

173

Figura 11.21 Resultados altacpuserver.c (8 Colas de planificación)

altacpukernel.c: este programa es ejecutado en la capa 1 del sistema operativo, correspondiente a la

sección de procesos del núcleo. En ambos casos tanto para la prueba manejando 16 colas de

planificación véase Figura 11.22 y 8 colas véase Figura 11.23 el tiempo de vida de es ligeramente mayor

a los programas anteriores y podemos explicar este comportamiento debido a la sobrecarga que se debe

añadir por el manejo de pase de mensajes, se debe recordar que la comunicación de este programa

inicia en la capa 4 enviando un mensaje al proceso servidor que se encuentra en la capa 3 y luego es

este último proceso que tiene la permisología suficiente para comunicarse con los procesos del núcleo

que están alojados en la capa 1, todo este proceso ocurre desde el inicio del programa y luego se repite

,pero de manera ascendente para presentar los resultados.

Figura 11.22 Resultados altacpukernel.c (16 Colas de planificación)

Figura 11.23 Resultados altacpukernel.c (8 Colas de planificación).

174

175

12 Conclusiones

Los sistemas operativos instruccionales son herramientas educativas extensas que pueden englobar una

amplia gama de tópicos sobre sistemas operativos, desde el proceso de inicio hasta la seguridad; es por

esto que permite ahilar la parte práctica de cualquier curso de sistemas operativos. Además, es una

herramienta pedagógica que ofrece un entorno de desarrollo probado. Y lo más importante aún permite

modificar realmente un sistema operativo, cosa que pocos estudiantes en ciencias de la computación han

podido realizar.

Este Trabajo Especial de Grado pudo constatar que Minix versión 3.1.6 se adapta al curso de Sistemas

Operativos vigente de la Escuela de Computación, así como también al pensum de estudios propuesto

por la ACM (Association for Computing Machinery) e IEEE (Institute of Electrical and Electronics

Engineers) para un curso de pregrado (25), a través de los siguientes puntos:

 Se comprobó a través del uso de Minix versión 3.1.6 como un Sistema Operativo estable, sencillo

y de fácil manejo que provee como añadido la interacción de los estudiantes con un Sistema

Operativo Unix-like.

 Se verificó la total compatibilidad de los laboratorios propuestos con el entorno de desarrollo, el

cual está basado en el IDE eclipse, aplicación usada por los estudiantes en materias de

semestres anteriores.

 Se realizo un análisis y estudio detallado sobre la estructura y algoritmo del gestor de arranque

de Minix versión 3.1.6 ofreciendo los conocimientos tanto básicos como avanzados del

funcionamiento de estos programas en un Sistema Operativo, dejando la documentación

pertinente.

 Se hizo la implementación de un intérprete de comandos sencillo y básico que permite la

ejecución de comandos y ordenes para convertirse en una interfaz humano computador similar a

la ofertada por el intérprete de comandos de Minix.

 Se realizó una investigación sobre las llamadas al sistema en Minix versión 3.1.6, obteniendo los

conocimientos de la codificación y función de las mismas. Además, se explica la implementación

de las llamadas al sistema a los procesos servidores (capa 3) y las llamadas al núcleo (capa 1),

el cual se logra a través del mecanismo de comunicación inter-procesos (pase de mensajes)

planteado por Minix 3.

 Se analizó la posibilidad incorporar a Minix 3 la estructura de datos semáforos para la

sincronización entre procesos. Se diseño e implemento la solución, para posteriormente

comprobar la funcionalidad de los cambios realizados. Se realizo toda la documentación.

176

 Se realizo una investigación y estudio detallado sobre la programación y funcionamiento del

algoritmo de planificación de procesos en Minix. En el cual se propone la modificación del mismo.

El Trabajo Especial de Grado desarrollado es de vital importancia dado que es el primer trabajo formal

dentro de la Universidad Central de Venezuela donde se va ofertar el uso de un Sistema Operativo

Instruccional para el curso de Sistemas Operativos de la Escuela de Computación. Además ofrece una

herramienta colaborativa para la interacción entre estudiantes, docentes e investigadores para el continuo

desarrollo de Minix versión 3.1.6. Sentando un precedente para las demás generaciones de estudiantes

que quieran seguir con este tema y enfoque investigativo.

Esta investigación permitió la elaboración de un conjunto de laboratorios docentes para ser utilizados

como plantillas para la elaboración de los espacios prácticos del curso de Sistemas Operativos. Además

de proveer toda la documentación necesaria para la formulación y elaboración de los laboratorios.

Asimismo la documentación para familiarizar al docente con el trabajo realizado. La documentación se

elaboro acorde a la dinámica de los laboratorios con esto se hace la referencia sobre si el laboratorio es

de desarrollo o es de análisis y estudio de alguna sección particular.

