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RESUMEN

TITULO:
Tetraedrizacion de Intervalos de Volumen mediante modificacion de Cubos Marchantes.

AUTOR:
Jorge Bernadas.

TUTOR:
Prof. Rhadamés Carmona.

Los dos métodos principales para la visualizacion de datos volumétricos consisten en la
visualizacion directa de volumenes y la extraccion de isosuperficies. EI primer método ofrece la
ventaja de mostrar todo el volumen en contexto, mientras que el segundo método s6lo muestra
una parte del volumen fuera de contexto. Sin embargo, la extraccion de isosuperficies requiere

menos poder de computo en comparacion con la visualizacion directa de volumen.

Otro método para la visualizacion de datos volumétricos consiste en un hibrido entre ambas
técnicas, el cual reconstruye y muestra subvolimenes del volumen mediante el uso de mallados
tetraédricos y técnicas de visualizacion directa de volumenes para el despliegue. Adicionalmente,
se puede almacenar el isovalor en cada vértice del mallado obtenido, lo que permite el uso de

dichos mallados para realizar simulaciones mediante el uso de elementos finitos.

En la actualidad, los algoritmos existentes para la extraccion de intervalos de volumen son
complicados o generan una alta cantidad de primitivas. En este trabajo se propone un algoritmo
basado en la adaptacién de cubos marchantes para extraer intervalos de volumen en lugar de
isosuperficies, el cual tiene un tiempo de respuesta inferior a los algoritmos existentes y genera
un mallado final con una menor cantidad de primitivas sin necesidad de recurrir a algoritmos

complejos durante la extraccion del intervalo de cada celda del volumen.

PALABRAS CLAVE:
Datos Volumétricos, Isosuperficies, Intervalos de Volumen
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CAPITULO 1. INTRODUCCION

En la actualidad, los cientificos utilizan las herramientas computacionales para visualizar los
datos con los que trabajan, para asi poder realizar el analisis correspondiente. Una de las ramas
de la visualizacién que ha tenido el mayor auge en los Ultimos afios es la visualizacion de
volimenes, que consiste en el despliegue de uno o varios conjuntos de datos tridimensionales en

la pantalla, de forma que el usuario pueda entenderlos e interpretarlos satisfactoriamente.

Todos los algoritmos existentes para la visualizacion de volumenes estan basados en una de
dos técnicas generales: visualizacion directa de volumen o extraccion de isosuperficies. La
primera técnica considera todo el volumen a la vez, generando imagenes semitransparentes de
alta calidad, lo cual requiere gran poder de procesamiento para un despliegue en tiempo real. La
segunda técnica sélo reconstruye y muestra isosuperficies del volumen, lo cual permite desplegar
los datos a una velocidad superior, pero éstos se muestran descontextualizados, lo cual podria ser

un problema para el andlisis por parte del usuario.

Otro enfoque consiste en un hibrido entre ambas técnicas, el cual reconstruye y muestra
subvolumenes del volumen mediante el uso de mallados tetraédricos y técnicas de visualizacion
directa de volumenes para el despliegue, lo cual permite visualizar la informacién requerida en
contexto con un mejor tiempo de respuesta al compararlo con el despliegue del volumen
completo. Adicionalmente, se puede almacenar el isovalor en cada vértice del mallado obtenido,
lo que permite el uso de dichos mallados para realizar simulaciones mediante el uso de

elementos finitos.

En la actualidad, los algoritmos existentes para la extraccion de intervalos de volumen
poseen una alta complejidad o generan una alta cantidad de primitivas. Por ejemplo, Guo
propone un método basado en tetraedrizaciones de Delaunay [GUO95], el cual consta de dos
pasos principales: primero, la obtencion de una nube de puntos a partir del volumen de datos, la
cual estara compuesta por las muestras que se encuentran dentro del intervalo [a, 8] a extraer y

aquellos puntos donde las isosuperficies S, y Sp intersectan al volumen, donde:

Se =10, y, 2)|F(x,y,2) = a}
Sﬂ = {(X»J’»ZNF(X»)"Z) =ﬁ}



El segundo paso del algoritmo consiste en la obtencion de la triangulacion de Delaunay de la
nube de puntos extraida del volumen. Este algoritmo posee una alta complejidad, debido a que el
procedimiento para calcular la triangulacién de Delaunay en tres dimensiones es complicado de
programar y es muy lento para la extraccion de intervalos en volimenes grandes. Ademas, el uso
de tetraedrizaciones de Delaunay no proporciona ventaja alguna al momento de la extraccion de
los tetraedros del intervalo, debido a que éstos tienden a degenerarse en las celdas intersectadas

por las isosuperficies S, y Sp.

Otro algoritmo para la extraccion de intervalos de volumen fue propuesto por Fuji, Maeda y
Sato [FUJ95], que consiste en extraer el intervalo de cada celda mediante la interseccion de dos
intervalos infinitos [a, ) y (oo, 8], los cuales se obtienen mediante el uso de una modificacion
de Cubos Marchantes que calcula poliedros en lugar de tridngulos, lo cual implica la necesidad
de intersectar poliedros durante el procesamiento de cada celda. Para la resolucion de los casos
ambiguos, se pueden utilizar los métodos propuestos por Nielson y Hamann [NIE91] y por

Chernyaev [CHE95] al momento de generar la estructura de la tabla de casos.

Sin embargo, la complicacion del algoritmo se encuentra al momento de realizar la
interseccion de los poliedros, debido a que éste debe ser lo suficientemente general como para
intersectar conjuntos de poliedros no convexos, lo cual, al igual que el algoritmo anterior,
incrementa el tiempo de ejecucion considerablemente. Ademas, el algoritmo esta disefiado para
extraer un mallado triangular que encierre aquella parte del volumen dentro del intervalo [a, £],

lo cual no permite una representacion adecuada para las celdas internas del intervalo.

Una alternativa a procesar cada celda directamente, sea para la extraccion de isosuperficies o
intervalos de volumen, consiste en subdividir cada una de éstas en tetraedros, los cuales seran
procesados independientemente [CAR95]. Este algoritmo, llamado Tetracubos Marchantes,
permite simplificar el analisis de casos posibles de interseccion, ya que un tetraedro consiste

Unicamente de cuatro (4) vértices y no presenta ambigiedades durante el procesamiento.

En 1997, Nielson propone otro algoritmo para la extraccion de intervalos de volumen
[NIE97h], el cual consiste en extender el algoritmo de los Tetracubos Marchantes para extraer el
intervalo del volumen de cada uno de los tetraedros de las celdas mediante el uso de una tabla de

3* = 81 casos, la cual indica los tetraedros a generar para cada uno de los casos posibles de
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interseccion entre el intervalo y un tetraedro del volumen. Las ventajas principales de este
algoritmo propuesto por Nielson radican en la sencillez del mismo, la pequefia cantidad de casos
en la tabla y la ausencia de posibles ambigtiedades en el mismo, lo cual acelera la extraccién del
intervalo del volumen. Sin embargo, este algoritmo genera una salida compleja dificil de
visualizar por la alta cantidad de primitivas generadas. Esto se debe a que cada celda del
volumen debe ser dividida en cinco o mas tetraedros y cada uno de éstos puede generar hasta seis
primitivas de salida, por lo que en el peor caso se pueden generar hasta treinta tetraedros por
cada celda del volumen.

Por todo lo mencionado anteriormente, se propone un algoritmo para la extraccién de
intervalos de volumen basado en cubos marchantes, el cual procese cada celda directamente
mediante una tabla de conectividad, sin necesidad de dividir cada celda en tetraedros ni de
recurrir a algoritmos complejos durante el procesamiento de cada celda. Debido a esto, se
presume que el algoritmo propuesto generara menos tetraedros que el algoritmo propuesto por
Nielson [NIE97b] y serd mas eficiente que los métodos propuestos por Guo [GUO95] y Fuji et
al. [FUJ95].

Con el objetivo de analizar el desempefio del algoritmo propuesto, se implementara el
algoritmo propuesto por Nielson [NIE97b] y se compararan los mallados obtenidos mediante las
métricas desarrolladas por el grupo Verdict [STIO7], las cuales permiten realizar analisis
cuantitativos sobre mallados triangulares y tetraédricos. Finalmente, se implementaran las
versiones correspondientes para la extraccion de isosuperficies, lo cual permitira confirmar los
resultados obtenidos ya que se espera que ambos métodos tengan desempefios similares

independientemente del tipo de mallado a extraer.
1.1. OBJETIVO GENERAL

Disefiar e implementar un algoritmo para la extraccion de intervalos de volumen mediante la
adaptacion de Cubos Marchantes, utilizando una tabla de conectividad que indique los tetraedros

a generar en cada caso posible.



1.2. OBJETIVOS ESPECIFICOS

Implementar Cubos Marchantes [LOR87] con resolucion de ambiguedades [NIE91]

[CHEO95] para la extraccion de isosuperficies.
Implementar Tetracubos Marchantes [CAR95] para la extraccion de isosuperficies.

Implementar un algoritmo para tetraedrizar un poliedro convexo, para cada caso posible
de interseccion entre una celda y el intervalo, el cual sera utilizado para generar la tabla

de casos.

Disefar e implementar un algoritmo para la extraccion del intervalo de volumen en base a

la tabla de casos generada anteriormente.

Disefar e implementar una aplicacion de prueba que permita la carga de un volumen, asi

como la extraccion de isosuperficies e intervalos de volumen a partir del mismo.

Evaluar resultados obtenidos en la extraccion de isosuperficies y en la extraccion de
intervalos de volumen mediante el uso de las métricas disefiadas por el grupo Verdict
[STI07].



CAPITULO 2. MARCO TEORICO

A continuacién se presenta una vision general del proceso de visualizacion de datos
volumétricos, asi como una breve descripcion de algunos algoritmos existentes para el extraccion
de isosuperficies y la extraccion de intervalos de volumen, para terminar con la descripcion de

algunas metricas utilizadas para evaluar la calidad de mallados triangulares y tetraédricos.
2.1. VISUALIZACION DE VOLUMENES DE DATOS

Un volumen de datos se define como un conjunto de datos ubicados en K3, los cuales
generalmente estan definidos sobre una malla cartesiana uniforme regular con uno o mas
atributos escalares y, posiblemente, uno o més atributos vectoriales en cada vértice de la malla.
El proceso de visualizacion de volimenes de datos es el conjunto de pasos llevados a cabo para
proyectar un volumen de datos hacia un plano imagen bidimensional, con el proposito de

entender la estructura del mismo [ELV92].

Los cientificos utilizan las imagenes obtenidas para adquirir informacion y conocimiento de
los datos producidos por experimentos, asi como para compartir sus experiencias con otros
cientificos e instituciones. Para poder alcanzar este objetivo, las técnicas de visualizacion deben
ofrecer una representacion entendible de los datos, asi como una rdpida manipulacion vy

despliegue de los mismos que permita una interaccion satisfactoria con el usuario.

En la actualidad, la visualizacion de volimenes se utiliza ampliamente en la medicina,
astrofisica, quimica, microscopia, ingenieria mecanica, pruebas no destructivas y otras areas de
la ciencia y la ingenieria. Entre los datos que los cientificos e ingenieros almacenan como
volimenes se encuentran densidad, presion, temperatura, carga electrostatica, calor, velocidad,
entre otros. Como se puede observar, los datos almacenados tienen caracteristicas muy
diferentes, por lo cual algunos métodos para la visualizacion de volimenes proporcionan buenos

resultados para ciertos tipos de datos pero no para otros.

A continuacion se explicardn las caracteristicas de los distintos volumenes de datos
existentes, la clasificacion de las distintas técnicas para visualizarlos, asi como los pasos mas

comunes en los algoritmos para llevar a cabo este proceso.



2.1.1. CARACTERISTICAS DE LOS VOLUMENES DE DATOS

Los volumenes de datos pueden ser clasificados en base a diferentes aspectos, entre los que
se consideran: la fuente de donde han sido obtenidos, el tipo de dato que almacenan y si tratan el
volumen como un conjunto de voxeles o como un arreglo de celdas. A continuacion se explican

los aspectos que son tomados en cuenta en cada tipo de clasificacion.
2.1.1.1. FUENTES DE DATOS VOLUMETRICOS

El primer paso necesario para estudiar determinados fendmenos basados en el analisis de
volumenes de datos consiste en la obtencion de los mismos. Estos datos generalmente son
obtenidos mediante el escaneo (scanning) del material de interés utilizando Imagenologia por
Resonancia Magnética (MRI), Tomografia Computarizada (CT), Tomografia por Emision de

Positrones (PET) y Ultrasonidos.

Otra fuente de datos frecuentemente usada por los cientificos consiste en los resultados de
simulaciones de experimentos reales!, con el fin de contrastar sus resultados con aquellos
obtenidos en el experimento realizado. Sin embargo, hay ocasiones en las cuales no se puede
disponer de los datos del experimento real, debido a que éste puede ser muy grande, muy
pequefio, muy rapido o muy lento como para ser observado, en cuyo caso solo se puede estudiar

el fenédmeno mediante los datos obtenidos de la simulacion.

Los datos volumétricos también pueden ser generados mediante la voxelizacion de objetos
geométricos, el uso de herramientas de edicion de volumenes o de programas para la generacion
de volimenes mediante métodos estocasticos. No obstante, los datos volumétricos pueden ser

tratados de forma similar sin importar la fuente de la que hayan sido obtenidos [ELV92].

Generalmente, los datos a visualizar provienen de una unica fuente, pero en ciertos casos es
preferible obtenerlos de varias fuentes diferentes, debido a que la calidad e informacién aportada
por estos depende de la forma en la que han sido capturados. Por ejemplo, para facilitar la

deteccion del cancer se utiliza la técnica PET-CT Fusion, la cual consiste en correlacionar los

! Estos experimentos generalmente se realizan mediante el uso de elementos finitos y dinamica de fluidos.



datos obtenidos de una tomografia con los datos obtenidos de un PET?, el cual se especializa en
detectar areas con alta actividad metabdlica. De esta forma, en la tomografia se pueden observar
resaltadas aquellas partes donde el cancer se ha esparcido, ya que la mayoria de los tejidos
cancerosos presentan una alta actividad metabdlica con respecto a los tejidos normales.

2.1.1.2. TIPOS DE DATOS VOLUMETRICOS

Dependiendo del area en que se esté trabajando y de la fuente de donde provienen los datos,
los valores almacenados en el volumen pueden diferir en varios aspectos, entre los cuales se
encuentran el rango valido, el tipo base —enteros, flotantes, numeros complejos— y su
cardinalidad. Cuando la cardinalidad de los datos es uno, se dice que los datos son escalares
simples, en los demas casos se dice que los datos son vectoriales. Es importante realizar esta
distincion porque los métodos utilizados para el despliegue de datos vectoriales deben ser
capaces de mostrar toda la informacion disponible, sin dificultar el entendimiento por parte del

usuario.

Una forma de desplegar datos vectoriales tridimensionales es visualizando un corte a la vez
con flechas en cada punto de la malla, cuya direccion indica la direccion del dato vectorial y
cuyo color indica la magnitud del mismo o cualquier otro valor escalar. En vez de flechas,
también se pueden utilizar otros elementos como lineas, flechas y triangulos, y se puede enlazar
el brillo, el color, la direccion y la transparencia de los elementos a distintos atributos del

volumen, lo que permite mostrar la mayor cantidad de datos a la vez de forma sencilla [SAWO07].
2.1.1.3. VOXELES Y CELDAS

Los volumenes de datos son usualmente tratados como un conjunto de véxeles o como un
arreglo de celdas. El enfoque mediante vixeles establece que los valores de los atributos del
volumen se calculan en base a la muestra méas cercana. Por lo tanto, un véxel es la regién cuyos
puntos son mas cercanos a una muestra en especifico. En algunos algoritmos la contribucion del
voxel a la imagen disminuye a medida que la distancia del centro de la region de influencia

aumenta. Este enfoque tiene la ventaja de no inferir el comportamiento de los datos entre los

2 PET: Positron Emission Tomography, Tomografia por Emision de Positrones.



puntos de la malla, es decir, solamente utiliza valores conocidos de los datos para generar las

iméagenes.

El enfoque por celdas interpreta el volumen como una coleccion de hexaedros delimitados
por los puntos de la malla, cuyos valores varian dentro de ellas. Este enfoque intenta estimar los
valores dentro de la celda mediante interpolacion entre los valores en las esquinas de la celda,
donde se puede utilizar interpolacion trilineal o interpolacion bicubica [ELV92]. Las imagenes
generadas mediante este enfoque son mucho mas suaves que aquellas generadas mediante el
enfoque por voxeles. Sin embargo, como generalmente la funcion subyacente no es conocida, es
imposible verificar la validez de la interpolacion utilizada para evaluar el volumen entre puntos
del mallado discreto, por lo que se debe asumir que la técnica de interpolacién es valida para que

las imégenes generadas se consideren correctas.
2.1.2. METODOS PARA LA VISUALIZACION DE VOLUMENES

Los algoritmos de visualizacion de volimenes son clasificados en dos categorias: algoritmos
de visualizacién directa de volumen (direct volume rendering o DVR) y algoritmos de extraccion

de isosuperficies (surface fitting o SF).

Los algoritmos basados en DVR incluyen trazado de rayos (ray-casting), shear-warp,
métodos de preintegracion, splatting y despliegue de V-buffer, los cuales estan caracterizados
por aplicar elementos directamente en la imagen sin utilizar primitivas geométricas como
representacion intermedia [ELV92]. Estos métodos son apropiados para crear imagenes a partir
de volumenes de datos que contengan limites difusos como nubes, fluidos y gases. La principal
desventaja de usar DVR es que el volumen de datos debe ser recorrido por completo cada vez
gue una imagen tenga que ser desplegada, por lo que generalmente se realiza una pasada en baja
resolucion de los datos de forma tal que el usuario pueda verificar los parametros rapidamente,

para después realizar el despliegue con alta resolucion una vez los pardmetros sean confirmados.

Los algoritmos basados en SF usualmente ajustan primitivas como poligonos o parches a
superficies de contorno con valor constante en volumenes de datos. El primer paso consiste en la
eleccion de un umbral por parte del usuario, el cual es utilizado para ajustar primitivas

geométricas a los contornos en el volumen que sean iguales al umbral. Este enfoque incluye



algoritmos como conexion de contornos (contour connecting) [KEP75], cubos marchantes

(marching cubes) [LOR87], tetracubos marchantes (marching tetracubes) [CAR95], entre otros.
2.1.3. PASOS GENERALES PARA LA VISUALIZACION DE VOLUMENES

A pesar de la variedad de algoritmos existentes para la visualizacion de volumenes, la
mayoria de los pasos involucrados son comunes en ellos. Generalmente, los algoritmos difieren

en la forma en que implementan cada uno de dichos pasos, los cuales se explican a continuacion.
2.1.3.1. ADQUISICION DE DATOS

El primer paso en cualquier procedimiento para la visualizacion de datos consiste en la
obtencion y preprocesamiento de éstos, de forma que se puedan obtener mejores resultados
visuales. Este preprocesamiento consiste en modificar los valores para que cubran una buena

distribucion de valores, tengan altos contrastes y estén libres de ruido y valores fuera de rango.

Finalmente, en algunos algoritmos [GUQO95] es necesario que los datos tengan la misma
proporcién espacial que el objeto de estudio, de forma que las imagenes desplegadas no
aparezcan deformadas a la hora de visualizar el volumen. Cuando la proporcion del objeto y de
los datos no es la misma, puede ser necesario interpolar dos cortes para obtener uno nuevo,
interpolar muestras para obtener muestras faltantes, o convertir un mallado irregular a un

mallado cartesiano regular uniforme.
2.1.3.2. CLASIFICACION DE LOS DATOS

La clasificacion de los datos consiste en elegir la forma en que los datos deben ser
desplegados en base a sus valores. Este paso es llevado a cabo por el usuario, y el procedimiento
a realizar depende del algoritmo utilizado para visualizar los datos. Si el algoritmo esta basado en
SF, el usuario debe elegir el umbral a extraer, el cual consiste en un valor real que representa el
valor a ajustar por la isosuperficie resultante. Cuando el algoritmo esta basado en DVR, el
usuario debe configurar la funcion de transferencia, la cual consiste en una funcion que relaciona
un color y factor de absorcién a cada valor posible que puedan tener los atributos del volumen

(ver Seccidn 2.1.4.2 para mas detalles sobre el uso de la funcién de transferencia en DVR).



La clasificacion de los datos es uno de los pasos mas dificiles que debe llevar a cabo el
usuario, porque es necesario que éste tenga experiencia clasificando los datos y que el sistema
proporcione una respuesta rapida, debido a que este procedimiento esta basado en intento y error.
Una solucion para dar respuesta rapida al usuario consiste en ofrecer una vista con menor
resolucion mientras se realiza el proceso de clasificacion, y generar una imagen refinada después

que el usuario confirma que ha finalizado.
2.1.3.3. RECORRIDO DE LOS DATOS

Después de configurar la clasificacion del volumen de datos, se deben generar las imagenes
recorriendo los datos. Existen dos formas de recorrer el volumen: en orden de objeto (object-
order), que consiste en calcular la contribucion de cada elemento del volumen a los pixeles de la
imagen; o en orden de imagen (image-order), que consiste en determinar el color en cada pixel
de la imagen, buscando los elementos del volumen que contribuyen a cada uno de estos
[ELV92].

Los recorridos en orden de objeto pueden ir de adelante hacia atras (front-to-back) o de atras
hacia adelante (back-to-front). Recorrer el modelo de adelante hacia atras tiene la ventaja de que
los elementos en la parte de atrds no deben ser visitados si los de adelante ya han creado una

imagen lo suficientemente opaca [ELV92].

Los recorridos en orden de imagen generalmente proceden de arriba hacia abajo, de izquierda
a derecha. También se pueden calcular los pixeles en orden aleatorio, de forma que el usuario

observe como la imagen es refinada mientras los pixeles faltantes son calculados.
2.1.3.4. VISUALIZACION Y SOMBREADO

Para visualizar un volumen de datos se puede utilizar tanto proyeccion ortogonal como
proyeccion perspectiva, sin importar que el algoritmo esté basado en DVR o en SF. Sin embargo,
el uso de proyeccion ortogonal asegura que el usuario no se confunda al observar los datos
deformados por la transformacion perspectiva. No obstante, cuando no se utiliza perspectiva, se
deben incluir otras caracteristicas que le permitan al usuario percibir la profundidad de los

elementos, tal como niebla por profundidad, atenuacion por distancia o estereoscopia [ELV92].

10



Para realizar el sombreado en los algoritmos basados en DVR y en SF generalmente se
utiliza sombreado por gradiente (gradient shading), el cual consiste en implementar un modelo
de iluminacion estandar, como Phong o Blinn, utilizando el gradiente normalizado de los datos
como vector normal. Para calcular los gradientes dentro de una celda se utiliza interpolacion de
los gradientes en las ocho esquinas de la celda, donde el gradiente en un punto de la malla se

calcula por diferencias finitas entre los puntos adyacentes en cada direccion [LOR87].
2.1.4. ALGORITMOS PARA LA VISUALIZACION DE VOLUMENES

A continuacion se explican algunos algoritmos para la visualizacion de volimenes, los cuales
se encuentran clasificados en base al método utilizado para desplegar el volumen, ya sea

mediante visualizacion directa de volumen (DVR) o extraccién de isosuperficies (SF).
2.1.4.1. EXTRACCION DE ISOSUPERFICIES

Los algoritmos de extraccion de isosuperficies consisten en el calculo de una representacion
intermedia que se ajuste a las partes del volumen que se desean desplegar. Las partes que se
desean desplegar son elegidas mediante el uso de un umbral, el cual especifica a qué isovalor se
deben ajustar las primitivas calculadas. Las primitivas utilizadas como representacion intermedia
generalmente son faciles de desplegar por hardware grafico estandar, como lo son los mallados

triangulares y los cuadrilateros [ELV92].

A continuacion se explicaran tres algoritmos para la extraccion de isosuperficies, entre los
cuales se encuentran la conexién de contornos, el algoritmo de los cubos opacos, el algoritmo de

los cubos marchantes y el algoritmo de los tetracubos marchantes.
A. CONEXION DE CONTORNOS

La conexion de contornos (contour-connecting) fue uno de los primeros algoritmos
inventados para la visualizacion de volumenes, el cual consiste en calcular un contorno cerrado
en cada corte y conectar los contornos de cada par de cortes adyacentes [KEP75][FUCT77]. Este
algoritmo comienza calculando el contorno de cada corte en el valor especificado como umbral
por el usuario. Anteriormente este procedimiento se realizaba a mano, pero las técnicas actuales

de procesamiento de imagenes permiten la extraccién automatica del contorno.
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Una vez que se tienen todos los contornos, el problema se reduce a conseguir una
triangulacion que conecte las curvas de los cortes adyacentes. Para determinar la triangulacion a
utilizar, se busca aquella que maximice —0 minimice— alguna métrica de la triangulacion

generada, como el volumen del modelo o el minimo angulo interno de los triangulos [KEP75].

Existen dos clases de metodos para unir dos contornos: optimizacion y heuristicos. Los
métodos de optimizacion calculan la mejor triangulacion posible [FUC77], y por lo general
tardan O(NM) en ejecutarse, donde N es la cantidad de puntos de un corte y M es la cantidad de
puntos del otro corte. Los métodos heuristicos calculan una triangulacion aceptable, mediante el
uso de una decision local por medio de una heuristica fécil de calcular en cada punto [KEP75].
Estos ultimos generalmente son utilizados cuando el tiempo de ejecucion es mas importante que

la calidad del modelo, ya que generalmente tardan O (N + M) en ejecutarse.
B. CUBOS OPACOS

Otro procedimiento sencillo para la visualizacion de volimenes es el algoritmo de los cubos
opacos (opaque-cubes), el cual fue propuesto por [HER79], donde el umbral elegido por el
usuario se utiliza para recorrer cada una de las celdas del objeto y extraer aquellas cuyos valores
lo incluyan. Por cada una de estas celdas, se crean seis poligonos, uno por cada cara, los cuales
son desplegados usando cualquier hardware estandar. Los poligonos se pueden desplegar opacos
0 semitransparentes, y si se eligen varios umbrales se puede desplegar cada conjunto de celdas

con un color diferente.

Una de las principales desventajas de este algoritmo es que las imagenes desplegadas tienen
apariencia de bloques cubicos, lo cual genera dificultades al intentar observar caracteristicas
pequefias en los datos. Sin embargo, la apariencia puede ser mejorada utilizando sombreado por
gradiente (gradient-shading).

C. CUBOS MARCHANTES

Cubos Marchantes (marching cubes) es un algoritmo para la visualizacién de volimenes que
consiste en la extraccion de una isosuperficie en base a una tabla de casos [LOR87], el cual

procesa cada celda y extrae un mallado triangular que separa aquellos voxeles menores que el
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umbral de aquellos mayores que el umbral. Este algoritmo ha sido implementado y estudiado

ampliamente en numerosas publicaciones [NIE91][CHE95].

Cubos marchantes comienza leyendo cuatro cortes, con los cuales calcula el gradiente en los
puntos internos y se extraen triangulos de las celdas internas entre el segundo y tercer corte.
Después, se carga un nuevo corte, se descarta el mas viejo y se repite el procedimiento, hasta
haber procesado todos los cortes. Finalmente, los triangulos extraidos son pasados a hardware
grafico estandar para el despliegue de superficies. Para més detalles acerca del algoritmo, ver la
Seccion 2.2.1.

D. TETRACUBOS MARCHANTES

Tetracubos Marchantes (marching tetracubes) es un algoritmo para la visualizacion de
volimenes que consiste en la extraccion de una isosuperficie mediante la division de cada celda
en tetraedros y su posterior procesamiento, el cual consiste en la extraccion de un mallado
triangular que separe aquellos voxeles menores que el umbral de aquellos mayores que el umbral
[CAR95]. Este algoritmo opera de manera similar a cubos marchantes, pero no presenta casos
ambiguos, por lo cual es mucho mas facil de implementar. Para mas detalles acerca del

algoritmo, ver la Seccién 2.2.2.
2.1.4.2. VISUALIZACION DIRECTA DE VOLUMEN

Los métodos basados en la visualizacion directa de volumen consisten en desplegar el
volumen directamente en el plano imagen sin utilizar una representacion intermedia para ello.
Para determinar el color de un pixel en el plano imagen se simula la propagacion de un rayo de
luz a través del volumen, lo cual se realiza mediante el uso de un sistema Optico basado

Unicamente en la absorcién y emision de luz [WIL92].

El modelo 6ptico utilizado para simular la propagacién de un rayo de luz a través del

volumen esté definido por la siguiente ecuacion [SCHO03]:

D
A
C = f c(D)r(D)e fo 1M g,
0
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donde C es el color resultante, D es la distancia que recorre el rayo dentro del volumen, y c(1) y
7(A) son el color y el factor de absorcion a una distancia A de la entrada del rayo en el volumen,
respectivamente. Esta integral representa la suma de la emision de la luz desde el punto de
entrada del rayo en el volumen (4 = 0) hasta que sale del mismo (4 = D). La exponencial que
multiplica el color en la posicion A representa el factor de extincion acumulado hasta ese punto,
lo cual hace que los valores obtenidos vayan aportando menos al color final a medida que el rayo

avanza.

Esta ecuacion evalla el rayo de forma continua; para realizar la evaluacion de manera

discreta ésta se aproxima mediante sumas de Riemann [ANT98]:

n= EJ, a() =1—e W (1.1)

n—1 i—1
¢~ | emaim | |(1-agn)
i=0 j=0
donde n representa la cantidad de muestras a evaluar y jh representa la posicion de la j-ésima
muestra dentro del rayo. Esta ecuacion puede ser evaluada de dos formas diferentes: la primera
consiste en evaluar y acumular las muestras desde la méas cercana hacia la mas lejana (front to

back) de la siguiente manera:

C() = 0, Ci+1 = Ci + Ala(lh)C(lh)
Ao=1, A1 =4(1-a(ih)

donde C; y A; son el color y el factor de extincion acumulado después de evaluar i muestras,
respectivamente. El color asignado al pixel es aquel encontrado después de evaluar las n

muestras, es decir, C = C,,.

La segunda forma de evaluar la ecuacion consiste en evaluar y acumular las muestras desde

la mas lejana hacia la mas cercana (back to front) de la siguiente manera:

C, =0, C =a(ih)c(ih)+ (1—a(h))Ci4
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donde C; es el color acumulado cuando quedan i muestras por evaluar. El color asignado al pixel

es aquel encontrado cuando no quedan muestras por evaluar, es decir, C = Cj.

Existen varios métodos para el despliegue de volumenes mediante visualizacion directa de
volimenes, entre las cuales se encuentra el uso de planos alineados al objeto, planos alienados a
la imagen, ray casting por software, shear-warp, ray casting por GPU® y splatting. A

continuacion se explicara ray casting y splatting.
A. RAY CASTING

Otro algoritmo utilizado para la visualizacion de volimenes con imégenes de alta calidad
consiste en ray casting. Este algoritmo lleva a cabo un recorrido en orden de imagen, donde el
color y opacidad de cada pixel se calcula disparando un rayo desde el pixel hacia el volumen de
datos, acumulando las opacidades y colores encontrados durante la trayectoria del mismo
[LEV88][LEV90a][LEV9I0b].

El primer paso consiste en la configuracion de la funcion de transferencia, el punto de vista
del usuario y la iluminacion a utilizar. Entonces, se dispara un rayo por cada pixel en la imagen a
generar, se determina el punto de entrada y de salida de éste del volumen, con el fin de calcular
la ecuacion 1.1. Para ello, el rayo es evaluado a pasos constantes de tamafio h desde el punto mas

cercano al 0jo hasta el mas lejano.
B. SPLATTING

Este algoritmo consiste en realizar un recorrido de adelante hacia atras de los voxeles del
volumen, calculando y componiendo la contribucion de cada uno de ellos en la imagen mediante
el uso de una tabla. Al procedimiento se le llama splatting [WES89] porque se asemeja a
“aplastar” cada voxel en la imagen, donde la contribucion del voxel sobre un pixel es

inversamente proporcional a la distancia entre el voxel proyectado y dicho pixel.

El primer paso, después de que el usuario configura la funcion de transferencia, consiste en
determinar el orden en el que se va a recorrer el volumen, lo cual se realiza buscando la esquina

de la malla mas cercana al punto de vista después de aplicar la matriz de visualizacion

% GPU: Graphical Processing Unit (Unidad Gréfica de Procesamiento)
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(modelview matrix). Una vez determinado el orden correcto, se procesan los voxeles desde el
corte mas cercano hacia el mas lejano. La clasificacion de un voxel se realiza de manera similar
como en trazado de rayos: primero se clasifica su valor utilizando la funcion de transferencia, se

sombrea utilizando el gradiente y la opacidad se multiplica por la magnitud del mismo.

El siguiente paso consiste en calcular la contribucion del voxel a la imagen proyectando éste
en la imagen y utilizando una huella circular [WES89]. Esta huella es colocada en la imagen
sobre el voxel proyectado, el cual sirve para decidir cuanto va a afectar el voxel actual cada pixel
de la imagen. Sin embargo, si se utiliza proyeccion perspectiva o escalamientos no uniformes, la
proyeccion de la huella en el plano imagen es una elipse, por lo que se debe aplicar una
transformacion para convertir las coordenadas elipticas a coordenadas circulares, y asi poder
utilizar la misma huella para todos los voxeles [WES90]. Luego, el color y la opacidad son
mezclados con los valores acumulados en la imagen en cada pixel dentro del &rea cubierta por la
huella, atenuando el color y la opacidad en base al valor de la huella en cada pixel a modificar.
Esto ocasiona que los pixeles mas cercanos al voxel proyectado sean mas afectados que aquellos
mas distantes. Una vez todos los voxeles han sido procesados, la imagen esta lista para ser
desplegada.

2.2. EXTRACCION DE ISOSUPERFICIES

Para la extraccion de isosuperficies, se considera el volumen de datos como una funcién

F(x,y,z), lacual relaciona una posicion dentro del volumen con un valor escalar, es decir:
F(x,y,2) =R >R

La extraccién de una isosuperficie de un volumen de datos consiste en el célculo de una

superficie que aproxime el conjunto S, el cual se define como:

Se ={(0,¥,2)|F(x,y,2) = a}

donde a representa el valor de la isosuperficie a extraer. La mayoria de los algoritmos
representan la superficie extraida mediante un mallado triangular, el cual esta compuesto por un
conjunto de vértices y un conjunto de triangulos que unen dichos vértices. Esto permite

visualizar la superficie facilmente mediante el uso del hardware grafico existente.
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En los algoritmos expuestos a continuacion, se asume que solo se conocen los valores de

F(x,y,z) en los vértices de las celdas de una malla cartesiana escalar como la que se muestra en

la Figura 2.1.
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Figura 2.1: Malla cubica utilizada para la extraccion de isosuperficies.

Para evaluar F(x,y,z) en un punto que no corresponda a uno de los voxeles, se realiza
interpolacion sobre la celda donde se encuentra el punto a evaluar. Se pueden utilizar varios
esquemas de interpolacion, pero el més utilizado es interpolacion trilineal [ELV92]. Para realizar
interpolacion trilineal, primero se debe obtener la posicion relativa del punto respecto a la celda

donde se encuentra de la siguiente manera:

x—XL _y_YL _Z—ZL

:—I ) t_—
T Xi—x Ty, Zy — 7,

donde (X;,Y;,Z;,) es la posicion de la esquina inferior-izquierda-trasera de la celda vy
(Xy, Yy, Zy) es la posicion de la esquina superior-derecha-delantera de la misma. Finalmente se

interpolan los ocho isovalores de la celda de la siguiente manera:

F(vo00, "+, V111, 4,5, t) = Vpoo *+ (1 — q)(1 —s)(1 — &) + vgp1 - q(1 —s)(1 —t)
+v10 - (1 —@)s(1 —t) + vp11 - qs(1 —t)
+ v100.(1 = @)(1 = )t + vy01 - q(1 — )t
+ V110 + (1 — @)st + viq1 - gst

donde vgg, -+, 111 representan los isovalores de los ocho voxeles que delimitan la celda. A
continuacion, se explicaran dos algoritmos importantes para la extraccion de isosuperficies a

partir de mallas cartesianas, cubos marchantes y tetracubos marchantes.
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2.2.1. CUBOS MARCHANTES

Uno de los métodos mas conocidos y estudiados para la extraccion de isosuperficies a partir
de una malla cartesiana escalar es el algoritmo de los Cubos Marchantes (Marching Cubes)
[LOR8T7], el cual consiste en reconstruir cada celda de la malla independientemente mediante el
uso de una tabla de conectividad. Cada celda se encuentra delimitada por ocho voxeles y doce

aristas, las cuales se enumeran como se muestra en la Figura 2.2.

Vi e V:
€ €n
‘/:,‘ ej' Vi
e Es
€. e
] e Vi
e €En
Vi € V;

Figura 2.2: Enumeracidn de los vértices y aristas que delimitan la celda.

Para triangular cada celda primero se debe clasificar cada uno de los voxeles que la
delimitan. Para simplificar la clasificacion de las celdas, Chernyaev [CHE95] resta el valor a a
extraer del isovalor de cada voxel, de forma tal que extraer la isosuperficie S, antes de la resta

equivale a extraer la isosuperficie S, después de realizar la resta, es decir:

SO{ = {(x»y,z)w(x»y,z) = a} = {(x:y,ZNF(x'%Z) —a= O}

De esta manera, se pueden clasificar los voxeles en dos grupos, positivos y negativos, de
acuerdo al signo del isovalor después de sustraer a. Luego, con la clasificacion de los voxeles se
construye una mascara de ocho bits, donde el k-ésimo bit se encuentra encendido si y sélo si el k-

ésimo voxel es positivo (ver Figura 2.3).
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[1]1]1]1]1]ofo]o]=248
Vo Vo Vo Vs Vo Vi V2 Vi

Figura 2.3: Construccion de la mascara a partir de los valores en los vértices con a = 0.5,
donde cada & representa el isovalor en cada vértice que delimita la celda.

Debido a que cada uno de los voxeles tiene dos estados posibles, existe un total de 28 = 256
formas diferentes en que la superficie a extraer puede intersectar la celda. Sin embargo, la
topologia de la superficie no cambia si todos los voxeles cambian de signo, por lo cual se pueden
reducir los 128 casos superiores a los 128 casos inferiores invirtiendo el sentido de los tridngulos
generados (casos complementarios). Luego, por medio de reflexiones y rotaciones se pueden

reducir los 128 casos a 15 casos topoldgicamente diferentes, los cuales se muestran en la Figura
2.4.

0 1 2 3 4
5 6 7 8 9
> [~ V= /
ya
10 11 1 12 13 14
Vd
~17 Y ,

Figura 2.4: Las 15 configuraciones diferentes usadas por Cubos Marchantes.
Los voxeles rojos son negativos y los voxeles azules son positivos.
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El siguiente paso es determinar cuéles aristas de la celda son intersectadas por la superficie y
donde se encuentra el punto de interseccion. Una arista es intersectada por la superficie si y sélo
si los voxeles en sus extremos tienen signos diferentes. Para determinar el punto P, donde la
arista es intersectada por la superficie se puede utilizar interpolacion lineal sobre la misma de la

siguiente manera:

a — v
Po= R+ (=) (=)
donde, vy y v; son los isovalores de los voxeles que delimitan la arista, @ es el umbral de la
superficie que se desea extraer, P, y P; son las posiciones de los extremos de la arista y P, es la
posicién del punto de interseccion en ésta. Después de calcular todos los puntos de interseccion
de la superficie con la celda se generan los triangulos que la componen utilizando una tabla de
256 casos, la cual se indexa utilizando la méscara obtenida de la clasificacion de los voxeles.