12.1 Limitaciones

A pesar que Minix versión 3 es un Sistema Operativo comercial de código abierto, su comunidad de

desarrollo y/o soporte no es tan amplia cuando la comparamos con otros sistemas operativos

comerciales de código abierto como las comunidades de GNU/Linux o BSD. A pesar que parte de la

investigación se apoyo en dicha comunidad para la resolución de problemas, se presentaron situaciones

donde la falta de documentación se convirtió en un obstáculo para que el proceso de adecuación fuese

más sencillo. Durante el proceso de adecuación nos enfrentamos a las siguientes situaciones:

 Minix 3 posee unas versiones “netamente educativas” que refuerza el estudio de la herramienta,

ya que el código de estas versiones es en esencia el mismo al que aparece en la publicación

bibliográfica “Systems: Design and Implementation 3
rd

 Edition”; y son todas aquellas versiones de

Minix inferior a las versión 3.1.4. El inconveniente con estas versiones se produjo en el proceso

de acoplamiento con IDE Eclipse, ya que el servicio de conexión remota SSH para la integración

con aplicación no funcionaba correctamente, es por esta razón que se escogió la versión 3.1.6.

 Durante el proceso de diseño de los laboratorios se pensó generar un laboratorio docente donde

los estudiantes pudiesen estudiar y modificar el manejador de memoria de Minix versión 3.1.6, al

generar las plantillas relacionadas al laboratorio se presentaron los siguientes inconvenientes:

o Minix versión 3.1.6 posee una técnicas de gestión de memoria diferente con respecto al

encontrado en la documentación bibliográfica oficial de la herramienta. El libro menciona

177

que Minix 3 implementa la técnica de gestión de memoria segmentación sencilla usando

el primer ajuste. Sin embargo, Minix versión 3.1.6 implementa la técnicas de gestión de

memoria paginación sencilla.

o Se propuso modificar el manejador de memoria de Minix versión 3.1.6 para que este

utilizara el modulo de memoria desarrollado para la versión 3.1.4 y esta solicitud se

presento a su comunidad de desarrollo donde inmediatamente se menciono que dicho

cambio es bastante complejo; ya que entre cada una de estas versiones la estructura de

los procesos servidores de Minix había sido cambiada. Por lo que no se recomendaba

realizar el cambio sino utilizar una versión inferior a Minix, pero esto no era una opción

para los laboratorios ya que se perdería todo el entorno de programación.

 Durante el proceso de adecuación se propuso generar un laboratorio para el estudio de los

sistemas de archivos a pesar que este tópico no se encuentra en las recomendaciones de la

ACM para los cursos básicos de Sistemas Operativos (25). En este laboratorio se propuso

modificar el sistema de archivos de Minix para agregarle la funcionalidad de cifrado/descifrado del

mismo lo que genero una problemática similar a la expuesta el punto anterior.

12.2 Trabajos futuros

Tomando como base el presente Trabajo Especial de Grado se propone establecer una comunidad o

grupo de trabajo dedicado a esta área de estudios cuya motivación principal sea velar por la

actualización, adecuación y desarrollo del sistema operativo instruccional Minix versión 3.1.6, integrada

por el grupo docente de la materia Sistemas Operativos y los estudiantes interesados en seguir

investigando sobre este punto. También se plantea como futuros trabajos de investigación la generación

de los laboratorios de manejo de memoria y sistemas de archivos, sin olvidar la actualización de los

laboratorios propuestos.

12.3 Recomendaciones

A lo largo de este Trabajo Especial de Grado y la investigación anterior realizada sobre los Sistemas

Operativos Instruccionales documento previo a este trabajo en la modalidad de seminario, debe revisarse

los siguientes puntos:

 Actualización del curso con respecto a la propuesta desarrollada por la ACM sobre los cursos de

sistemas operativos.

 Elaborar una nueva dinámica pedagógica del curso Sistemas Operativos que contemple los

siguientes aspectos:

178

o Agregar un espacio de discusión presencial donde estudiantes y docentes puedan

reunirse para discutir los desarrollos propuestos a lo largo del curso, lo que permita

aclarar dudas, solventar fallas o problemas de las herramientas utilizadas, discusiones

para la generación de nuevos proyectos.

o Actualizar el material didáctico para que este utilice como caso de estudio al sistema

operativo instruccional Minix versión 3.1.6, para que esta manera el estudiante siempre

tenga la posibilidad de reforzar sus conocimientos a través de esta herramienta

instruccional.

o Generar charlas y conferencias relacionadas al proyecto donde cualquier miembro de la

Escuela de Computación, es decir, estudiantes y docentes puedan discutir y elaborar

nuevos temas de investigación relacionada a los sistemas operativos.

o Modificar el plan de evaluación del curso para generar mayor equidad entre las

evaluaciones teóricas y prácticas. Este punto particular es importante ya que se pudo

constatar en su revisión de los cursos de Sistemas Operativos ofertados por las

principales casas de estudios superiores a nivel mundial ofrecen una calificación de

aproximadamente un 50% para la teoría y un 50% para la práctica. Se considera que la

revisión debe ser pertinente para alcanzar mejores resultados académicos tanto de

docentes y estudiantes (13).