Mediante cubos marchantes también se pueden calcular otros atributos de los veértices del
mallado final, mediante interpolacién lineal de los atributos en los extremos de cada arista
intersectada por el modelo. Por ejemplo, se puede calcular el gradiente por vértice G,

interpolando los gradientes en los extremos de cada arista intersectada de la siguiente manera:

G, =Gy + (G G)(a_v0>
x = bo 1= G\

donde G, y G, son los gradientes en los extremos de la arista y G, es el gradiente en P,.
2.2.1.1. VENTAJAS Y DESVENTAJAS DE CUBOS MARCHANTES

Cubos marchantes es uno de los algoritmos mas utilizados para la extraccion de

isosuperficies debido a las diversas ventajas que posee, entre las cuales se encuentran:

e Sencillez: El algoritmo es facil de implementar, ya que solo se necesita una tabla de 28

casos para procesar cada celda en base a la clasificacion de sus voxeles.

e Eficiencia: El algoritmo solo calcula las intersecciones en aquellas aristas donde es

necesario, reutilizando las intersecciones de las celdas anteriores de ser posible. Ademas,
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el algoritmo solo necesita la construccion de una mascara y busquedas de orden constante

en tablas precalculadas.

Paralelizable: El algoritmo es facil de paralelizar, debido a que la superficie extraida de

una celda es independiente de las superficies extraidas de las otras celdas.

Sin embargo, el algoritmo posee varias desventajas, para las cuales se han desarrollado

técnicas para corregirlas, entre las cuales se encuentran:

Errores topoldgicos: En ciertos conjuntos de datos, el algoritmo genera huecos
incorrectos en la superficie. En las siguientes secciones se explicaran los trabajos

dedicados a corregir dichos errores.

Triangulos degenerados: En ciertos casos, el algoritmo genera tridngulos de baja
calidad, los cuales se visualizan con artefactos dependiendo de la técnica utilizada para su

despliegue.

Complejidad de la salida: El algoritmo genera una cantidad excesiva de triangulos
redundantes cuando la resolucién de los modelos de entrada es muy alta, lo que ocasiona
que la superficie final sea mas dificil de visualizar. Una de las soluciones es expuesta en
[SCH92], donde se explica un método que permite aproximar una superficie mediante
otra con menos triangulos, la cual se podria aplicar como un post-procesamiento a la

superficie generada por cubos marchantes.

2.2.1.2. MODELOS TOPOLOGICAMENTE CORRECTOS

Para analizar el mallado final generado por el algoritmo original de Cubos Marchantes,

primero se debe definir qué es una superficie topoldgicamente correcta. En [CHE95] se define

que una superficie es topoldgicamente correcta si y s6lo si la topologia de los triangulos

generados coincide con la topologia de la funcién F(x, y, z) dentro de cada celda.

Para obtener una superficie topoldgicamente correcta, dos voxeles del mismo signo deben

estar unidos — 0 no separados — dentro de una celda si y s6lo si existe un camino dentro de ésta

que conecte ambos voxeles y no cambie de signo. El caso méas simple para determinar si dos
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voxeles estan conectados es cuando existe un camino a través de las aristas de la celda que so6lo
contiene voxeles del mismo signo. Sin embargo, hay dos casos donde la regla anterior no es
suficiente. Por ejemplo, cuando se tiene una cara con dos voxeles positivos y dos voxeles
negativos en esquinas opuestas que no estan conectados a través de las demaés aristas de la celda,
no se puede decir directamente que ambos voxeles estan separados, debido a que éstos podrian
estar unidos mediante un camino que pase por dentro de la cara. A este tipo de caras se les

denomina caras ambiguas, como la que se puede observar en la Figura 2.5.

Figura 2.5: Ejemplo de una cara ambigua. A la izquierda se muestra el caso donde los voxeles positivos se
encuentran separados, a la derecha se muestra el caso donde éstos no son separados. Los vixeles positivos se
encuentran marcados en azul, y los voxeles negativos se encuentran marcados en rojo.

El otro caso donde las reglas anteriores no son suficientes es cuando se tiene una ambigiiedad
interna, la cual ocurre cuando dos véxeles del mismo signo se encuentran en esquinas opuestas
de la celda y no estan conectados por las aristas ni por las caras de la misma, pero podrian estar
unidos a través de un camino que pase por dentro de la celda. Un ejemplo de este tipo de

ambigledad se puede observar en la Figura 2.6.

Figura 2.6: Ejemplo de ambigiiedad interna. A la izquierda se muestra el caso donde los vértices positivos se
encuentran separados, y a la derecha se muestra el caso donde éstos no estan separados.
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2.2.1.3. ERRORES TOPOLOGICOS DE CUBOS MARCHANTES

Una de las mayores criticas realizadas al algoritmo original de Cubos Marchantes, propuesto
en [LOR87], es que genera errores topologicos en ciertos volumenes de datos, los cuales
consisten en pequefios huecos en la superficie. En la Figura 2.7 se puede observar el hueco que
genera el algoritmo de los cubos marchantes cuando encuentra una celda del caso 6 adyacente a

una celda del complemento del caso 3.

A

\ 2
| — B

Figura 2.7: Ejemplo mostrando el hueco creado por Cubos Marchantes, el cual se
encuentra representado por el poligono gris en la cara compartida por ambas celdas.

Para verificar que este hueco no es topolégicamente correcto, se puede observar que el véxel
A tiene signo diferente al voxel B, lo que implica que el segmento de linea delimitado por esos
voxeles deberia intersectar la superficie generada en algin punto. Diirst [DURS8] propone
resolver este error agregando el cuadrilatero formado por los cuatro vértices en la cara
compartida por ambas celdas, correspondiente al poligono gris en la Figura 2.7. Sin embargo,
esta solucion no es la mas adecuada, debido a que ocasionaria que mas de dos triangulos

compartan una arista en el mallado final.

La razén por la cual se genera el hueco en la superficie es que la cara compartida por ambas
celdas es una cara ambigua, la cual se conecta de una forma en la celda izquierda y de otra forma
en la celda derecha. Existen dos formas de triangular una cara ambigua, una donde los triangulos
generados separan ambos voxeles positivos en la cara y otra donde éstos no son separados por la
triangulacion. En el primer caso se dice que la cara es una cara separada y en el segundo caso se

dice que es una cara no separada. Ambas triangulaciones validas para el caso expuesto de la
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Figura 2.7 se pueden observar en la Figura 2.8, donde la triangulacion superior corresponde a

utilizar una cara no separada y la triangulacion inferior corresponde a utilizar una cara separada.

Figura 2.8: Posibles triangulaciones vélidas para el caso mostrado en la Figura 2.7.

Cualquier método de extraccion correcto debe conectar los vértices de una cara ambigua de
la misma forma en ambas celdas a las que pertenece, ya sea separando los voxeles positivos en la
triangulacién o no. En el algoritmo original propuesto en [LOR87] no se cumple esta condicién,
debido a que al utilizar los complementos de los casos los voxeles positivos quedan unidos
dentro de las caras ambiguas, por lo cual se genera un hueco al unir un caso normal con uno

complementario (ver Figura 2.7).

Montani et al. [MON94] proponen un método para evitar la aparicion de huecos en la
superficie, el cual consiste en modificar la tabla de conectividad del algoritmo original de forma
que los voxeles positivos siempre sean separados en las caras ambiguas. Para esto, no se pueden
reducir los casos con caras ambiguas mediante complementariedad, sino GUnicamente por medio
de rotaciones y reflexiones. Los casos se pueden clasificar en tres conjuntos diferentes, los cuales

se procesan como se indica a continuacion:
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No hay méas de cuatro voxeles positivos: Se pueden generar mediante rotaciones y
reflexiones de los casos existentes en el algoritmo original [LOR87], debido a que los

vértices positivos en las caras ambiguas ya se encuentran separados (ver Figura 2.4).

Hay mas de cuatro voxeles positivos y no hay caras ambiguas: Se pueden generar
mediante rotaciones, reflexiones y complementariedad de los casos existentes en el
algoritmo original, porque al no existir caras ambiguas se puede aplicar
complementariedad libremente.

Hay mas de cuatro vixeles positivos y hay caras ambiguas: Se deben crear nuevas
triangulaciones, debido a que no se puede recurrir a la complementariedad por la
existencia de caras ambiguas. Estas triangulaciones nuevas corresponden a los

complementos de los casos 3, 6 y 7, los cuales se pueden observar en la Figura 2.9.

3 6

4 |4

Figura 2.9: Casos adicionales para prevenir huecos en la superficie.

Este método posee todas las ventajas del algoritmo original, y no conlleva ninguna

desventaja adicional, debido a que la tabla de conectividad se conserva del mismo tamafio

(28 = 256) y no se requiere de ningtin procesamiento adicional para procesar cada celda.

2.2.1.4. METODO DE DECISION ASINTOTICA PARA CUBOS MARCHANTES

Como se menciond anteriormente, la eleccion entre las dos formas validas de conectar los

vértices en una cara ambigua puede ser totalmente arbitraria siempre y cuando sea consistente a
lo largo de todas las celdas. Sin embargo, Nielson y Hamman presentaron el Método de la
Decision Asintotica (Asymptotic Decider) [NIE91], el cual consiste en elegir entre separar 0 no

separar los voxeles positivos de una cara ambigua en base a la evaluacion de un punto medio de
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ésta por medio de interpolacion bilineal, de forma tal que la superficie generada sea

topoldgicamente correcta (ver Seccion 2.2.1.2).

La interpolacion bilineal a través de una cara es la extension natural a realizar interpolacion
lineal a través de un segmento en dos dimensiones. Después de realizar un cambio de variables,
se puede asumir que el dominio de la cara es un cuadrado unitario {(s,t)|0 < s,t < 1}, lo cual
lleva a la siguiente formula para realizar interpolacion bilineal:

Boo Boi1\(1-t
B(s,t) =(1-s s)( ’ )( )
Bio Bia t
donde By, Bo1, B1o Y B11 son los isovalores de los voxeles que delimitan la cara ambigua. En
la Figura 2.10 se puede observar una grafica que muestra el isovalor de la cara dentro del

dominio, donde los ejes s y t representan el dominio de la cara y el eje vertical representa el

valor de la funcion F(x, y, z) en la cara.

(0.1,B,)

(1 !1 vBﬂ)

A
Figura 2.10: Interpolacion bilineal a través de la cara.

Se puede verificar facilmente que la curva {(s, t)|B(s,t) = a} es una hipérbola. Hay varias
formas en que el dominio de la cara puede intersectar (o no intersectar) la hipérbola, como se

puede observar en la Figura 2.11:

L (1)
l (1,1) \
— (0,0) —

— 1.1 (1.1

(0,0) {
(0,0) (0,0)

Figura 2.11: Distintos resultados posibles de interseccién con la hipérbola.
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Los casos ambiguos se dan cuando el dominio intersecta ambas componentes de la hipérbola,
en cuyo caso no se puede determinar a priori si los voxeles positivos estan dentro de la misma
region de las hipérbolas. Por ejemplo, en la Figura 2.12 se pueden observar dos formas posibles

en que el dominio intersecte la hipérbola en una cara ambigua.

Figura 2.12: Ambas hipérbolas posibles de la cara ambigua.

Una forma sencilla pero incorrecta de determinar qué caso se debe aplicar consiste en evaluar
exactamente el punto medio de la cara, y en base a esto decidir si los voxeles positivos deben ser
separados 0 no. Sin embargo, este método falla en los casos donde el centro del dominio se
encuentra dentro de alguna de las hipérbolas. En la Figura 2.13 se puede observar claramente que
ambos voxeles positivos no deben ser separados dentro del modelo, pero la evaluacion del punto

medio arroja como resultado que éstos deben ser separados.

@ /.

Figura 2.13: Caso donde evaluar en el centro de la cara (punto verde) da resultados erréneos,
mientras que evaluar en la interseccién de las asintotas (punto anaranjado) da el resultado correcto.

La solucion propuesta por Nielson [NIE91] consiste en determinar si los voxeles positivos

estan separados 0 no mediante la evaluacion de F(x,y,z) en el punto de la cara donde las
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asintotas de las hipérbolas se intersectan, lo cual siempre arrojara el resultado correcto porque

éste se encuentra fuera de las mismas.
El primer paso consiste en buscar las asintotas {(s, t)|s = S}y {(s, t)|t = T}, donde:

_ Boo — Boa T. = Boo — Biyo
- , T, =
Boo + B1,1 —Bo1 — By Boo + B1,1 —Bo1 — B1y

Sh

por lo cual se puede calcular el valor en B(S,, T,) mediante interpolacién bilineal:

Bo,oB1,1 — B1,0Bo1
Byo + B1,1 — Bo1 — Biy

Bsr = B(Sp, Ty) =

Finalmente, para determinar a qué caso de la Figura 2.12 corresponde la cara ambigua se
compara B con el valor de corte a (0 con O si se realiza la transformacion de Chernyaev
[CHE95]): Si Bsr se encuentra fuera de la superficie (Bsr < a) entonces los voxeles positivos
deben ser separados, en caso contrario (Bsy = a) no deben ser separados. Ambos casos se

pueden observar en la Figura 2.14.

(S1l 1) (S‘ll 1)

T ﬁ(‘l,?}) (O,TG)V ! 1
(0, 7,) N e (1,7,)

(Shl ?;r) (Sh, I},)
) ®
(S0, 0) (S0, 0)
0'.>B(S;” ]},) ag"B(Shr T.‘fr)

Figura 2.14: Triangulacion final después de evaluar la interseccidn de las asintotas.

2.2.1.5. RESOLUCION DE LA AMBIGUEDAD INTERNA

En 1995, Chernyaev [CHE95] propone un método para la resolucion de la ambigiiedad
interna basado en la variacion bilineal de F(x,y, z) sobre cualquier plano paralelo a una cara de

la celda. Si existen dos areas positivas separadas en las caras pero unidas dentro de la celda,
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entonces existe un plano paralelo a una cara de la celda, donde la cara ambigua formada por la

interseccion de este plano con la celda es una cara no separada (ver Figura 2.15).

B, C, A AB-CD,
" B _/ - “
A Zam— D,
B, Co
A, D,

Figura 2.15: Resolucion de ambigiiedad mediante cara paralela.

Dados Ay, By, Cy Y Dy, que representan los valores de los voxeles de la celda cuando t = 0,y
A4, B, C; y Dy, que representan los valores de los voxeles de la celda cuando t = 1, se puede

verificar facilmente que si las areas a resolver son positivas y unen los voxeles A, y C; entonces:

ApCy — BoDy < 0 2.1)
A;C; —BD; < 0

Si las areas se encuentran unidas dentro de la celda, entonces existe un t tal que:
At > 0, Ct > O, AtCt - BtDt > O (2.2)

Debido a que funcion F(x,y, z) varia linealmente a través de las aristas de la celda, se tiene
que la cara media esta definida por:

A=A+ (A1 — Ap)t (2.3)
B; = By + (B; — By)t
C, =Cy+ (C; — Cy)t
D, = Dy + (D; — Dy)t

Sustituyendo (2.3) en (2.2) se tiene que:
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at> + bt +c¢ >0 (2.4)
donde:

a= (Al - AO)(CI - Co) - (B1 - Bo)(D1 - Do)
b = Ay(C; — Cy) + Cy(Ay — Ay) — Bo(D1 — Do) — Dy(By — By)
Cc = AoCo — BODO

Las areas positivas estdn unidas Unicamente en el caso donde la pardbola (2.4) es como la
que se muestra en la Figura 2.15: la parabola se extiende hacia abajo, el méximo es positivo y se

encuentra entre 0 y 1. Estas condiciones se pueden verificar mediante los siguientes pasos:
e Verificar que a sea negativo, para que la parabola esté dirigida hacia abajo.

e Calcular el punto donde se alcanza el méximo t,,,, Yy Verificar que se encuentre en el

—b

intervalo [0, 1], donde tp,, = 3

e Verificar que la cara ambigua formada por A;, B;, C; y D, cuando t = t,,,, cumple las

condiciones establecidas en (2.2).
2.2.2. TETRACUBOS MARCHANTES

Una alternativa a resolver las ambigliedades inherentes a cubos marchantes consiste en
descomponer cada una de las celdas de la malla cartesiana (ver Figura 2.1) en varios tetraedros y
triangular cada uno de éstos independientemente. Este algoritmo es conocido como Tetracubos
Marchantes (Marching Tetracubes), el cual fue propuesto por Carneiro et al. [CAR95]. Sin
embargo, este método proporciona un resultado diferente al obtenido mediante el uso de Cubos
Marchantes, debido a que se asume interpolacion lineal a través de los tetraedros en vez de
interpolacion trilineal con los vdxeles originales de la celda. Si se utiliza interpolacion trilineal

en las aristas de los tetraedros vuelven a aparecer las ambigiiedades [YON95].
2.2.2.1. DIVISION DE LA CELDA EN TETRAEDROS

El primer paso del algoritmo consiste en dividir cada celda de la malla en tetraedros. Para

realizar esto se utiliza una tabla de divisién, la cual indica los cuatro vértices que delimitan cada
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uno de los tetraedros a generar a partir de la celda. Es importante que la tabla de division a

utilizar cumpla con las siguientes propiedades:

e La union de las regiones de todos los tetraedros generados debe ser exactamente igual a

la region cudbica inicial de la celda.

e Para cada par de tetraedros T; y T,, la interseccion de T; y T, debe ser vacia o alguna

cara, arista o vértice cominen T, y T,.

e Para todo par de celdas adyacentes, la triangulacion de la cara comdn de ambas celdas

debe coincidir.

Carneiro et. al. [CAR95] proponen el uso de una division de la celda en cinco tetraedros,
debido a que se generaria a lo sumo el doble de tridngulos de salida que en cubos marchantes. No
obstante, si se aplica la misma tabla de division a todas las celdas se generaran conexiones

erroneas entre celdas adyacentes, como se puede observar en la Figura 2.16.

Figura 2.16: Conexidn erronea en cubos adyacentes.

Para evitar que este tipo de conexiones ocurran, se debe utilizar una tabla de divisién para las
celdas pares y otra tabla simétrica para las celdas impares, como se puede observar en la Figura
2.17.
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Figura 2.17: Conexion correcta usando dos tablas de divisiones, una para las
celdas oscuras (pares) y otra simétrica para las celdas claras (impares).

2.2.2.2. TRIANGULACION DE UN TETRAEDRO

Después de descomponer cada celda en tetraedros, se procede a triangular cada uno de éstos

por separado para reconstruir la superficie S,. Sin embargo, es necesario redefinir F(x, y, z) para

realizar interpolacién lineal en cada tetraedro de la siguiente forma:

F(x,y,z) =Ax+By+Cz+D

Para determinar los valores de A, B, C y D, se puede observar que las siguientes ecuaciones

se deben cumplir de forma tal que F(x,y,z) aproxime de forma correcta los voxeles que

delimitan al tetraedro:

X0 Yo
X1 N
X2 Y2
X3 Y3

Zy
2
2
Z3

(S G S U Y

A
B 41
C
D

donde (x;, y;, z;) es la posicion del i-ésimo vixel del tetraedro y v; es el isovalor del mismo (ver

Figura 2.18). Como se puede observar, para determinar los coeficientes A, B, C y D se debe

resolver un sistema de cuatro ecuaciones con cuatro incégnitas, el cual tendra solucion Unica si y

solo si el tetraedro no es degenerado.
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Figura 2.18: Tetraedro utilizado para la extraccién de isosuperficies.

Debido a que la interpolacion a lo largo del tetraedro es lineal, la interpolacion a lo largo de
cada arista del tetraedro también es lineal, por lo cual la triangulacion de un tetraedro se puede
realizar de forma similar a la triangulacion de una celda mediante el uso de Cubos Marchantes.
El primer paso consiste en determinar cuales voxeles del tetraedro se encuentran dentro o fuera
de la isosuperficie, con lo cual se construye una mascara de 4 bits, donde el i-ésimo bit estara
encendido si y solo si el isovalor del i-ésimo voxel del tetraedro es mayor o igual que el isovalor

a, como se muestra en la Figura 2.19.
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0=05

Clase =+1

Vi

6=0.2

Clase =-1
O|11(0[1([=5
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Figura 2.19: Creacién de la mascara para el tetraedro utilizando « = 0.3,
donde cada & representa el isovalor en cada vértice que delimita el tetraedro.

Debido a que cada uno de los voxeles tiene dos estados posibles, existe un total de 2* = 16
formas diferentes en que la superficie a extraer puede intersectar el tetraedro. De forma similar a
Cubos Marchantes, por medio de rotaciones, simetria y complementariedad se pueden reducir los
dieciséis casos a tres casos topoldgicamente diferentes, los cuales se muestran en la Figura 2.20.

0 1 2

Figura 2.20: Posibles intersecciones de la isosuperficie con un tetraedro.

El siguiente paso es determinar cuales aristas del tetraedro son intersectadas por la superficie

y donde se encuentra el punto de interseccién. Una arista es intersectada por la superficie si y
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solo si uno de sus extremos se encuentra marcado y el otro no. Para determinar el punto P, donde
la arista es intersectada por la superficie se puede utilizar interpolacién lineal sobre la misma de

la siguiente manera:

a—7
P, =Py+ (P, —P (—)
x 0 ( 1 0) V1 — Vg
donde P, y P; son las posiciones de los extremos de la arista, vy y v, son los isovalores de la
funcién en los extremos de las aristas y a es el umbral de la superficie que se desea extraer.
Después de calcular todos los puntos de interseccion de la superficie con el tetraedro, se generan
los triangulos utilizando una tabla de conectividad de 16 casos, la cual se indexa utilizando la

mascara obtenida de la clasificacion de los voxeles.
2.3. EXTRACCION DE INTERVALOS DE VOLUMEN

Para la visualizacion de volumenes existen dos técnicas diferentes [FUJ95]: visualizacion
directa de volumen y extraccion de isosuperficies (0 DVR”* y SF°, por sus siglas en inglés,
respectivamente). Sin embargo, la visualizacion directa de volumen tiene la desventaja de
requerir mucho poder de procesamiento y experiencia por parte del usuario para inicializar la
funcion de transferencia. Por otro lado, mediante extraccion de isosuperficies solamente se
visualiza una parte del volumen, lo que ocasiona que el usuario no observe la informacién dentro

del contexto.

Debido a esto, se introdujo el concepto de extraccion de intervalo de volumen, el cual

consiste en el calculo de la parte del volumen dentro del rango [a, ], la cual se define como:

V(a,p) = {(x,y,2)|a < F(x,y,2) < B},

el cual puede ser visualizado de diferentes maneras, dependiendo de la representacion utilizada
por el algoritmo de extraccion.

Como se puede observar, este enfoque es una generalizacion de DVR y SF, debido a que

permite visualizar el volumen completo utilizando IV(—oo, ), y también permite visualizar la

* DVR: Direct Volume Rendering.
> SF: Surface Fitting.
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isosuperficie Sy utilizando IV(8, &). Inclusive, se puede visualizar Ss utilizando una tolerancia de
2¢ utilizando 1IV(6 — €, 6 + ¢€), lo cual es importante a la hora de trabajar con datos que puedan

estar sujetos a pequefias perturbaciones.

Otra ventaja de los intervalos de volumen sobre la extraccion de isosuperficies es el manejo
correcto de las celdas con valor constante a, ya que los métodos de extraccion de isosuperficies
no muestran nada, mientras que al visualizar IV(a, @) se observara toda la celda, y para todo

& # a, al visualizar IV(6, §) no se observara nada.

Otra forma de visualizar un subconjunto del volumen equivalente a IV(a, 8) consiste en
utilizar DVR configurando la opacidad de la funcion de transferencia de forma que el intervalo
la, B[° sea completamente transparente. Sin embargo, este procedimiento tiene la desventaja de
tener que procesar todo el volumen cuando el punto de vista del usuario cambia, mientras que
mediante el uso de intervalos de volumen se ahorra tiempo de procesamiento durante la
proyeccion, debido a que so6lo se debe recorrer la parte del volumen correspondiente al intervalo

de interés.

A continuacion se describiran los tres algoritmos principales para la extraccion de intervalos
de volumen, el primero esta basado en triangulaciones de Delaunay y formas alfa, el segundo

estd basado en cubos marchantes y el Gltimo en tetracubos marchantes.
2.3.1. EXTRACCION POR MEDIO DE FORMAS ALFA’

Este algoritmo fue propuesto por Guo [GUQO95], el cual consiste en aproximar el intervalo
[A, B] del volumen mediante el uso de una forma alfa S,. A continuacion, se introduciran los
complejos de simplices®, las formas alfa, y el procedimiento utilizado para la construccion de

éstas con el fin de aproximar el intervalo [4, B] de un volumen de datos.

14,B[ = {x € R|x ¢ (4, B)} [GRA%4]
" “Formas alfa” viene del término en inglés a-shapes.
& Simplices: plural de simplex.
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2.3.1.1. COMPLEJOS DE SIMPLICES®

Un n-simplex A, se define como un conjunto de (n+1) puntos en k™, con m>n, donde

ningun punto puede ser expresado como una combinacion afin de los demas, es decir:

n n
V (STt
a e jntl

Jj#i J#i

i€f{0,1,-n}

Por ejemplo, un O-simplex es un punto, un 1-simplex es una linea, un 2-simplex es un

triangulo, un 3-simplex es un tetraedro, y asi sucesivamente.

La frontera de un n-simplex Ay se define como el conjunto de todos los k-simplices A, tal

que k < n 'y todos los puntos de Ag se encuentran en Ay, es decir:
boundary(Ay) = {Ax|Ax € Ay}

Por ejemplo, la frontera de un tetraedro esta compuesta por 4 triangulos, 6 lineas y 4 puntos,

y la frontera de un tridngulo esta compuesta por 3 lineas y 3 puntos.

Sea C un conjunto de simplices de distintas dimensiones, C es un complejo de simplices si y

s6lo si se cumplen las siguientes condiciones:
e Paracadasimplex Ar € C, lafrontera de Ay se encuentraen C.

e Para todo par de simplices (A1, Ar,) donde Arq, A, € C, Su interseccion se encuentra

en la frontera de Ar; y en la frontera de Az,.

El espacio subyacente |C| de un complejo de simplices C es la unién de todos los simplices

contenidos en C, y un complejo de simplices C’ es un subcomplejo de C si y solosi €' c C.
2.3.1.2. FORMAS ALFA

Sea S un conjunto de puntos en R™, Edelsbrunner y Mucke [EDE94] definen la familia de

formas alfa {S,|0 < @ < o} en base a una familia de subcomplejos de la triangulacion de

% «“Complejos de simplices” viene del término en inglés simplicial complexes.
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Delaunay D(S), de los cuales se derivan éstas como los espacios subyacentes de dichos

subcomplejos.

Para un n-simplex Az, sea Oy la esfera cerrada méas pequefia cuya frontera contenga Az. Los
complejos alfa {C,|0 < a < oo} estdn compuestos por los siguientes elementos: (a) todos los
elementos Ay € D(S), tal que la esfera O de Ay tenga radio estrictamente menor que a y no
haya punto de S dentro de la esfera abierta'® limitada por Oy, y (b) la frontera de todos los
elementos descritos en (a). Finalmente, se define para cada a (0 < a < o) la forma alfa S,

como el espacio subyacente del complejo C,, es decir, S, = |C,|.

Por ejemplo, dado un conjunto de puntos S en R3, la forma S, consiste en la triangulacion de
Delaunay D(S), donde los tetraedros cuyas esferas tienen radio mayor o igual a @ son sustituidos
por las cuatro caras triangulares que los delimitan. Luego, aquellos tridngulos cuyas esferas
tienen radio mayor o igual a a son sustituidos por las tres lineas que los delimitan, y asi

sucesivamente hasta llegar a los vértices.
2.3.1.3. CONSTRUCCION DE LAS FORMAS ALFA

La construccion de una forma alfa S, para aproximar el intervalo [A4, B] de un volumen de
datos se realiza en tres pasos: evaluar el volumen para generar un conjunto de puntos S en el
intervalo [A4, B], construir la triangulacion de Delaunay D(S) y generar el complejo C, cuyo

espacio subyacente |C, | sea S,,.

El conjunto S de puntos a utilizar incluye todas aquellas muestras V; ; , del volumen que se
encuentren dentro del rango [4, B]. Sin embargo, este conjunto no permite la construccion de los

bordes del intervalo, por lo cual se afiaden los puntos de las isosuperficies S, y Sg, donde:

SA = {(x;y,ZNF(x;y'Z) = A}
SB = {(X:%ZNF(?C:}"Z) = B}

los cuales se calculan de forma similar a como se calculan los vértices de una isosuperficie

mediante el uso de Cubos Marchantes. En la Figura 2.21 se pueden observar los puntos

9 Una esfera abierta con centro C y radio r de define como todos aquellos puntos cuya distancia a C es
estrictamente menor que 7.
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pertenecientes a S en un mallado bidimensional, junto con la aproximacion del borde del

intervalo de volumen mediante lineas.

Figura 2.21: Mallado bidimensional a procesar mediante formas alfa, los puntos pertenecientes a S se muestran con
puntos rojos, y la aproximacion del borde del intervalo de volumen mediante el uso de simplices se muestra con
lineas negras.

Después de calcular los puntos pertenecientes a S, se procede a calcular la triangulacién de
Delaunay D(S), lo cual se puede realizar utilizando cualquier algoritmo existente para este
proposito. No obstante, se debe preprocesar la nube de puntos para que se encuentre en posicion
general, es decir, no deben existir cuatro o mas puntos coplanares ni deben existir cinco 0 mas
puntos en la frontera de la misma esfera. Sin embargo, cuando se trabaja con mallas cartesianas
uniformes regulares, la nube de puntos S generalmente contiene multiples grupos de puntos
coplanares, especificamente todos aquellos pertenecientes a un mismo corte cuyos isovalores se
encuentren dentro del rango [A4, B]. Para solucionar esto, se puede utilizar una técnica llamada
Simulacién de Simplicidad** [EDE90], la cual consiste en perturbar la nube de puntos

infinitesimalmente con el objetivo de llevar ésta a posicion general.

Una vez que se tiene la triangulacion de Delaunay D(S), la tarea principal para la extraccion
de S, consiste en elegir un valor a apropiado para la generacion del volumen. En general, a
medida que «a disminuye, las caracteristicas gruesas del volumen son sustituidas por

caracteristicas mas finas. Sin embargo, después que a disminuye debajo de cierto valor &,

! También llamado SoS, por sus siglas en inglés (Simulation of Simplicity).
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empiezan a aparecer cavidades en S,, lo cual es indeseable debido a que el intervalo debe ser

representado principalmente por tetraedros.

Para determinar el valor de &, se analizard el complejo alfa C, en un cubo unitario. Los

elementos incluidos en C, dependen de las siguientes condiciones:

Si a > 0, existen esferas con radio positivo tal que contengan cada vértice del cubo, por

lo cual los ocho vértices del cubo pertenecen a C,,.

e Sia > 7, existen esferas con radio menor que a que contienen cada arista del cubo, por lo

cual las doce aristas del cubo pertenecen a C,.

e Sia> ? existen esferas con radio menor que a que contienen cada cara del cubo, por lo

cual los doce tridngulos que componen las caras del cubo pertenecen a C,,.

e Sia> V2—§ existe una esfera con radio menor que a que contiene el cubo, por lo cual los

seis tetraedros que componen al cubo pertenecen a C,,.

En consecuencia, para un cubo unitario se tiene que @& = ‘/2—§+ €, donde € es un valor muy
pequefio, cuyo objetivo es prevenir que errores de redondeo ocasionen la aparicion de cavidades
dentro del modelo. Luego, para un cubo de lado d se tiene que & = (@ + e)d, debido a que

todas las primitivas analizadas anteriormente también son escaladas en la misma proporcion que
el cubo con relacion al cubo unitario. Finalmente, se calcula y visualiza Sy, la cual representara

el intervalo [A4, B] del volumen.
2.3.2. EXTRACCION POR MEDIO DE CUBOS MARCHANTES

En 1995, Fujishiro, Maeda y Sato [FUJ95] publicaron un método para la extraccion de
intervalos de volumen, el cual consiste en una adaptacion de cubos marchantes para extraer un
mallado triangular que encierre aquellas partes del volumen que se encuentren dentro del
intervalo [a, B] a extraer. De forma similar a como se realiza en cubos marchantes, la extraccion

del intervalo se realiza celda por celda independientemente.
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A continuacion, se explicaran las consideraciones locales y globales que se deben tomar en

cuenta al momento de la extraccion del intervalo de volumen [a, ] mediante esta técnica.
2.3.2.1. EXTRACCION LOCAL DEL INTERVALO DE VOLUMEN

Para extraer los triangulos de la celda que representen el intervalo [a, 8], se puede adaptar
Cubos Marchantes de dos formas diferentes. La primera, consiste en clasificar cada uno de los
voxeles utilizando la comparacion entre su isovalor §; y el intervalo [a, 8] de la siguiente

manera:

-1, sif;<a
clase(6;,a,B) =4 +1, sié; >f
0, sia<é6;<p

Por ejemplo, en la Figura 2.22 se puede observar una celda con los isovalores de cada voxel,

asi como la clasificacion de cada uno de ellos.

Después de clasificar los voxeles de la celda, se puede construir un indice mediante la
interpretacion de las clases de los voxeles en base-3, el cual se utiliza para acceder a una tabla de
conectividad de 3% = 6561 casos, de donde se obtendran los triangulos a generar a partir de la
celda. Para la resolucién de ambigiiedades se pueden aplicar las mismas técnicas aplicadas en
cubos marchantes [NIE91][CHE95].
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Figura 2.22: Clasificacion de celda en base a los isovalores en sus voxeles,
donde cada & representa el isovalor en cada vértice que delimita la celda.
Sin embargo, se pueden aprovechar las operaciones de conjuntos para simplificar la cantidad
de casos a tomar en cuenta, mediante la expresion del intervalo [a, ] como la interseccion de los

intervalos [a, ) y («, B], es decir:
IV(a,B) = IV(—o0, ) NIV(a, )

Para representar los intervalos de volumen 1V(a, o) y IV(—o,B) se utilizan poliedros,
también llamados cubos-a y cubos-S, respectivamente. Esto permite simplificar la extraccion del
intervalo en cada celda a Ginicamente 28 = 256 casos, debido a que cada uno de los vixeles solo

tendra dos clasificaciones posibles, dentro del intervalo o fuera de éste.

Para extraer el cubo-a de una celda del volumen, se modifica la tabla de casos de Cubos
Marchantes para extraer la subregién positiva de la celda cuya frontera es la isosuperficie S, la
cual se determina en base a los isovalores de los vioxeles de la celda. Para extraer el cubo-p se
realiza el mismo procedimiento, pero extrayendo la subregion negativa de la celda cuya frontera
es Sg. En la Figura 2.23 se pueden observar los poliedros generados para algunas

configuraciones de los isovalores de las celdas.
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3 i | ' ' g
Figura 2.23: Algunas configuraciones posibles durante la extraccion
de los cubos-a (izquierda) y los cubos-g (derecha).

En el caso general donde a < S8, la interseccion de los cubos-a y los cubos-g de las celdas
no es vacia, siempre y cuando ésta sea intersectada por el intervalo a extraer (ver Figura 2.24).

Debido al teorema del valor medio, se pueden determinar los siguientes hechos:

e Entre un voxel negativo y uno positivo existira un punto con valor a y otro con valor 5.
e Entre un voxel negativo y un voxel neutro existird un punto con valor «a.

e Entre un voxel positivo y un voxel neutro existira un punto con valor .

Para calcular la posicion de los puntos donde el cubo- a o el cubo- 8 intersectan las aristas de
la celda se realiza un procedimiento similar al utilizado en cubos marchantes. El punto Py (6)

donde una arista E tiene valor § esta dado por:

Pz(8) = Py + (Py — Py)

6—1]0
U1 — Vg

donde Py y P; son las posiciones de los extremos de la arista E, y v, y v4 son los isovalores de
los voxeles en los extremos de la arista E. También se pueden calcular los valores de otros

atributos Xz (&) en el punto P;(5) de la siguiente manera:

Xp(8) = Xo + (X1 — Xp)

6—170
U1 —

donde X, y X; son los valores del atributo en los extremos de la arista E.
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+1

B (0
Figura 2.24: Caso general donde @ < 8. La zona de color rojo pertenece Unicamente al cubo- «, la zona de color

azul pertenece Unicamente al cubo- 3, y la zona de color violeta pertenece a ambos cubos. Los bordes del poligono
extraido de la celda se encuentran resaltados.

Para verificar que este enfoque es una generalizacién de la extraccion de isosuperficies, se
puede observar si a = f8, la interseccion del cubo- a y del cubo- 8 en cada celda serd igual a la

isosuperficie S, = Sg, como se puede observar en la Figura 2.25.

Figura 2.25: Caso especial donde a = . La zona de color rojo pertenece inicamente al cubo- «, la zona de color
azul pertenece Unicamente al cubo- 8, y el poligono extraido se encuentra resaltado.

2.3.2.2. EXTRACCION GLOBAL DEL INTERVALO DE VOLUMEN

A diferencia de cubos marchantes, es importante tener en cuenta la posicion de la celda en el
volumen al momento de la extraccion del intervalo en ésta. Esto se debe a que los bordes de las
celdas son incluidos al momento de realizar la interseccion de los cubos- a y cubos- 8, lo que

ocasiona que en el mallado final existan aristas compartidas por mas de dos triangulos.
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Para solucionar esto, se deben ignorar aquellas caras de los poliedros extraidos de la
interseccion de los cubos- a y los cubos- 8 que se encuentren alineados a alguna de las caras de
las celdas que no den al exterior del volumen (ver Figura 2.26). Las caras de los poliedros que

dan al exterior no son ignoradas, de forma tal que el mallado generado sea cerrado.

B«

< ®

Figura 2.26: Intervalo de volumen en celdas adyacentes. Las lineas negras representan las caras del poliedro final, y
la linea anaranjada entre las dos caras representa la cara interna ignorada en el mallado final.

2.3.3. EXTRACCION POR MEDIO DE TETRACUBOS MARCHANTES

En 1997, Nielson y Sung [NIE97b] publicaron un método para la extraccion de intervalos de
volumen, el cual consiste en una adaptacién de tetracubos marchantes para extraer un mallado
tetraédrico que aproxime aquellas partes del volumen que se encuentren dentro del intervalo
[a, B] a extraer. De forma similar a como se realiza en tetracubos marchantes, la extraccién del

intervalo se realiza celda por celda.

Los pasos a seguir para la extraccion del mallado tetraédrico mediante esta técnica se pueden
observar en la Figura 2.27. Primero, el algoritmo procesa el volumen como un conjunto de celdas
independientes, las cuales son divididas en varios tetraedros, dentro de los cuales se asume que
los valores varian linealmente. La division de cada celda en tetraedros se realiza de la misma
manera como se realiza en tetracubos marchantes (ver Seccion 2.2.2.1). Después de dividir la
celda en tetraedros, para cada uno de estos se calculan aquellos puntos de las aristas donde estas

se evallan a @ 0 § y aquellos voxeles que se encuentran dentro del intervalo. Una vez calculados

45



estos puntos se obtiene un poliedro- af, el cual posteriormente es dividido en uno o mas

tetraedros de salida.

Construccion de Mallado

Regular de Celdas
L]
L]
L]
I . el
L ] L] L ] . o o o
Division de Celda

N O en Tetraedros

L ] L] L ]

/ Calculo de Intersecciones entre

@ el Intervalo y los Tetraedros

Tetraedrizacion de \

Poliedro-off -

Extraccion de
Poliedro-of§

Figura 2.27: Pasos necesarios para la tetraedrizacién de un intervalo de volumen.

A continuacidn, se describird el proceso para la extraccion del poliedro- a8 a partir del
tetraedro de entrada, asi como el proceso para dividir el poliedro- af obtenido en tetraedros de
salida.

2.3.3.1. EXTRACCION DEL POLIEDRO ALFA-BETA

Esta seccion explica el procedimiento que se debe llevar a cabo para la extraccion del
poliedro- af a partir de un tetraedro de entrada. Como se menciond anteriormente, se asume que

se tiene el valor de la funcién F(x, y, z) en los vértices del tetraedro y que los valores internos se
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obtienen mediante el uso de interpolacion lineal, de la misma forma como se realiza en

tetracubos marchantes (ver Seccion 2.2.2.2).

El primer paso que se debe llevar a cabo es la clasificacion de cada uno de los vértices del

tetraedro en base a su isovalor de la siguiente manera:

-1, sif; <a
clase(6;,a,B) =4 +1, sié; >f
0, sia<é; <p

donde 6; es el isovalor del vértice a preprocesar.