 Se propone la elaboración de un laboratorio general de desarrollo de sistemas operativos en la

Escuela de Computación basado en Minix versión 3.1.6 donde los estudiantes puedan estudiar y

desarrollar un más a fondo el sistema operativo, basado en los conceptos ya forjados por esta

investigación.

 Se propone expandir el Sistemas Operativo Instruccional Minix versión 3.1.6 para que se

desarrollen herramientas tales como, un manejador de ventanas y escritorio, desarrollo de

aplicaciones para el nivel de desarrollo y de usuarios entre otros.

 Para finalizar, se propone ambiciosamente la generación de una nueva mención profesional para

la Escuela de Computación cuyo principal objeto de estudios sean los Sistemas Operativos

donde se tomen cursos avanzados referente a esta área; donde se puedan estudiar, proponer y

revisar como casos de estudios de sistemas operativos comerciales tales como: Microsoft

Windows, GNU/Linux, OS X, Unix entre otros. Esta mención debería incluso agregar a su

curriculum académico el desarrollo de sistemas operativos embebidos y móviles.

179

13 Referencias

(1. Anderson, Charles y Nguyen, Minh. A Survey Of Contemporary Instructional Operating Systems For

Use in Undergraduate Courses. Oregon : Wester Oregon University, 2005.

2. Stallings, William. Sistemas Operativos. Madrid : Prentice Hall, 2005.

3. Tanenbaum, Andrew. Sistemas Operativos Modernos. México : Prentice Hall, 2003.

4. Tanenbaum, Andrew y Woodhull, Albert. Sistemas operativos - Diseño e Implementacion. Mexico :

Prentice Hall, 1999.

5. Silberchatz, Abraham, Galvin, Peter y Gagne, Greg. Fundamentos de Sistemas Operativos. Madrid :

McGraw Hill, 2006.

6. Holland, David, Lim, Ada y Nguyen, Minh. A New Instructional Operating System. Massachusetts :

Harvard University, 2002.

7. Cartereau, Michel. A Tool For Operating System Teaching. Paris : Department of Mathematics and

Computer Scienc e, 1993.

8. Hovemeyer, Howard, Hollingsworth, Jeffrey y Bhattacharjee, Bobby. Running on the Bare Metal

with GeekOS. Maryland : University of Maryland, 2003.

9. Universidad de Harvard. OS/161. [En línea] Mayo de 2010. http://www.eecs.harvard.edu.

10. Procter, Christopher y Anderson, Thomas. The NachOS Instructional Operating System.

California : University of California, Berkeley, Diciembre - 2002.

11. Gary, James. Using NachOS in a Upper Division Operating Systems Course. Western Kentucky

University : Western Kentucky University, 2001.

12. Instituto Tecnológico de Massachusetts. xv6, A Teaching Operating System. [En línea]

http://pdos.csail.mit.edu.

13. De León Dumar, España José. Diseño, implementación y adecuación de una herramienta educativa

para cursos de Sistemas Operativos. Caracas : s.n., 2010.

14. MINIX 3. [En línea] Septiembre de 2010. http://www.minix3.org/.

15. Andrew S Tanenbaum, Albert S Woodhull. Operating Systems Design and Implementation. s.l. :

Prentice Hall, 2006. 3 edition.

180

16. Croucher, Phil. The Bios Companion: The Book That Doesn't Come With Your Motherboard. s.l. :

Electrocution Technical Publishers, 2004.

17. Stallings, William. Computer Organization and Architecture. s.l. : Prentice Hall, 2009. 8 edition.

18. Randal E. Bryant, David R. O’Hallaron. Computer Systems, A Programmer’s Perspective. s.l. :

Prentice Hall, 2003. First edition.

19. Universität Passau. Universität Passau. [En línea] Octubre de 2010. http://www.uni-passau.de/.

20. Universidad de Extremadura. Universidad de Extremadura. [En línea] Septiembre de 2010.

http://www.unex.es/.

21. Universidad Tecnológica Nacional. Diseño e implementación de Sistemas Operativos. [En línea]

Octubre de 2010. http://www.frsf.utn.edu.ar/.

22. Jorritn. Herder, Herbertbos, Bengras, Philiphomburg, y Andrews. Tanenbaum. modular system

programming in MINIX 3. Amsterdam : s.n., 2005.

23. Joaquin Aranda, Antonia Canto Diaz y Jesus Manuel de la Cruz Garcia. Sistemas Operativos:

Teoria y Problemas.

24. J. Adrián Bravo Navarro, Héctor Cortiguera Herrera yJorge Quintás Rodríguez. Minix 3 sobre

arquitectura ARM. Madrid : s.n., 2009.

25. Association for Computing Machinery and IEEE Computer Society. Computer Science

Curriculum 2008. 2009.