040
130 I 031 I
220 121 022

310 : 211 I 112 { OZ
400 [ 301 [ 202] 103 [ 004 l
Figura 2.28: Casos posibles durante la extraccion del poliedro- af a partir del tetraedro. Los vértices rojos se

encuentran por debajo de a (negativos), los vértices azules se encuentran por arriba de 8 (positivos) y los vértices
violetas se encuentran dentro del intervalo a extraer (neutros).

Una vez clasificados los vértices del tetraedro, se construye un indice entero mediante la
interpretacion de las clasificaciones de los vértices como digitos en base-3, lo cual genera un

total de 3* = 81 casos. Sin embargo, dos tetraedros son equivalentes por medio de rotaciones y
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reflexiones si poseen la misma cantidad de vértices de cada clase, debido a que todos éstos se
encuentran conectados entre si por medio de aristas. Esto nos permite reducir el total de casos a
15, los cuales se pueden observar en la Figura 2.28, donde el primer digito del caso indica la
cantidad de vértices negativos (clase —1), el segundo digito indica la cantidad de vértices neutros

(clase 0) y el tercer digito indica la cantidad de Vértices positivos (clase +1).

Es importante observar que los poliedros- a8 generados en cada caso son convexos y poseen
caras planas, debido a que la interpolacion dentro del tetraedro es lineal. Esto facilita la

tetraedrizacion del poliedro en el siguiente paso.
2.3.3.2. TETRAEDRIZACION DEL POLIEDRO ALFA-BETA

En esta seccion se explicara el procedimiento que se debe llevar a cabo para descomponer el
poliedro- aff de cada celda en tetraedros. Es importante destacar que los poliedros- a8 son
tetraedrizables, debido a que éstos son convexos [NIE97a]. Sin embargo, si no se toman medidas
especiales al llevar a cabo la tetraedrizacion de cada poliedro, puede ocurrir que la
tetraedrizacion de un poliedro no coincida con la de otro poliedro adyacente, lo cual sucede
cuando en la cara compartida por los poliedros se elije una triangulacion de un lado y otra

triangulacion diferente en el otro (ver Figura 2.29).

Figura 2.29: Posibles tetraedrizaciones alrededor de la cara roja, la cual es compartida por dos poliedros diferentes.
A la izquierda se muestra la tetraedrizacion correcta, a la derecha se muestra la incorrecta.

Para solucionar este problema, se debe establecer un método para escoger de forma
consistente la triangulacion a utilizar en cada cara del poliedro. Nielson [NIE97b] propone

utilizar la regla de conexion por indices (index connection rule), para lo cual es necesario
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establecer una relacion de orden total entre los vértices del mallado final. Sea V el conjunto de

vértices del mallado final, una relacién de orden total sobre V' consiste en un predicado p(u, v)

que permita comparar cada par de Vvértices u,v eV, con el fin de determinar si el vértice u

precede a v. Este predicado debe cumplir las siguientes propiedades:

Propiedad reflexiva: Para todo vértice v, el predicado p debe indicar que v precede a v,

es decir:

N\ r@v)

u,v eV

Propiedad antisimétrica: Para todo par de vértices u,v € V, si u precede a vy v

precede a u, entonces u debe ser igual a v, es decir:

/\ pu,v) Ap(v,u) =>u=v

u,v eV

Propiedad transitiva: Para todo trio de vértices u, v,w € V, si u precede a v y v precede

a w, entonces u debe preceder a w, es decir:

J\ PG Ap@w) = pu,w)

uv,w€evV

Propiedad de orden total: Para todo par de vértices u,v € V, u precede a v 0 v precede

a u, es decir:

/\ pav) Vo

u,v eV

SeaW cVtalque W+ @ yseauecW, uesun elemento minimal de W si y solo si no

existe otro elemento v € W tal que v # u y v preceda a u, es decir:

/\ p(v,u)

v eV
v Fu
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Debido a la propiedad de orden total W sélo posee un elemento minimal, debido a que si
existieran dos elementos u, v € W entonces u no debe preceder a v y v no debe preceder a u, lo

cual contradice la propiedad de orden total del predicado p.

Después de establecer el predicado de ordenamiento, éste se utiliza para determinar
univocamente la triangulacion a utilizar en cada cara de cada poliedro- af3, independientemente
del poliedro al que pertenezca. Como se puede observar en la Figura 3.8, solo existen tres tipos
de cara a procesar: triangulos, cuadrilateros y pentagonos, los cuales se triangulan de la siguiente

manera (ver Figura 2.30):

e Triangulos: En este caso no existe ningun problema, debido a que s6lo hay una

triangulacion posible.

e Cuadrilateros: Se elige aquella triangulacion donde se utiliza la diagonal entre el menor

veértice y su veértice opuesto.

e Pentagonos: En la Figura 2.28 se puede observar que todas las caras pentagonales de los
poliedros- af tienen un vértice neutro, por lo cual se divide con la triangulacion que

utiliza las diagonales entre este vértice y sus vértices opuestos.

3 4

2 o B

Figura 2.30: Regla de conexidn por indices para cuadrilateros (izquierda) y para pentagonos (derecha).

A continuacion, se analizaran cada uno de los casos posibles para las triangulaciones de cada
tipo de poliedro en la Figura 3.8, los cuales se clasifican como tetraedros, prismas, cristales y

cubos.
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A. TETRAEDROS

En los casos 040, 310 y 013 el poliedro- af es un tetraedro, el cual consiste en un poliedro
de cuatro vértices con cuatro triangulos. En estos casos, no es necesario ningn procesamiento o

analisis adicional, debido a que éste no debe ser dividido.
B. PRISMAS

En los casos 031, 022, 103, 130, 220 y 301 el poliedro- af es un prisma, el cual consiste en
un poliedro de seis vértices, con dos tridngulos opuestos y tres cuadrilateros. Para cada prisma

existe un total de 23 = 8 tetraedrizaciones posibles, de las cuales solo seis son validas.

IZQ|ATR |DER

7 SN
1) N 7

Figura 2.31: Posibles divisiones para un prisma. Las configuraciones 000 y 111 no son tetraedrizables. 12Q, ATR y
DER indican la direccién de la tetraedrizacidn a utilizar para la cara izquierda, trasera y derecha, respectivamente.

Como se puede observar en la Figura 2.31, en las seis configuraciones validas se puede
dividir el prisma en tres tetraedros de salida. Ademas, las dos configuraciones invélidas no
ocurren al aplicar la regla de conexion por indices, debido a que esos casos no son consistentes

con la propiedad transitiva del predicado de ordenamiento p.
C. CRISTALES

En los casos 121, 112 y 211 el poliedro- ¢f es un cristal, el cual consiste en un poliedro de
ocho vértices con dos tridngulos opuestos, dos cuadrilateros y dos pentagonos. Para este tipo de
poliedros, primero se procede a descomponerlo en un tetraedro y dos piramides de base cuadrada

utilizando la regla de conexidn por indices en los pentagonos, como se muestra en la Figura 2.32.

o1



Luego, cada piramide puede ser dividida en dos tetraedros utilizando la regla de conexion por

indices en cada cuadrilatero.

b D
> &
> B

Figura 2.32: Posibles divisiones de un cristal en dos piramides y un tetraedro.
D. CUBOS

En el caso 202 el poliedro- af tiene forma de cubo, que consiste en ocho vértices unidos por
seis cuadrilateros opuestos entre si. Debido a que el cubo se encuentra compuesto por seis
cuadrilateros, existe un total de 2° = 64 triangulaciones de las caras. Para verificar que todas las
triangulaciones de las caras generadas por la regla de conexion por indices son tetraedrizables, se
analizara caso por caso en base a los dos menores vértices del cubo, los cuales seran

identificados con 1y 2 en las Figuras 2.33, 2.34 y 2.35.

El primer caso es cuando los vértices 1 y 2 se encuentran en esquinas opuestas del cubo. En
este caso, cada una de las caras del poliedro contiene exactamente uno de los vértices minimos,
por lo que las diagonales a utilizar se encuentran definidas. En la Figura 2.33 se puede observar

la division del cubo en seis tetraedros.
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Figura 2.33: Division de un cubo cuando los dos vértices se encuentran en esquinas opuestas del cubo.

El segundo caso es cuando los vértices 1 y 2 se encuentran en esquinas opuestas de la misma
cara del cubo. En este caso, todas las caras tienen el menor vértice definido, excepto la opuesta a
la cara con los vértices minimos, por lo cual quedan dos casos por verificar (ver Figura 2.34). En
el primer caso, se puede dividir el cubo en cinco tetraedros, y en el segundo caso, se puede

dividir el cubo en seis tetraedros.

: ] 1
LR LN
| |

= =

Figura 2.34: Division de un cubo cuando los dos menores vértices se encuentran en una misma cara de éste.

Finalmente, el ultimo caso es cuando los vértices 1 y 2 se encuentran en la misma arista del
cubo. En este caso, quedan cuatro casos por considerar, debido a que la regla de conexion por
indice permite establecer la triangulacion de cuatro caras del cubo. En la Figura 2.35 se pueden

observar las divisiones del cubo en seis tetraedros para los cuatro casos restantes.
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=2 =8 =80
=p = K

Figura 2.35: Division de un cubo cuando los dos vértices minimos estan en una misma arista de éste.
2.4. METRICAS DE CALIDAD

La razon principal para el uso de mallados de triangulos y tetraedros a la hora de trabajar con
volimenes de datos tridimensionales es que facilita su visualizacion y permite realizar
simulaciones sobre partes de ellas sin la necesidad de tener que manipular todo el volumen.
Muchos de los procedimientos utilizados para llevar a cabo visualizaciones o simulaciones sobre
mallados triangulares implican procedimientos matematicos que requieren que los triangulos a
procesar posean formas regulares y no tengan degeneraciones. Por ejemplo, para visualizar la
isosuperficie utilizando el modelo de sombreado Gouraud se realiza interpolacion trilineal para
calcular el color dentro del triangulo, por lo cual es preferible maximizar el minimo angulo
interno de cada triangulo, de forma que el error generado por el modelo de iluminacion sea

minimizado.

Debido a esto, se han disefiado e implementado diversas métricas para evaluar la calidad de
triangulos y tetraedros [STIO07]. En este trabajo, sélo se tomaran en cuenta aquellas métricas que
permitan la evaluacion de los elementos de un mallado independientemente, sin necesidad de

otro mallado de referencia.
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Las métricas utilizadas para evaluar la calidad de las primitivas se pueden clasificar en dos
tipos diferentes: propias y no propias. Las métricas propias consisten en un valor real sin unidad,
el cual es igual a uno (1) para subregiones ideales — un triangulo equilatero con &rea unitaria o un
tetraedro regular con volumen unitario — y tiende a infinito (o) para elementos degenerados o de
baja calidad, como por ejemplo, un tridngulos con aristas cuyas longitudes difieren
significativamente o un elemento con un par de Vvértices iguales. Las métricas no propias
consisten en valores reales con unidad, como por ejemplo, longitudes, angulos, areas o

volUmenes, cuyo valor ideal depende de la métrica.

A continuacion, se describiran las métricas mas importantes a la hora de evaluar la calidad de
triangulos y tetraedros. La descripcion de cada métrica incluye la explicacion del factor que
evalla, la forma de calcularla, posibles casos de borde, el rango donde se considera que el
elemento es de buena calidad, asi como el rango donde se considera que el elemento es
degenerado o de baja calidad, los cuales fueron extraidos de [ST107]. Luego, se describe cémo

evaluar la calidad de un conjunto de primitivas en base a la calidad de cada una de las primitivas.
2.4.1. METRICAS DE CALIDAD PARA TRIANGULOS

Las métricas descritas en esta seccion estan definidas sobre un elemento triangular como el

que se muestra a continuacion en la Figura 2.36.

P

B L P,

Figura 2.36: Elemento triangular utilizado para describir las métricas de calidad.
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A continuacion se definiran varios elementos del tridngulo, lo cual facilitara la descripcion de
las métricas a evaluar. En todas las definiciones y métricas descritas a continuacion, si el indice

de un punto o arista del triangulo se encuentra fuera de {0, 1, 2}, se tomara el resto de dividir éste

entre tres, lo cual facilita la expresion de algunas ecuaciones en las métricas.
Las aristas del tridngulo se encuentran definidas de la siguiente manera:
L—O):PZ_PII ZI:PO_PZ' f2+:P1—Po
Las longitudes de las aristas del triangulo se definen de la siguiente manera:
Lo =|[Loll, Ly =lL:]l. Lo =||Lz]l
y las longitudes de la arista mas pequefia y méas grande son, respectivamente:
Lpin = min(Lg,Lq,Ly), Ly, = max(Lg,Lq,Ly)

El area de un triangulo es la mitad de la magnitud del producto cruz de cualquier par de
aristas adyacentes:

1 1 1
A =3l X Lyll = S Ly X Lall = S Ly X Lol

Ademas, se define r como el radio del circulo inscrito y R como el radio del circulo

circunscrito del triangulo, los cuales también son llamados radio interno y radio circunscrito:

24 LoLiL, LoLiL,

= —) R = =
T Lo+ L+ Ly 2r(Lo+ Ly + L) 4A

2.4.1.1. RELACION DE ASPECTO

La relacion de aspecto de un tridngulo representa la proporcionalidad que tiene respecto a su
ancho y alto. Para calcular la relacién de aspecto de un tridngulo se divide la longitud de la arista
mas larga entre el radio del circulo inscrito. Sin embargo, el valor se normaliza de forma tal que

un triangulo equilatero de area unitaria tenga g = 1.
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q= Lmax _ Lmax (LO + Ll + LZ)
2v/3r 434

La relacion de aspecto del tridngulo g se encuentra dentro del rango [1, o), y se considera

que un tridngulo es de buena calidad si ésta se encuentra dentro del rango [1, 1.3].
2.4.1.2. PROPORCION DE ARISTAS
La proporcion de las aristas se calcula como:

L max

q:

Lmin

La proporcion de las aristas g se encuentra en el rango [1, o). Un tridngulo se considera de

buena calidad si ésta se encuentra en el rango [1, 1.3].
2.4.1.3. PROPORCION DE RADIOS

La proporcion de los radios de un tridangulo se calcula como:

q=z

donde r y R son los radios inscritos y circunscritos del triangulo a evaluar. La proporcion de
los radios de un triangulo g se encuentra en el rango [1, o). Sin embargo, un triangulo solo se

considerara de buena calidad si su proporcién de radios se encuentra en el rango [1, 1.3].
2.4.2. METRICAS DE CALIDAD PARA TETRAEDROS

Las métricas descritas en esta seccién estan definidas sobre un elemento tetraédrico como el

gue se muestra a continuacion en la Figura 2.37.
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Figura 2.37: Elemento tetraédrico utilizado para describir las métricas de calidad.

A continuacion se definiran varios elementos del tetraedro, lo cual facilitara la descripcion de

las métricas a evaluar.

Las aristas del tetraedro se encuentran definidas de la siguiente manera:

Ly=Lyy =P, —Py, L3y=Lyz=P;—PFy
L

Li=Liy=P,— P, Ly= =

S
[

Lyg=Py—P;, Ls=Ly;3=P3—P,
Las longitudes de las aristas del tridangulo se definen de la siguiente manera:

Lo = ||Lo

| Li=Lll Le =Ll Ls=|Lsll Le=ILsll. Ls = |[Ls]
y las longitudes de la arista mas pequefia y mas grande son, respectivamente:
Lmin = min(Lo,L1,L2,L3,L4,L5), Lmax = maX(LO'LlrLZ'L3'L4-rL5)

El area de la superficie de un tetraedro es igual a la suma del area de las cuatro caras que lo
componen:
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1 T o7 T o7 -— = —
A= (5 % Toll + 155 x Toll + 1E x L5 + I x Z3])
El volumen del tetraedro se puede definir en base a las aristas como:

L _(Gxin) I
6

Ademas, se define r como el radio de la esfera inscrita y R como el radio de la esfera

circunscrita del tetraedro, los cuales también son llamados radio interno y radio circunscrito:

_3v R_||L%'(EX§)+L%'(ZX§)+L%'(ZXE)||
T T 12V

2.4.2.1. RELACION DE ASPECTO

La relacion de aspecto de un tetraedro representa la proporcionalidad que tiene respecto a su
longitud, ancho, y alto. Para calcular la relacion de aspecto de un tetraedro se divide la longitud
de la arista mas larga entre el radio de la esfera inscrita. Sin embargo, el valor se normaliza de

forma tal que un tetraedro equilétero de &rea unitaria tenga q = 1.

q — Lmax — ALTYIG.X
2V6r 66V

La relacion de aspecto g del tetraedro se encuentra dentro del rango [1, o), y se considera

que un tetraedro es de buena calidad si ésta se encuentra dentro del rango [1, 3].
2.4.2.2. PROPORCION DE ARISTAS

La proporcion de aristas de un tetraedro se define como la longitud de la arista mas larga
entre la longitud de la arista méas corta, es decir:

L max

q:

Lmin

La proporcién de las aristas g se encuentra en el rango [1, o), pero para que un tetraedro sea

considerado de buena calidad ésta se debe encontrar en el rango [1, 3].
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2.4.2.3. PROPORCIONALIDAD DE RADIOS

Esta métrica se define como el radio de la esfera circunscrita entre el radio de la esfera
inscrita en el tetraedro, normalizada de forma tal que un tetraedro equilétero tenga calidad uno,

es decir:

R |Ig - (L x Lo) + 13 - (L3 x Lo) + 1§ - (L3 x L) |4
3r 10812

q:

La proporcionalidad de los radios de un tetraedro g se encuentra en el rango [1, ), y se
considera que un tetraedro es de buena calidad si dicha proporcionalidad se encuentra en el rango
[1,3].

2.4.3. METRICAS PARA CONJUNTOS DE PRIMITIVAS

La salida generada por los algoritmos para la extraccion de isosuperficies e intervalos de
volumen no es una sola primitiva, sino un conjunto ellas, por lo cual se deben disefiar métodos
para el andlisis de conjuntos de primitivas en base a la calidad de cada uno de los elementos que

componen dicho conjunto.

El primer método [STIO7] para evaluar la calidad del conjunto consiste en clasificar cada
primitiva de éste en base a los rangos y determinar si es buena, normal o degenerada en base a
alguna métrica y contar cuéntas existen de cada tipo. Luego, la calidad del modelo sera
directamente proporcional a la cantidad de primitivas buenas e inversamente proporcional a la

cantidad de primitivas degeneradas.

El segundo método [STI07] consiste en calcular la calidad del conjunto de primitivas como la
media de la calidad de cada uno de los elementos de éste, y tomar la desviacion estandar como el
grado de esparcimiento de la calidad de los elementos. Para las métricas no propias se

recomienda utilizar la media y desviacion estandar aritmética, las cuales se definen como:

n n
1 1 )
u=EZqi, o= n—lz(qi_#)
i=1 i=1
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donde g, es la calidad del i-ésimo elemento del conjunto. Para las métricas propias se

recomienda utilizar la media y desviacién estandar geométrica, las cuales se definen como:

1 2
1y = (1—[ ql-) , Oy =exp ;E(In g —Inpy)
i=1

i=1
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CAPITULO 3. EXTRACCION DE INTERVALOS DE VOLUMEN
MEDIANTE MODIFICACION DE CUBOS MARCHANTES

A continuacion se explicara el algoritmo desarrollado para la extraccion de intervalos de
volumen [a, 8] mediante el uso de una tabla de casos similar a la utilizada por cubos marchantes
para la extraccion de isosuperficies (ver Seccion 2.2.1). Luego, se explicaran las ventajas y
desventajas de este algoritmo, asi como el procedimiento utilizado para generar la tabla de
conectividad y el post-procesamiento a realizar sobre el mallado resultante. Finalmente, se
describiran ciertas consideraciones que se deben tener en cuenta para el manejo de los casos

ambiguos en aquellos algoritmos basados en este procedimiento.
3.1. ALGORITMO PARA LA EXTRACCION DEL INTERVALO DE VOLUMEN

El algoritmo desarrollado se encuentra basado en Cubos Marchantes [LOR87] vy, al igual que
éste, reconstruye cada celda de la malla independientemente mediante el uso de una tabla de
conectividad. Cada celda se encuentra delimitada por ocho voxeles y doce aristas, y puede
aportar hasta treinta y dos (32) vértices diferentes al mallado final, debido a que cada voxel
neutro aporta un vértice y a que cada arista aporta dos vertices diferentes cuando un véxel que la
delimita es positivo y el otro es negativo. En la Figura 3.1 se puede observar la enumeracion de

la celda utilizada por el algoritmo propuesto.

V, Vaiy Vas Vi
\)I_” ‘)13 ‘/}GJ ‘;J'
\Z Vs, V, Vi
VBX: \}29
Vi, )
‘}](); ‘}11 ‘)]49 ‘)]5

‘)229 ‘}33

Viss Vio Vi

Figura 3.1: Enumeracion de la celda utilizada por el algoritmo propuesto.
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Es importante observar que en la enumeracion utilizada los puntos de interseccion se

encuentran ordenados en base a los siguientes criterios:

e Los vertices provenientes de voxeles neutros preceden aquellos provenientes de

intersecciones en las aristas de la celda.

e Los vértices provenientes de voxeles se encuentran ordenados por la coordenada del
voxel dentro de la celda, que equivale a ordenarlos en base la posicion del voxel dentro

del volumen.

e Los Vvértices provenientes de aristas diferentes se encuentran ordenados en base a los
voxeles que las delimitan, es decir, si el menor vértice de ambas aristas es diferente estas

se ordenan en base a éste, si no se ordenan en base al otro extremo.

e Los vértices provenientes de una misma arista se encuentran ordenadas por el isovalor en
el punto de interseccion, es decir, aquellos vértices con isovalor a preceden aquellos con

isovalor S.

Este ordenamiento garantiza el ordenamiento de los vértices a nivel global, es decir, si un
veértice v, precede a otro vértice v, dentro de una celda, entonces v; precede a v, en el mallado
completo, lo cual es importante debido a que este predicado de ordenamiento es necesario para
prevenir el problema expuesto en la Figura 2.29 en la Seccién 2.3.3.2, durante la generacion de
la tabla de casos.

El primer paso para extraer el intervalo de volumen [«, ] de una celda consiste en clasificar
cada uno de los voxeles que la delimita en tres grupos, positivos, negativos y neutros, en base a

la siguiente ecuacion:

-1, sif <a
clase(6;,a,B) =4 +1, sié; >f
O, sia < 61’ < ﬁ

donde §; es el isovalor del voxel a clasificar. Como se puede observar, un voxel sera neutro si su
isovalor se encuentra dentro del intervalo extraer, o sera positivo o negativo en base al signo de

&; — a si su isovalor no se encuentra dentro del intervalo. Luego, con la clasificacion de los
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voxeles se construye un indice de clasificacion interpretando la clase de cada voxel como un

digito en base-3 (ver Figura 3.2).

V; Vs
5=0.9 8=06
Clase =+1 Clase =0
- VJ

V; 5 =0.05

6=0.53 g}

Clase = 0 Clase =-1
) Vs
6=0.8 =05
Clase =+1 Clase =0

0 y:

5=0.4 = 0.1

Clase =0 Clase =-1

112111201110 1] = 4060
Vs Vi Vo Vs Vo Vi V2 V)

Figura 3.2: Clasificacion de una celda en base a los isovalores de los voxeles que la delimitan,
cona = 0.3y B = 0.6, donde 6; representa el isovalor de cada voxel.

Debido a que cada uno de los voxeles tiene tres estados posibles, existe un total de 3% =
6561 formas diferentes en que el intervalo de volumen a extraer intersecte la celda. Sin
embargo, a diferencia del algoritmo para la extraccion de isosuperficies, no se puede reducir la
cantidad de casos por simetria, reflexion o rotacion, debido a que esto interfiere con el
ordenamiento de los puntos de interseccion. En la Figura 3.3 se pueden observar algunas posibles

intersecciones entre la celda y el intervalo de volumen a extraer.
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Figura 3.3: Algunas posibles intersecciones entre la celda y el intervalo de volumen a extraer. Los puntos rojos
representan los voxeles negativos, los puntos azules representan los voxeles positivos y los puntos violetas
representan los véxeles neutros.

El siguiente paso es determinar cuales voxeles producen vértices y cudles aristas de la celda
son intersectadas por el volumen a extraer, asi como la posicidn de estos puntos de interseccion.
Un voxel produce un vértice si este es neutro, cuya posicion P, equivale a la posicion del voxel,

es decir:
P.=P, x€{01,-,67}

donde P es la posicion del voxel neutro. Una arista produce un vértice con isovalor a si un
extremo es negativo y el otro no es negativo, donde la posicién P, de esta interseccion se calcula

mediante el uso de interpolacion lineal sobre la arista de la siguiente manera:

a—60

P, =Py+ (P, —Py) (m

), x € {8,10,12,---,26,28,30}
donde, 8, y 6; son los isovalores de los voxeles que delimitan la arista y P, y P; son las
posiciones de los extremos de la arista. De forma similar, una arista produce un vértice con
isovalor B si un extremo es positivo y el otro no es positivo, donde la posicion P, de esta
interseccion se calcula mediante el uso de interpolacion lineal sobre la arista de la siguiente
manera:

B — o

Px = PO + (P1 - PO) (m) , X E {9,11,13, ,27,29,31}
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Después de calcular todos los puntos de interseccion del intervalo de volumen con la celda se
generan los tetraedros que lo componen utilizando una tabla de conectividad de 3% = 6561

casos, la cual se indexa utilizando el indice obtenido de la clasificacion de los voxeles.

Mediante este algoritmo también se pueden calcular otros atributos de los vértices del
mallado final, extrayendo el atributo del voxel para aquellos vértices provenientes de voxeles
neutros, y mediante interpolacion lineal de los atributos en los extremos de cada arista para
aquellos vértices generados por intersecciones en las aristas. Por ejemplo, se puede calcular el

gradiente G, para vértice P, de la siguiente manera:

G, =G, x €{0,1,-,67)
a—7
G, = Gy + (G — Go) (U ) x € {8,10,12, --+,26,28,30}
1Yo
_ B —vo
Gx = GO + (Gl - Go) , X E€E {9,11,13,,27,29,31}
V1 — 7y

donde G es el gradiente el voxel neutro y G, y G; son los gradientes en los extremos de la arista

intersectada.
3.2. VENTAJAS Y DESVENTAJAS DEL ALGORITMO PROPUESTO

Como se puede observar en la Seccion 3.1, el algoritmo propuesto es muy similar al
algoritmo propuesto por Lorensen [LOR87] para la extraccion de isosuperficies, por lo cual éste
posee ventajas similares a aquellas del algoritmo original (ver Seccion 2.2.1.1), entre las cuales

Se encuentran:

e Sencillez: El algoritmo es sencillo de implementar, ya que sélo se necesita una tabla de
38 casos para procesar cada celda en base a la clasificacion de sus voxeles, y no se
requiere ningun algoritmo complejo para el procesamiento de la celda, como

triangulaciones de Delaunay [GUO95] o interseccién de poliedros [FUJ95].

e Eficiencia: El algoritmo solo calcula las intersecciones en aquellas aristas donde es

necesario, reutilizando las intersecciones de las celdas anteriores de ser posible, igual que
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el algoritmo para extraer isosuperficies. Ademas, el algoritmo sélo necesita la

construccién de un indice y busquedas de orden constante en tablas precalculadas.

Paralelizable: EIl algoritmo es facil de paralelizar, debido a que el volumen extraido de
una celda es independiente del extraido de otras celdas. Esto brinda una ventaja sobre los
algoritmos basados en tetraedrizaciones de Delaunay [GUO95], ya que la paralelizacién

de estos es mucho méas complicada.

Sin embargo, el algoritmo posee desventajas similares a aquellas del algoritmo original, entre

las cuales se encuentran:

Manejo de casos ambiguos: El algoritmo no realiza ningin procesamiento adicional
para determinar casos ambiguos, ya que éste asume que el intervalo de volumen a extraer
solo puede intersectar las celdas de una sola forma por cada indice de clasificacion. Sin
embargo, el algoritmo maneja las celdas de forma consistente, de forma que no existan
huecos en el volumen similares a aquellos generados en el algoritmo original propuesto
por Lorensen [LOR87]. En la Seccién 3.5 se describen las consideraciones que se deben

tener en cuenta para manejar casos ambiguos en el algoritmo.

Tetraedros degenerados: En ciertos casos, el algoritmo genera tetraedros degenerados o
con volumen negativo, lo cual se puede corregir durante el post-procesamiento (ver
Seccion 3.4).

Complejidad de la salida: El algoritmo genera una cantidad excesiva de tetraedros
cuando la resolucion de los modelos de entrada es muy alta, lo que ocasiona que el
volumen final sea mas dificil de procesar. Sin embargo, el mallado generado esta
compuesto por una cantidad de tetraedros mucho menor en comparacién a los mallados

generados por el algoritmo propuesto por Nielson y Sung [NIE97b] (ver Seccion 4.2).

3.3. GENERACION DE LA TABLA DE CONECTIVIDAD

Para extraer tetraedros de cada celda el algoritmo necesita una tabla de conectividad que le

indique los vértices del mallado a unir en cada celda para obtener los tetraedros que componen el

mallado resultante. Esta lista consiste en un conjunto de 4-tuplas de la forma (a, b, ¢, d), donde
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cada tupla indica que se deben unir los vértices a, b, ¢ y d para generar un tetraedro de salida. La
4-tupla sera valida si y solo si los cuatro elementos de ésta son diferentes y pertenecen a los

vértices intersectados para el caso que esta siendo procesado.

Con el objetivo de preservar la eficiencia del algoritmo final, se deben precalcular los
tetraedros de salida para cada caso de interseccion posible, lo cual se hace mediante la creacion
de celdas sintéticas y la extraccion de tetraedros de éstas. El procedimiento utilizado para la
generacion de la tabla de conectividad consiste en obtener el poliedro-af que representa el
intervalo [a, 8] a extraer, para luego tetraedrizar éste mediante el algoritmo propuesto por Max

[MAXO01] para la tetraedrizacion de poliedros convexos de forma coherente.

A continuacion se explicaran las consideraciones tomadas en cuenta para crear las celdas
sintéticas sobre las cuales se extraen los tetraedros de salida, asi como el procedimiento utilizado

para la extraccion del poliedro-af y su tetraedrizacion.
3.3.1. CREACION DE LA CELDA SINTETICA

El procedimiento para la creacién de una celda sintética recibe como entrada el indice de
clasificacion M de la celda que se desea construir, y produce como salida una celda C y un
intervalo [a, B] de forma tal que al clasificar los voxeles de la celda C en base al intervalo [a, £]

utilizando la formula descrita en la Seccion 3.1 se obtenga el indice M, es decir:

(—o,a), siM;=0
6, €1 [a,Bl, siM;=1
(ﬁ, OO), Si Mi =2

donde §; es el isovalor del i-ésimo voxel de C y M; es el i-ésimo digito de M si éste se interpreta

en base-3.

Para generar cada uno de los isovalores de los voxeles que delimitan la celda, se fija el
intervalo [a, B], y se calculan los valores de desplazamiento k y tolerancia A de la siguiente

manera:
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donde k se utiliza para calcular el punto base de los isovalores y A se utiliza para afadir una
variacion aleatoria sobre los isovalores, con el propoésito de que los puntos de interseccion se

encuentren en posicion general [EDE90].

Finalmente, cada isovalor C; se calcula en base al valor en la posicion correspondiente en el

indice de la siguiente manera:

a —k +rand(—A,A), siM; =0
§; =<a+k+rand(—A,A), siM; =1
B+ k +rand(—A,A), siM; =2

donde rand(A4,B) representa una funcion que retorna un valor aleatorio uniformemente

distribuido en el intervalo [4, B].
3.3.2. EXTRACCION DEL POLIEDRO ALFA-BETA DE LA CELDA SINTETICA

El primer paso para la extraccion del poliedro-af consiste en calcular los puntos donde el
intervalo de volumen [a, B] a extraer intersecta la celda sintética, en base a los isovalores
generados en el paso anterior. El procedimiento para calcular estos puntos es el mismo utilizado

en el algoritmo final, el cual se puede observar en la Seccion 3.1.

Luego, se calcula la capsula convexa de los puntos de interseccion mediante el uso de un
algoritmo de fuerza bruta con tiempo de ejecucion 0(n*), donde n es la cantidad de puntos de
interseccion entre la celda y el intervalo de volumen a extraer. EI uso de fuerza bruta no afecta el
desempefio del algoritmo final debido a que este procedimiento sélo es realizado durante el
preprocesamiento de la tabla de conectividad. La capsula convexa obtenida sera representada
como un conjunto de caras que delimitan el poliedro-af, donde cada cara consiste en una lista
ordenada de vértices que la delimitan. Este procedimiento consiste en los siguientes pasos, los

cuales se pueden observar en la Figura 3.4:
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Calcular los puntos

. . Extraer triangulos
de interseccién

_ pertenecientes a la
céapsula convexa

| A

>

NGCA

' N
Unir grupos coplanares
en caras poligonales Agrupar triangulos
B

coplanares

Figura 3.4: Pasos necesarios para el calculo del poliedro-af a partir de la celda sintética.

Calcular los tridngulos que pertenecen a la capsula convexa, los cuales seran todos
aquellos delimitados por tres puntos de interseccién P,, P, y P., tal que no tengan ningin
punto de interseccion del lado positivo del plano definido por éstos. La ecuacion del

plano T al que pertenece el triangulo que esté siendo considerado esta definida por:

T = (N,,N,,N,,D)
N = (leNleZ) = (Pb _Pa) X (PC _Pa)
D=-N-P,

donde N es la normal del plano y D es la distancia de éste al origen. Luego, el tridngulo

pertenecerd a la capsula convexa si y sélo si no existe un punto de interseccion P; tal que:
N-P,+D>0

Clasificar los tridngulos en distintas clases de equivalencia t,, donde dos triangulos
perteneceran a la misma clase de equivalencia si y solo si los planos T; y T, a los que

pertenecen son equivalentes, es decir:
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T, = (Nx,ery,lsz,liDl)
T, = (Ny2, Ny 2, N, D,)
Tl = Tz & Jk e R+[T1 = sz]

Unir los tridngulos de cada clase de equivalencia t; en una cara poligonal del poliedro-
af3, mediante la aplicacion de un predicado de ordenamiento sobre los puntos en 7. Para
realizar esto, se extrae el conjunto A con los puntos de interseccion pertenecientes al

grupo que esta siendo procesado, donde A se define como:

A= {allaZI""an}

a; < a;yq, Vi€{l2,--,n—1}

donde a; es el i-ésimo veértice perteneciente a la cara. Luego, se elige un vertice pivote
a,, el cual sera el vértice inicial a partir del cual se reconstruira la cara del poliedro-ap.
Una vez que se ha seleccionado el vértice pivote, se procede a ordenar el resto los puntos
a partir de éste, mediante el uso de un predicado de ordenamiento pF(ai,aj) que
establece que a; precede a a; en el grupo 7 si y sélo si el triangulo (ap,ai,aj) existe en

Ty, €S decir:
pr(anq) = (e, a,4) €7y

Por ejemplo, en la Figura 3.5 se puede observar una cara hexagonal del poliedro-af,
donde las flechas rojas indican la precedencia entre los vértices distintos al pivote, y los

triangulos pertenecientes a t;, son aquellos que utilizan dos aristas grises y una roja.
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as a,

ad, = a a,

Figura 3.5: Ordenamiento de los puntos en una cara del poliedro-af.

Una vez que se obtienen todas las caras del poliedro-af, este es tetraedrizado utilizando el
procedimiento explicado en la Seccion 3.3.3. Para que este procedimiento se realice de forma
satisfactoria, es importante verificar que el poliedro-af8 es convexo e incluye todos los puntos de

interseccién calculados.

Para verificar que el poliedro-af8 es convexo, se puede observar que todas las caras
generadas durante la construccion tienen a todos los demas vértices del mallado de un sélo lado,
lo cual es condicidn suficiente para garantizar que los poliedros generados son convexos, ya que

de ser concavos existiria una cara con vertices del mallado a ambos lados [GRA72].

Para verificar que el poliedro-af contiene todos los puntos de interseccion en la celda, es
suficiente verificar que no existe un punto de interseccién tal que no pertenezca a algun triangulo
perteneciente a la capsula convexa. En la Figura 3.6 se muestran los poligonos extraidos de las
caras de las celdas para los 3* = 81 casos posibles. Como se puede observar, todos los poligonos
no vacios poseen al menos tres vértices, por lo cual cada vértice del mallado final va a pertenecer
al menos a una cara externa de la celda, ya que no existen vértices estrictamente dentro de la
celda y cada vértice posee al menos dos vecinos en una misma cara, con los cuales forma una

cara externa perteneciente a la capsula convexa.
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Figura 3.6: Posibles intersecciones entre el intervalo [a, 8] a extraer y cada cara de la celda.

3.3.3. TETRAEDRIZACION DEL POLIEDRO ALFA-BETA

El paso final para la extraccion del intervalo de volumen consiste en la tetraedrizacion del
poliedro-af de la celda sintética, mediante el uso del algoritmo propuesto por Max [MAX01], el
cual permite la tetraedrizacion de poliedros convexos de forma consistente en todas las caras.
Esto evita el problema descrito en la Seccion 2.3.3.2 para el algoritmo basado en tetracubos
marchantes, debido a que este algoritmo garantiza que la triangulacion utilizada para cada cara

del poliedro-af sera la misma para ambos poliedros que la comparten.

Este algoritmo consta de dos pasos principales: en la primera fase éste divide cada cara del
poliedro en triangulos, utilizando las diagonales que parten desde el menor punto de la cara hacia
los demas puntos de ésta; en la segunda fase el algoritmo tetraedriza el poliedro trazando

diagonales desde el menor punto del poliedro hacia todos los demas puntos del poliedro.

Como se puede observar, para la ejecucion de este algoritmo se necesita un predicado de
orden total p(ai,aj) para determinar si un punto de interseccion a; precede a otro punto de
interseccion a;. Para este algoritmo se utiliza el ordenamiento descrito en la Seccion 3.1, el cual

cumple con todas las propiedades descritas en la Seccion 2.3.3.2, las cuales son necesarias y

suficientes para establecer un predicado de orden total.
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Para implementar este algoritmo, se utilizo un grafo de conectividad G = (4, E), donde A es
el conjunto con los puntos de interseccion de la celda y E es el conjunto con las aristas (a;, a;)
que unen los vértices dentro del modelo. Las aristas existentes pertenecientes a E son las

siguientes:

e Todas aquellas aristas (ai, aj) tal que a; # a; y a; sea adyacente a a; en alguna cara del

poliedro a tetraedrizar. Estas aristas corresponden a las aristas originales del poliedro-af.

e Todas aquellas aristas (ai, aj) tal que a; # a; y a; comparta alguna cara con a; donde a;

sea el menor Vvértice de dicha cara. Estas aristas corresponden a aquellas generadas por la

primera fase del algoritmo de tetraedrizacién propuesto por Max [MAXO01].

e Todas aquellas aristas (al-,a]-), tal que a; # a; y a; sea el menor vertice del poliedro a

tetraedrizar. Estas aristas corresponden a aquellas generadas por la segunda fase del
algoritmo de tetraedrizacion propuesto por Max [MAXO01].

En la Figura 3.7 se pueden observar las distintas aristas generadas por el algoritmo de
tetraedrizacion, donde las aristas negras representan las aristas originales del poliedro, las aristas
azules representas las aristas generadas durante la primera fase y las aristas rojas representan las
aristas internas generadas durante la segunda fase.

Figura 3.7: Aristas generadas durante la tetraedrizacion del poliedro-af.
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Luego, una vez construido el grafo G = (A, E) con las aristas del poliedro, se procede a la
extraccion de los tetraedros generados, mediante la busqueda de subgrafos isomorfos a G,, donde
G, representa un grafo completo'? con cuatro vértices, ya que un tetraedro es isomorfo a G,. Este
procedimiento se lleva a cabo probando cada cuarteto de vertices (a, b, ¢, d) posible, afiadiéndolo
a la salida si y solo si las seis aristas (a, b), (a,c), (a,d), (b,c), (b,d) y (c,d) pertenecen a E.
Este algoritmo de fuerza bruta tiene complejidad en tiempo igual a 0(n*); sin embargo, esto no
afecta la eficiencia del algoritmo final, ya que este procedimiento solo se lleva a cabo durante la

generacion de la tabla de conectividad.
3.4. FASE DE POST-PROCESAMIENTO

Como se menciond en la Seccién 3.2, el algoritmo tiene la desventaja de generar tetraedros
degenerados o con volumen negativo, lo cual se debe a que en ciertos casos de interseccidn entre
el intervalo de volumen a extraer y las celdas se generan tetraedros cuya orientacién no depende
unicamente de los indices de los extremos dentro de la celda, si no de la posicion final de estos

en el espacio.

Por ejemplo, para el caso (10000011)3; = 2191, el tetraedro (0,10,16,22) es necesario para
reconstruir el intervalo de volumen dentro de la celda. Sin embargo, no se puede determinar la
orientacion del tetraedro sin calcular las posiciones donde las aristas son intersectadas, ya que la
orientacion de este depende de la posicion de las intersecciones Pig, Y P34, COMO Se puede

observar en la Figura 3.8.

12 Un grafo completo de n vértices es aquél que contiene aristas entre todo par de vértices.
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Figura 3.8: Caso donde la orientacion de un tetraedro no se puede determinar sin calcular la posicion de las

intersecciones en el espacio.

Para observar por qué ocurre esto, se pueden fijar los puntos Py g, P1gq Y P1eq Y Mover el
punto P, . a lo largo de la arista AB de la celda; mientras éste se acerque al voxel A el tetraedro
tendrd volumen positivo y mientras éste se acerque al voxel B el tetraedro tendra volumen
negativo (ver Seccion 2.4.2 para mas informacion sobre la definicion del volumen de un
tetraedro). Inclusive, existe un punto intermedio C en cual el tetraedro tendra volumen nulo, por

lo cual se considerara un tetraedro degenerado.

Para solucionar esto, se puede verificar cada tetraedro antes de afiadirlo al mallado final, y en
caso de tener volumen negativo se intercambian los dos ultimos vértices del tetraedro, y en caso

de tener volumen nulo simplemente no se afiade al mallado final.
3.5. CONSIDERACIONES PARA EL MANEJO DE CASOS AMBIGUOS

Como se mencion6 en la Seccion 3.2, el algoritmo propuesto no realiza ningln
procesamiento adicional para manejar casos ambiguos en la celda, sino asume que la interseccion
del intervalo de volumen con la celda consiste en un Gnico poliedro convexo o el vacio. En esta
seccion se analizaran los distintos tipos de ambigliedades existentes y las posibles soluciones
para el manejo de estos casos, para finalmente analizar la salida del algoritmo propuesto asi

como las limitaciones de éste que impiden el manejo de casos ambiguos de forma sencilla.
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3.5.1. MODELOS TOPOLOGICAMENTE CORRECTOS

Para analizar los casos ambiguos que se pueden encontrar durante la ejecucién del algoritmo
propuesto basado en cubos marchantes, primero se debe definir qué es una superficie
topoldgicamente correcta. En [CHE95] se define que una superficie es topolégicamente correcta
si y solo si la topologia de los tetraedros generados coincide con la topologia de la funcion

F(x,y, z) dentro de cada celda.

Para obtener un intervalo de volumen topolégicamente correcto, dos voxeles de la misma
clase (positivo, negativo o neutro) deben estar unidos dentro de una celda si y sélo si existe un
camino dentro de ésta que conecte ambos voxeles y no cambie de clase. El caso mas simple para
determinar si dos voOxeles estan conectados es cuando existe un camino a traves de las aristas de
la celda que s6lo contiene voxeles de la misma clase. Sin embargo, hay dos casos donde la regla
anterior no es suficiente. Por ejemplo, cuando se tiene una cara con dos voxeles positivos y dos
voxeles negativos en esquinas opuestas que no estan conectados a través de las demas aristas de
la celda, no se puede decir directamente si los voxeles positivos estan unidos, si los voxeles
negativos estan unidos o los cuatro voxeles estan completamente separados, debido a que éstos
podrian estar unidos mediante un camino que pase por dentro de la cara. A este tipo de caras se

les denomina caras ambiguas, como la que se puede observar en la Figura 3.9.
\) 7'

Figura 3.9: Ejemplo de una cara ambigua. A la izquierda se muestra el caso donde los
véxeles positivos se encuentran unidos, a la derecha se muestra el caso donde los voxeles
negativos se encuentran unidos, y en el centro se muestra el caso donde éstos son separados.

Debido a la existencia de tres tipos diferentes de voxeles, existen varios tipos de caras

ambiguas, entre las cuales se encuentran:
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e Dos voxeles positivos y dos voxeles neutros, con los voxeles positivos en esquinas

opuestas. En este caso se puede elegir entre unir los voxeles positivos o separarlos.

e Dos voxeles negativos y dos voxeles neutros, con los voxeles negativos en esquinas

opuestas. En este caso se puede elegir entre unir los voxeles positivos o separarlos.

e Dos voxeles positivos, un voxel neutro y un véxel negativo, con los vixeles positivos en
esquinas opuestas. En este caso se puede elegir entre unir los vdxeles positivos o

separarlos.

e Dos voxeles negativos, un voxel neutro y un voxel positivo, con los voxeles negativos en
esquinas opuestas. En este caso se puede elegir entre unir los voxeles negativos o

separarlos.

e Dos voxeles positivos y dos voxeles negativos, con los voxeles positivos en esquinas
opuestas. En este caso se puede elegir entre unir los vixeles positivos, unir los voxeles

negativos o separar los cuatro voxeles.

En la Figura 3.10 se pueden observar las distintas caras ambiguas posibles, asi como todas
las soluciones posibles para cada uno de ellos. Cualquier método a utilizar para la resolucion de
ambigledades debe tomar en cuenta todos los casos posibles, de forma que se pueda obtener la

topologia correcta de la funcién F(x, y, z).

-
-

-
A

AN |
N D)
N

Figura 3.10: Posibles caras ambiguas durante la extraccion de intervalos
de volumen mediante cubos marchantes.

7
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3.5.2. MANEJO DE AMBIGUEDADES EN LAS CARAS DE LA CELDA

Para manejar las ambiguedades en las caras de la celda, se puede extender el método de la
decision asintdtica propuesto por Nielson [NIE91] para la resolucion de los casos ambiguos
durante la extraccion de isosuperficies (ver Seccion 2.2.1.4). Este método consiste en elegir entre
separar 0 no separar dos voxeles opuestos de una cara ambigua en base a la evaluacion de un
punto medio de ésta por medio de interpolacion bilineal, de forma tal que la superficie generada

sea topoldgicamente correcta (ver Seccién 3.5.1).

La interpolacion bilineal a través de una cara es la extension natural a realizar interpolacion
lineal a través de un segmento en dos dimensiones. Después de realizar un cambio de variables,
se puede asumir que el dominio de la cara es un cuadrado unitario {(s,t)|0 < s,t < 1}, lo cual
lleva a la siguiente formula para realizar interpolacion bilineal:

so0=s 3 107

donde By, By 1, B1o Y B11 son los isovalores de los voxeles que delimitan la cara ambigua.

Al igual que en el método original propuesto por Nielson [NIE91], se puede verificar
facilmente que las curvas H, = {(s,t)|B(s,t) = a} y Hz = {(s,t)|B(s,t) = B} son hipérbolas.
Hay varias formas en que el dominio de la cara puede intersectar (0 no intersectar) estas

hipérbolas, como se puede observar en la Figura 3.11.

(1.1)

__..// N (0,0)
[ [ (

(0,0) r \
(0,0) (0,0)

Figura 3.11: Distintos resultados posibles de interseccion con las hipérbolas H,, y Hg, donde H,
esta representada por la curva de color rojo y Hy esta representada por la curva de color azul.

I \ (1.1) _J &

Los casos ambiguos se dan cuando el dominio intersecta ambas componentes de la hipérbola,
en cuyo caso no se puede determinar a priori si los voxeles positivos estan dentro de la misma

region de las hipérbolas. Por ejemplo, en la Figura 3.12 se pueden observar tres formas posibles
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en que el dominio de la cara intersecte las hipérbolas H, y Hg en la cara ambigua mostrada en la

S
N AL A

Figura 3.12: Posibles hipérbolas para la cara ambigua mostrada en la Figura 3.9.

Figura 3.9.

La solucion propuesta por Nielson [NIE91] puede ser adaptada para la extraccion de
intervalos de volumen utilizando mediante la evaluacion de F(x,y,z) en el punto de la cara
donde las asintotas de las hipérbolas se intersectan. La evaluacion de este punto permite

determinar el par de voxeles opuestos a unir, o si éstos deben ser separados en su totalidad.

El primer paso consiste en buscar las asintotas {(s, t)|s = S}y {(s, t)|t = T}, donde:

Boo — Boa Boo — Bio

Sh = ) Th =
Boo + B11 — Bo1 — B1p Boo + B11 —Bo1 — Bipo

por lo cual se puede calcular el valor en B(S,, T, ) mediante interpolacion bilineal:

BooB11 — B1,0Bo1
Byo + B1,1 — Bo1 — Biy

BS,T = B(Sh'Th) =

Finalmente, para determinar a qué caso de la Figura 3.12 corresponde la cara ambigua se
compara Bsr con el intervalo [a, 8] a extraer: Si Bgy se encuentra por debajo del intervalo
(Bsr < a), entonces los voxeles negativos deben ser unidos; si Bsr se encuentra por encima del
intervalo (Bsr > f), entonces los voxeles positivos deben ser unidos; en caso contrario (a <
Bsr < pB) los cuatro voxeles deben ser separados. Estos tres casos se pueden observar en la
Figura 3.13.
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B(S,T,) < @ *<B(S.T,)< B B(S,.T,) = p

Figura 3.13: Triangulacion final después de evaluar la interseccion de las asintotas.
3.5.3. SALIDA DEL ALGORITMO PROPUESTO

Como se menciond en la Seccion 3.2, el algoritmo propuesto para la extraccion de intervalos
de volumen mediante cubos marchantes no realiza ningln procesamiento adicional para el
manejo de los casos ambiguos. El algoritmo propuesto, en lugar de determinar cual solucion de
la Figura 3.10 es topoldgicamente correcta, el algoritmo elige resolver las ambigliedades
separando todos los voxeles de la celda, ya que éste construye el poliedro-aff como la capsula

convexa [GRAT72] de los puntos de interseccion.

Es importante mencionar que a pesar de que todas las resoluciones posibles de los casos
ambiguos consisten en piezas convexas, no se puede garantizar que el poliedro-af sea convexé o
esté compuesto por piezas convexas Unicamente. Por ejemplo, en la Figura 3.14 se puede
observar el caso (10110111)5, en el cual se obtiene un poliedro concavo si se unen los voxeles
negativos de la cara superior, ya que la linea AB no se encuentra completamente dentro del

poliedro.
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Figura 3.14: Caso donde el poliedro-af es concavo debido a la unidn de los voxeles negativos.

Debido a que no se puede garantizar que el poliedro-af8 es convexo si se manejan los casos
ambiguos, entonces es imposible tetraedrizar este poliedro sin conocer la posicion final de los
puntos de interseccion [MAXO01]. Esto impide el uso de una tabla de conectividad para generar
los tetraedros de salida, lo cual ocasiona que se requiera el uso de un algoritmo para la

tetraedrizacion de poliedros concavos durante el procesamiento de cada celda del volumen.
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CAPITULO 4. IMPLEMENTACION Y PRUEBAS

Para implementar los algoritmos mencionados en los objetivos especificos (ver Seccion 1.2),
se utilizo el lenguaje de programacién C++, debido a que éste provee las funcionalidades
necesarias para la implementacion eficiente de estos, asi como diversas bibliotecas con codigo
abierto reusable, lo que facilita la implementacion de las partes no relacionadas con el algoritmo,
como la interfaz grafica de usuario. Entre las herramientas y bibliotecas utilizadas para la

implementacion se encuentran:

e Visual Studio 2008 Consiste en el entorno de desarrollo (IDE) proporcionado por
Microsoft para la creacion de aplicaciones y bibliotecas en C++.

e STLport 5.2.1': Consiste en una implementacion de la Biblioteca Estandar de Plantillas
de C++ (Standard Template Library, STL), la cual implementa extensiones importantes
de la misma, como lo son los contenedores asociativos por hashing.

e Boost 1.38.0": Biblioteca cédigo abierto con extensiones para la biblioteca estandar de
C++, incluyendo funcionalidades que permiten el manejo de mdultiples hilos,
programacion genérica, arreglos estaticos y manejo del sistema de archivos.

e Qt Open Source 4.5.1'%: Consiste en un conjunto de bibliotecas para C++, las cuales
implementan funcionalidades para el disefio de interfaces gréficas de usuario (GUIs). Se
escogio esta biblioteca debido a que es de cddigo abierto y portable entre distintos tipos
de sistemas.

e Doxygen 1.5.8': Consiste en una aplicacién para generar documentaciéon HTML para
cadigo fuente, el cual soporta C, C++ y Java, entre otros lenguajes.

Para evaluar el desempefio del algoritmo propuesto, se desarrollaron dos aplicaciones de
prueba para el manejo de datos volumétricos; la primera para la extraccion de isosuperficies y la
segunda para la extraccion de intervalos de volumen. Para la extraccion de isosuperficies se

implement6 cubos marchantes (ver Seccion 2.2.1), tetracubos marchantes (ver Seccién 2.2.2) y

3 http://www.microsoft.com/visualstudio

Y http://www.sourceforge.net/projects/stlport
> http://www.boost.org

1 http://www.qtsoftware.com

7 http://www.stack.nl/~dimitri/doxygen
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cubos marchantes con resolucion de ambigiiedades (ver Secciones 2.2.1.4 y 2.2.1.5), y para la
extraccion de intervalos de volumen se implementd tetracubos marchantes (ver Seccion 2.3.3) y

el algoritmo propuesto basado en cubos marchantes (ver Capitulo 3).

Con el objetivo de comparar los algoritmos implementados, se utilizaron cuatro volimenes
de datos, donde los tres primeros fueron obtenidos a partir de tomografias computarizas (CT) y el
altimo fue obtenido a partir de la ecuacion implicita de una hipérbola, cuyos datos basicos se

pueden observar en la Tabla 4.1.

ID Volumen Fuente Voxeles Tipo de dato Bytes
1 Brazo derecho CT 492x240x155 Entero de 8 bits. 53MB
2 Cabeza CT 256x256x113 Entero de 16 bits. 42MB
3 | Mufeca derecha CT 256x256x183 Entero de 8 bits. 34MB
4 Hipérbola F(x,y,z) = xyz 128x128x128 Flotante simple. 24MB

Tabla 4.1: Volimenes de datos utilizados para probar los algoritmos implementados.

Para cada volumen se realizd la extraccion de diversas isosuperficies e intervalos de
volumen, utilizando los algoritmos implementados y evaluando tanto el tiempo requerido para la
extraccion del mallado final asi como la calidad de éste utilizando las métricas descritas en la
Seccion 2.4.

A continuacion se mostraran los resultados obtenidos de las pruebas realizadas sobre los
algoritmos de extraccion de isosuperficies y de intervalos de volumen utilizando los volimenes
descritos en la Tabla 4.1, para finalmente realizar comparaciones cualitativas sobre los modelos

obtenidos de los algoritmos para la extraccion de intervalos de volumen.
4.1. RESULTADOS OBTENIDOS DE LA EXTRACCION DE ISOSUPERFICIES

Para evaluar el desempefio de los algoritmos de extraccidn de isosuperficies, se realizaron
extracciones de distintas isosuperficies de los cuatro volumenes de prueba descritos en la Tabla
4.1, de las cuales se obtuvo el tiempo necesario para la extraccion de las isosuperficies asi como
la calidad de los mallados que los aproximan. En los siguientes graficos se muestra el
comportamiento del tiempo de ejecucion de los distintos algoritmos de extraccion de

isosuperficies en base al isovalor extraido.
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Tiempo de Ejecucion (s)

11.6 348 580 81.1 104.3 127.5 150.7 173.9 197.0 220.2 243.4

Isovalor Extraido

—&— Cubos Marchantes sin resolucion de ambigliedades
—f— Cubos Marchantes con resolucién de ambigliedades
—f—Tetracubos Marchantes (Isosuperficies)

—@—Triangulos Generados en Promedio

4.0

Millones de Triangulos Generados

Grafico 4.1: Comparacion del tiempo de ejecucion por los algoritmos de
extraccion de isosuperficies del Volumen #1 (Brazo derecho).

Tiempo de Ejecucion (s)

148.7 446.2 743.6 1041.11338.51636.01933.52230.92528.42825.83123.3

Isovalor Extraido

—&— Cubos Marchantes sin resolucion de ambigliedades
= Cubos Marchantes con resolucién de ambigliedades
——Tetracubos Marchantes (Isosuperficies)

—@—Triangulos Generados en Promedio

0.0

Millones de Triangulos Generados

Grafico 4.2: Comparacion del tiempo de ejecucion por los algoritmos de
extraccion de isosuperficies del Volumen #2 (Cabeza).

85



En ambos graficos se puede observar que el tiempo de ejecucion requerido por tetracubos
marchantes es claramente superior al tiempo de ejecucion de cubos marchantes, en un 25% si se
aplica resolucion de ambigiiedades y en un 30% si no se aplica. También se puede resaltar que el
costo en tiempo de ejecucion para realizar la resolucion de ambigiiedades en cubos marchantes
es insignificante, ya que ambos algoritmos mostraron el mismo desempefio. Finalmente, se
puede deducir que el tiempo de ejecucién del algoritmo es directamente proporcional al tamafio
del mallado generado, debido a que las curvas del tiempo de ejecucion siguen el mismo patrén
de la curva de la cantidad de triangulos generados.

Otro aspecto importante a tomar en cuenta a la hora de evaluar un algoritmo para la
extraccion de isosuperficies consiste en calcular el numero de primitivas utilizadas por el
algoritmo para representar el mallado final, ya que esto indicard la facilidad con la cual se podrén
visualizar y manipular los mallados obtenidos. A continuacion se puede observar un gréfico
donde se muestra la cantidad de primitivas generadas por los algoritmos de extraccion de

isosuperficie para el Volumen #1 (Brazo derecho):

Millones de Primitivas
w

F——to—

0 T T T T T T T T : 3 ”_‘_l
11.6 34.8 58.0 811 1043 1275 150.7 173.9 197.0 220.2 2434

Isovalor Extraido

—&— Cubos Marchantes sin resolucion de ambigliedades
- Cubos Marchantes con resolucién de ambigiiedades

Tetracubos Marchantes (Isosuperficies)

Gréfico 4.3: Comparacion del nimero de primitivas generadas por los
algoritmos de extraccion de isosuperficies del Volumen #1 (Brazo derecho).

Como se puede observar en el Grafico 4.3, la complejidad de los modelos generados por

tetracubos marchantes es aproximadamente un 145% mas compleja que aquellos modelos
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generados por cubos marchantes, se aplique o no resolucion de ambigiiedades. Esto se debe a
que tetracubos marchantes requiere dividir cada celda del volumen en tetraedros (ver Seccion
2.2.2.1) para luego extraer triangulos de cada uno de ellos, mientras que cubos marchantes no
requiere esta division previa, lo cual ocasiona que genere una salida mas sencilla. También se
puede destacar que la aplicacion de resolucion de ambigliedades en cubos marchantes no
requiere la generacion de una cantidad significativa de primitivas adicionales, lo que se debe a
que los casos ambiguos son poco frecuentes en general [NIE91]. El valor elevado de primitivas
generado para el isovalor 81.1 se debe a que este valor representa la densidad intermedia entre la

densidad de los tejidos blandos y la de los huesos.

Finalmente, se evaluaron los mallados obtenidos por los tres algoritmos utilizando las
métricas expuestas en la Seccion 2.4.1, con el fin de predecir la calidad de la visualizacion y
manipulacion que se puede obtener de estos mallados. En el siguiente grafico se puede observar
el porcentaje de primitivas de buena calidad generadas por los tres algoritmos a partir del

Volumen #3, utilizando la relacion de aspecto como valor de referencia (ver Seccion 2.4.1.2):

£ . g
s / \ - 15 @

c
© [
S 15 — O
2 \ kﬁ Oy | 0 S
g 10 En
n L @
_g 5 05 2
.é _g
‘5_ 0 T T T T T T T T T T - 0.0 §
3 11.6 348 580 81.1 104.3 127.5 150.7 173.9 197.0 220.2 2434 o
X =
° =

Isovalor Extraido

=& Cubos Marchantes sin resolucion de ambigliedades
[ Cubos Marchantes con resolucién de ambigliedades
Tetracubos Marchantes (Isosuperficies)

—@—Triangulos Generados en Promedio

Gréfico 4.4: Comparacion del nimero de primitivas de buena calidad generadas por los
algoritmos de extraccion de isosuperficies del Volumen #3 (Mufieca), utilizando la
relacion de aspecto como referencia.
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En el Grafico 4.4 se puede observar que tetracubos marchantes extrae un mallado triangular
con una cantidad de primitivas de alta calidad 85% mayor en comparacién con cubos
marchantes. Esto se puede confirmar en el Grafico 4.5, donde se puede verificar que la calidad
de los tridngulos generados por tetracubos marchantes es 4% superior en promedio. Es
importante recordar que la relacion de aspecto es una métrica propia, es decir, para las primitivas
ideales el valor de la métrica se aproxima a 1, y para las primitivas degeneradas el valor de la

métrica se aproxima a oo (ver Seccion 2.4).

2.2 2.0 2

.g 2 o
b= - 15 @
g 18 - g
o & \ o
O 1.6 1.0 8
T 14 \ &
£ \ - 05 8
e 1.2 =
= \‘\0—,_._ 2
1 T T T T T T T T T T - 0.0 §

11.6 348 58.0 81.1 104.3 127.5 150.7 173.9 197.0 220.2 2434 2

.S

Isovalor Extraido

—&— Cubos Marchantes sin resolucion de ambigliedades
[ Cubos Marchantes con resolucién de ambigiiedades
Tetracubos Marchantes (Isosuperficies)

—@—Triangulos Generados en Promedio

Gréfico 4.5: Comparacién de la calidad de las primitivas generadas por los algoritmos
de extraccion de isosuperficies del VVolumen #3 (Mufieca), utilizando el promedio
geométrico de la relacion de aspecto como referencia.
En base al Gréafico 4.4 y al Gréafico 4.5 también se puede deducir que la calidad del mallado
generado es independiente a la cantidad de primitivas que lo componen, ya que el porcentaje de
triangulos de buena calidad y el promedio geométrico de la calidad de éstos no varian

considerablemente, a pesar del tamafio del mallado final.

4.2. RESULTADOS OBTENIDOS DE LA EXTRACCION DE INTERVALOS DE
VOLUMEN

Para evaluar el desempefio de los algoritmos de extraccion de intervalos de volumen, se

realizaron extracciones de distintos intervalos de los cuatro volumenes de prueba descritos en la
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Tabla 4.1, de los cuales se obtuvo el tiempo necesario para la extracciéon de éstos asi como la

calidad de los mallados que las aproximan. En los siguientes graficos se muestra el

comportamiento del tiempo de ejecucion de los distintos algoritmos de extraccion de intervalos

de volumen en base al isovalor extraido.

Tiempo de Ejecucion (s)

116 348 58.0 81.1 1043 127.5 150.7 173.9 197.0 220.2 2434

Isovalor Extraido

—&— Cubos Marchantes (algoritmo propuesto)
Tetracubos Marchantes (Intervalos de Volumen)

—@—Tetraedros Generados en Promedio

Millones de Tetraedros Generados

Grafico 4.6: Comparacion del tiempo de ejecucion por los algoritmos de
extraccion de intervalos de volumen del VVolumen #1 (Brazo derecho).
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Tiempo de Ejecucion (s)
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148.7 446.2 743.6 1041.11338.51636.01933.52230.9 2528.4 2825.8 3123.3

T
O FRP N W PH UL O N 0O
Millones de Tetraedros Generados

Isovalor Extraido

—&— Cubos Marchantes (algoritmo propuesto)
Tetracubos Marchantes (Intervalos de Volumen)

—@—Tetraedros Generados en Promedio

Gréfico 4.7: Comparacion del tiempo de ejecucion por los algoritmos de
extraccion de intervalos de volumen del Volumen #2 (Cabeza).

En ambos gréficos se puede observar que el tiempo de ejecucién requerido por tetracubos
marchantes es superior en un 40% al tiempo de ejecucién de cubos marchantes, lo cual se debe a
que el algoritmo propuesto realiza un procesamiento menor al realizado por tetracubos
marchantes, ya que no tiene que calcular las intersecciones en las diagonales de las caras de la
celda, las cuales son necesarias para dividir la celda en tetraedros. Finalmente, se puede deducir
que el tiempo de ejecucién del algoritmo es directamente proporcional al tamafio del mallado
generado, debido a que las curvas del tiempo de ejecucion siguen el mismo patron de la curva de

la cantidad de tetraedros generados.

Otro aspecto importante a tomar en cuenta a la hora de evaluar un algoritmo para la
extraccion de intervalos de volumen consiste en calcular el nimero de primitivas utilizadas por el
algoritmo para representar el mallado final, ya que esto indicara la facilidad con la cual se podran
visualizar y manipular los mallados obtenidos. A continuacion se puede observar un grafico
donde se muestra la cantidad de primitivas generadas por los algoritmos de extraccion de

intervalos de volumen para el Volumen #1 (Brazo derecho):

90



18
16

12
10

Millones de Primitivas

o N B O

116 348 58.0 811 1043 1275 150.7 1739 197.0 220.2 243.4

Isovalor Extraido

—&— Cubos Marchantes (algoritmo propuesto)

Tetracubos Marchantes (Intervalos de Volumen)

Gréfico 4.8: Comparacién del nimero de primitivas generadas por los
algoritmos de extraccién de intervalos de volumen del Volumen #1 (Brazo derecho).

Como se puede observar en el Gréfico 4.8, los modelos generados por el algoritmo propuesto
basado en cubos marchantes sélo requieren un 50% de las primitivas utilizadas por los modelos
generados mediante el uso de tetracubos marchantes. Esto se debe a que tetracubos marchantes
requiere dividir cada celda del volumen en tetraedros (ver Seccion 2.2.2.1) para luego extraer
tetraedros de cada uno de ellos, mientras que el algoritmo propuesto no requiere esta division
previa, lo cual ocasiona que genere una salida mas sencilla. Como se menciond anteriormente, el
valor elevado de primitivas generado para el isovalor 81.1 se debe a que este valor representa la

densidad intermedia entre la densidad de los tejidos blandos y la de los huesos.

Finalmente, se evaluaron los mallados obtenidos por ambos algoritmos utilizando las
métricas expuestas en la Seccion 2.4.2, con el fin de predecir la calidad de la visualizacion y
manipulacion que se puede obtener de estos mallados. En el siguiente gréfico se puede observar
el porcentaje de métricas de buena calidad generadas por ambos algoritmos a partir del Volumen

#3, utilizando la relacién de aspecto como valor de referencia (ver Seccion 2.4.2.1):
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% de primitivas de buena calidad
Millones de Tetraedros Generados

Isovalor Extraido

—&— Cubos Marchantes (algoritmo propuesto)
Tetracubos Marchantes (Intervalos de Volumen)

—@—Tetraedros Generados en Promedio

Grafico 4.9: Comparacion del nimero de primitivas de buena calidad generadas por los
algoritmos de extraccién de intervalos de volumen del Volumen #3 (Mufieca),
utilizando la relacién de aspecto como referencia.

En el Gréafico 4.9 se puede observar gque tetracubos marchantes extrae un mallado tetraédrico
con una cantidad 35% mayor de primitivas de alta calidad en comparacion con cubos
marchantes, lo cual se puede confirmar en el Gréfico 4.10, donde se puede verificar que la
calidad promedio de los triangulos generados por tetracubos marchantes es superior en un 70%.
Es importante recordar que la relacion de aspecto es una métrica propia, es decir, para las
primitivas ideales el valor de la métrica se aproxima a 1, y para las primitivas degeneradas el

valor de la métrica se aproxima a oo (ver Seccion 2.4).
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Gréfico 4.10: Comparacién de la calidad de las primitivas generadas por los algoritmos
de extraccion de intervalos de volumen a partir del VVolumen #3 (Mufieca), utilizando
el promedio geométrico de la relacidn de aspecto como referencia.

En base al Grafico 4.9 y al Gréafico 4.10 se puede deducir que la calidad del mallado
generado es directamente proporcional a la cantidad de primitivas que lo componen, ya que, a
medida que el tamafio del volumen aumenta, el porcentaje de tetraedros de buena calidad
aumenta y el promedio geométrico de la calidad de éstos disminuye. Esto se debe a que los
volimenes mas grandes estan compuestos por una mayor cantidad de celdas internas®®, las cuales

generan tetraedros de buena calidad.
4.3. ANALISIS CUALITATIVO SOBRE LAS ISOSUPERFICIES EXTRAIDAS

Después de analizar cuantitativamente los resultados obtenidos por los algoritmos de
extraccion de isosuperficies en la Seccion 4.1, se procedio a realizar un analisis cualitativo de la
calidad de las isosuperficies extraidas. Este andlisis consiste en observar y comparar las
caracteristicas de los mallados generados visualmente, con el fin de determinar cual algoritmo

produce el mejor resultado.

'8 Una celda interna es aquella delimitada por ocho (8) voxeles neutros.
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Para visualizar el resultado obtenido a partir de las superficies extraidas, se utilizaron los
modelos de sombreado plano (flat shading) y por gradiente (gradient-shading), como se explicd
en la Seccion 2.2.1. Para implementar la interfaz grafica de usuario se utilizaron las bibliotecas
Qt y OpenGL™, lo cual permitié la implementacién sencilla y eficiente del visualizador de

isosuperficies.

A continuacion se analizaran varias capturas de pantalla obtenidas de algunas superficies

extraidas mediantes las técnicas mencionadas anteriormente.

Figura 4.1: Isosuperficies obtenidas a partir del Volumen #2 (Cabeza) utilizando cubos marchantes sin
resolucion de ambigiiedades (izquierda) y cubos marchantes con resolucion de ambigiiedades (derecha),
rasterizadas mediante el sombreado por gradiente (gradient-shading).

Como se puede observar en la Figura 4.1, la salida de cubos marchantes no difiere
notablemente independientemente de si se aplica resolucion de ambigtiedades o no. Esto se debe
a que la frecuencia con la que ocurren los casos ambiguos representa menos del 1% del volumen
total [NIE91].

9 http://www.opengl.org
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Figura 4.2: Isosuperficies obtenidas a partir del Volumen #3 (Mufieca) utilizando cubos
marchantes con resolucion de ambigiiedades (izquierda) y tetracubos marchantes (derecha),
rasterizadas mediante el sombreado plano (flat-shading).

En la Figura 4.2 se puede observar la extraccion de una isosuperficie proveniente del
Volumen #3 (Mufieca) mediante el uso de cubos marchantes y tetracubos marchantes, donde se
muestra la ampliacion de una seccion de las superficies extraidas, en las cuales se observa que
cubos marchantes produce una superficie con mucho menos ruido que aquella producida por

tetracubos marchantes. La explicacion a este fendmeno se encuentra en la Seccién 4.4.

4.4. ANALISIS CUALITATIVO SOBRE LOS INTERVALOS DE VOLUMEN
EXTRAIDOS

Después de analizar cuantitativamente los resultados obtenidos por los algoritmos de
extraccion de intervalos de volumen en la Seccion 4.2, se procedié a realizar un analisis
cualitativo de la calidad de los intervalos extraidos. Este analisis consiste en observar y comparar
las caracteristicas de los mallados generados visualmente, con el fin de determinar cual algoritmo

produce el mejor resultado.

Para visualizar el resultado obtenido a partir de las superficies extraidas, se utilizaron los
modelos de sombreado plano (flat shading) y por gradiente (gradient-shading), como se explic6
en la Seccién 2.2.1. Para implementar la interfaz grafica de usuario se utilizaron las bibliotecas
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Qt y OpenGL?, lo cual permitié la implementacién sencilla y eficiente del visualizador de

intervalos de volumen.

En la Figura 4.3 se puede observar la extraccion de un intervalo de volumen proveniente del
Volumen #1 (Brazo derecho) mediante el uso del algoritmo propuesto basado en cubos
marchantes y tetracubos marchantes, donde se muestra la ampliacion de una seccion de los
intervalos de volumen extraidos. En estas ampliaciones se observa que el algoritmo propuesto

produce un volumen con mucho menos ruido que aquel producido por tetracubos marchantes.

Figura 4.3: Intervalos de volumen obtenidos a partir del Volumen #1 (Brazo derecho)
utilizando cubos marchantes (izquierda) y tetracubos marchantes (derecha),
rasterizadas mediante el sombreado plano (flat-shading).

Este ruido en el mallado generado por tetracubos marchantes ocurre debido a la division
adicional de la celda, la cual se requiere para su division en tetraedros. Este ruido se puede
observar con mas detalle en un volumen sintético de 4x2x4 voxeles, cuyos intervalos de

volumen extraidos se pueden observar en la Figura 4.4 y la Figura 4.5.

2 http://www.opengl.org
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Figura 4.4: Intervalo de volumen extraido de volumen sintético de 4x2x4 voxeles mediante tetracubos marchantes,
donde los circulos rojos indican los vértices adicionales generados por intersecciones en las diagonales de las caras.

En la Figura 4.4 se pueden observar los vértices adicionales creados por tetracubos
marchantes durante la extraccion del intervalo de volumen, los cuales deforman el mallado
extraido en cada celda, mientras que en la Figura 4.5 se observa el mismo intervalo de volumen
extraido utilizando cubos marchantes, el cual produce un mallado méas suave debido a que no

utiliza las intersecciones en las diagonales de las caras.

Figura 4.5: Intervalo de volumen extraido de volumen sintético de 4x2x4 voxeles mediante cubos marchantes.

En la Figura 4.6 se muestra la extraccion de una isosuperficie de un corte del cubo sintético

utilizado la Figura 4.4 y la Figura 4.5 mediante el uso del algoritmo propuesto basado en cubos
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marchantes y tetracubos marchantes. Como se puede observar, el algoritmo propuesto no
requiere el punto de interseccion en la diagonal de la cara para reconstruir la isosuperficie, lo
cual ocasiona que la salida generada sea mucho mas suave que aquella generada por tetracubos

marchantes.

0.5 1 0.5

S0.45

0 0 0

Figura 4.6: Comparacion de la isosuperficie extraida de un corte del volumen sintético
mediante cubos marchantes (linea anaranjada) y tetracubos marchantes (linea verde).

En la Figura 4.7 en la cual se muestran dos intervalos de volumen extraidos del Volumen #4
(Hipérbola), el primero mediante el algoritmo propuesto basado en cubos marchantes y el
segundo mediante tetracubos marchantes. En esta figura se puede observar que tetracubos
marchantes genera huecos en los planos de las asintotas de la hipérbola, lo cual no ocurre en el
algoritmo propuesto. En la Figura 4.8 se puede observar un volumen sintético donde se generan
estos huecos, lo cual ocurre debido a los puntos adicionales que requiere tetracubos marchantes

para extraer el intervalo de volumen.
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Figura 4.7: Intervalos de volumen obtenidos a partir del Volumen #4 (Hipérbola) utilizando
el algoritmo propuesto basado en cubos marchantes (izquierda) y tetracubos marchantes (derecha).

Figura 4.8: Intervalos de volumen obtenidos a partir de volumen sintético de 4x2x2 vdxeles,
utilizando el algoritmo propuesto basado en cubos marchantes (arriba) y tetracubos marchantes (abajo).
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CAPITULO 5. CONCLUSIONES

En este trabajo se propone un algoritmo para la extraccion de intervalos de volumen basado
en cubos marchantes, con el objetivo de obtener mallados tetraédricos de mayor calidad visual en
menor tiempo. Para llevar a cabo la extraccion solo se utiliza una tabla de conectividad, sin
requerir el uso de ningun algoritmo complejo durante el procesamiento del volumen, como
tetraedrizaciones de Delaunay [GUO95] o la interseccion de poliedros [FUJ95]. El uso de
algoritmos simples y una tabla de conectividad implica una implementacién mas sencilla y un

tiempo de ejecucion menor respecto a otros algoritmos mas complejos.

El algoritmo propuesto mostré un desempefio superior que el algoritmo basado en tetracubos
marchantes [NIE97b], ya que genera mallados mas simples en un tiempo de ejecucion
considerablemente menor. Ademas, este algoritmo no requiere una gran cantidad adicional de
espacio, ya que solo requiere almacenar cuatro cortes del volumen a procesar a la vez, y una

tabla de conectividad precalculada de 3% = 6561 casos.

Sin embargo, el algoritmo basado en tetracubos marchantes genera mallados con primitivas
de mejor calidad en promedio, lo cual se debe a que utiliza elementos lineales, como los
tetraedros, para aproximar una funcion lineal, mientras que el algoritmo propuesto utiliza
elementos lineales para aproximar una funcién hiperbdlica. No obstante, el algoritmo propuesto
genera mallados con una mejor calidad visual que aquellos generados por el algoritmo basado en
tetracubos marchantes [NIE97b], ya que no necesita utilizar las diagonales de las caras para

extraer el intervalo de las celdas del volumen.

Por otra parte, el algoritmo propuesto no realiza ningun procesamiento adicional para el
manejo de las ambigliedades, ya que este asume que todos los puntos de interseccion dentro de
una celda se encuentran conectados. La implementacién del manejo de ambiguedades permitiria
la generacién de modelos topoldgicamente correctos, lo cual es importante para algunas
aplicaciones de los intervalos de volumen, como la simulacion de procesos mediante elementos

finitos y aplicaciones médicas.

En conclusién, el algoritmo propuesto presenta diversas ventajas sobre el algoritmo basado

en tetracubos marchantes, con respecto al tiempo de ejecucion y al tamafio de los mallados
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generados, pero seria necesario realizar comparaciones con otros algoritmos mas complejos, con

el fin de determinar qué aspectos de éste podrian ser mejorados.
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CAPITULO 6. TRABAJOS A FUTURO

Como se mencion6 en la Seccion 3.2, el algoritmo propuesto no realiza ningun
procesamiento adicional para el manejo de los casos ambiguos, sino que asume que todos los
poliedros-aff son convexos y une todos los voOxeles neutros dentro de la celda. La
implementacién del manejo de los casos ambiguos permitiria la generacion de modelos
topoldgicamente correctos. En la Seccidn 3.5 se explican las consideraciones a tomar en cuenta
para la resolucion de los casos ambiguos, tanto para el manejo de ambigiedades en las caras

como ambigledades internas.

En las Secciones 4.2 y 4.4 se compararon los resultados obtenidos del algoritmo propuesto y
la extraccién de intervalos de volumen basada en tetracubos marchantes [NIE97b]. Sin embargo,
no se realizaron comparaciones entre el algoritmo propuesto y las otras técnicas descritas en la
Seccion 2.3, como la extraccién basada en formas alfa [GUO95] y la extraccion basada en cubos
marchantes e interseccion de poliedros [FUJ95]. No obstante, se espera que el algoritmo
propuesto sea mas rapido que dichos algoritmos debido a que sélo se necesita indexar una tabla
de conectividad, sin necesidad de recurrir a algoritmos complejos durante el procesamiento de
cada celda.

Como se menciono en la Seccidn 4.4, la comparacion cualitativa entre los algoritmos para la
extraccion de intervalos de volumen se realiz6 mediante la rasterizacion directa de los tetraedros,
utilizando sombreado por gradiente y (gradient-shading) sombreado plano (flat-shading). Sin
embargo, la visualizacion correcta de estos mallados se realiza mediante el uso de técnicas de
visualizacién directa de volumenes (DVR), como por ejemplo, proyeccion de tetraedros
[KRAO4]. La implementacién de estas técnicas permitiria realizar una visualizacién mas precisa

sobre los mallados generados por los algoritmos para la extraccion de intervalos de volumen.

Finalmente, la implementacion desarrollada asume la variacion lineal de los isovalores en las
aristas de las celdas del volumen, lo cual impide el uso de técnicas numéricas como regula-falsi
[FOR95] para el calculo de los puntos de interseccion en volimenes generados a partir de
ecuaciones implicitas. Modificar la implementacion para el uso de regula-falsi permitiria obtener
mallados de mejor calidad a partir de ecuaciones implicitas, lo cual haria innecesario el uso de

altas resoluciones para aproximar dichas ecuaciones de forma correcta.
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