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Caṕıtulo 2. Leyes Estables 10

1. Propiedades de una variable aleatoria estable 18
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Introducción

El presente Trabajo Especial de Grado se fundamenta en el estudio de la implementación

de un Test de Portmanteau para series de tiempo ARMA(p,q), cuando el ruido sigue una

ley estable de Pareto con varianza infinita.

Para poder abordar este estudio, se realizaron consultas documentales, que avalan las

teorias relacionadas con el tema.

El Test de Portmanteau es un tipo de prueba de hipótesis estad́ıstica en donde la hipótesis

nula de independencia de las innovaciones está bien espećıficada, con hipótesis alternativas

más flexible que las pruebas clásicas.

Este test que consideramos, es una extensión efectiva del caso a varianza infinita del

ruido de un proceso ARMA(p,q) estacionario. El test puede tener la propiedad de ser mo-

deradamente menos potente, donde existe una amplia gama de alternativas, tal como lo

constataremos en los ejemplos presentados más adelante.

En las pruebas clásicas de Yule-Walker o de los algoritmos de Durbins-Levinson, la hipóte-

sis de la independencia del ruido blanco del proceso ARMA(p,q) estudiado bajo la premisa

fundamental junto con la de la existencia del segundo momento, siendo el test la herramienta

matemática más utilizada para rechazar esa hipótesis. En [3] hay una clara exposición de

estas ideas. La potencia del test es calculada con la varianza teórica del ruido.

La existencia de series de tiempo con distribución de Pareto han sido detectadas en la

práctica; es decir, series a las cuales se les rechaza la hipótesis nula de tener varianza finita

estudiada con los residuos. Estudiadas en [1], [7], y en [14].
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Recientemente se ha observado que existe un gran interés en el modelado de las series de

tiempo, usando los procesos ARMA(p,q) con varianza infinita. Ejemplos de estos modelos

han sido encontrados por [16], quienes trabajaron las señales telefonicas. En [6], se presento

un modelo de los precios del mercado de valores.

Este Trabajo Especial de Grado se estructuro sobre la base de la implementación de

los modelos de series de tiempo en el programa R, para resolver el test de Portmanteau con

varianza infinita. El cual consta de cinco caṕıtulos, siendo que el primero de ellos se muestran

los antecedetes de autores que han realizado estudios utilizando el test, se define qué es una

serie de tiempo y por último se presenta la distribución de Pareto.

En el segundo caṕıtulo, se aborda la teoŕıa que establece la definición de las leyes estables,

mostrando con ejemplos teóricos como se usan, aśı como tambien las propiedades de una

variable aleatoria estable. En el caṕıtulo tres se presenta el desarrollo del test de Portmanteau

para series de tiempo, el cual sirvio de herramienta al momento de implementar el programa

R. Seguidamente, en el caṕıtulo cuatro se realiza la simulación de los resultados del test de

Portmanteau con varianza finita e infinita.

Finalmente en el quinto caṕıtulo de este Trabajo Especial de Grado, se aplica la teoŕıa

anteriormente mencionada a través de un ejemplo práctico del test de Portmanteau, lo cual

permitió la aplicación espećıfica del modelo ARMA(p,q) del test propiamente dicho sobre la

base de series de tiempo y la aplicación del programa R, para resolver el test en referencia

con varianza infinita.



Caṕıtulo 1

Marco Teórico

1. Antecedentes

El estudio de los Test de Portmanteau se inició con la prueba de hipótesis de Box-Pierce

estudiada en [1] planteo que la distribución de las autocorrelaciones residuales en modelos de

series de tiempo donde usó el estad́ıstico de prueba QBP basándose en una sucesión Y1, ..., Yn

de variables aleatorias con varianzas finitas, definido por

(1.1) QBP = n
h∑

j=1

ρ̂2(j)

siendo ρ̂(j) el coeficiente de correlación muestral y 0 < h < n. En [1] muestran que
√
nρ̂2(j),

j = 1, ..., h, se comporta asintóticamente como v.a.i.i.d en N (0, 1); en consecuencia, QBP

se distribuye aproximadamente como una variable aleatoria chi-cuadrado con h grados de

libertad. Un valor grande de QBP sugiere que las autocorrelaciones muestrales de los datos

son demasiado grandes para sostener que las muestras sean una sucesión realmente indepen-

diente. En consecuencia, se rechaza la hipótesis de independencia a nivel α si Q > χ2
1−α(h),

donde χ2
1−α(h) es el 1− α cuantil de la distribución chi-cuadrado con h grados de libertad.

Un refinamiento de esta prueba, formulado por Ljung-Box en 1978 mostrado en [9] donde

tomo la medida de la falta de ajuste de los modelos de series de tiempo, en la que QBP es

sustituida por

(1.2) QLB = n(n+ 2)
h∑

j=1

ρ̂2(j)/(n− j)

cuya distribución aproxima mejor la distribución chi-cuadrado con h grados de libertad.

Luego, en 1983, Mcleod-Li formulan en [12] que los modelos ARMA(p,q) de series de

tiempo para la comprobación de diagnosticos usando autocorrelaciones indican que se puede
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utilizar como un test adicional para la hipótesis de independencia, ya que si los datos son

i.i.d., entonces los datos al cuadrado son también i.i.d.. Se basa en el mismo estad́ıstico

utilizado para el test Ljung-Box, excepto que las autocorrelaciones muestrales de los datos

son sustituidas por la autocorrelación muestral de los datos al cuadrado, ρ̂ww(h), dando

(1.3) QML = n(n+ 2)
h∑

k=1

ρ̂2ww(k)/(n− k)

la hipótesis de independencia se rechaza al nivel α si el valor observado de QML es más

grande que el 1− α cuantil de la distribución χ2(h).

Para el año 2002, Peña-Rodŕıguez propusieron en [14] un test de Portmanteau univariado

de bondad de ajuste basado en la ráız m-ésima del determinante de la autocorrelación de la

matriz residual de Toeplitz

(1.4) R̂m =


r̂0 r̂1 · · · r̂m

r̂−1 r̂0 · · · r̂m−1

... · · · . . .
...

r̂−m r̂−m+1 · · · r̂0


donde r̂0 = 1 y r̂−ℓ = r̂ℓ, para todo ℓ.

Luego, para el año 2006, Peña-Rodŕıguez sugieren en [15] modificar este ensayo tomando

el logaritmo de la ráız (m+1)-ésima del determinante en la ecuación (1.4). Se proponen dos

aproximaciones mediante el uso de las distribuciones Gamma y Normal en la distribución

asintótica de este test y se indica que el rendimiento de ambas aproximaciones para compro-

bar la bondad de ajuste de los modelos lineales es similar y más potente para el tamaño de

muestra más pequeña que el anterior.

2. Series de Tiempo

Ahora vamos a mostrar algunas definiciones relacionadas con las Series de Tiempo, in-

herentes al Trabajo Especial de Grado.
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Definición 1.1. Un proceso estocástico a tiempo continuo es una sucesión (Xt, t ∈

T ) = (Xt(ω), t ∈ T, ω ∈ Ω, T ⊆ R+)) de variables aletorias definidas sobre un espacio Ω.

Un proceso estocástico es una función de dos variables:

• Para un instante de tiempo t fijo, ω ∈ Ω, Xt(ω) es una variable aleatoria.

• Para un ω fijo es una función del tiempo Xt(ω), t ∈ T . Esta función es llamada

trayectoria del proceso.

Definición 1.2. Una manera sencilla de generar series de tiempo puede ser considerando

una sucesión de variables aleatorias no-correlacionadas, wt con media 0 y varianza σ2
w. Las

series de tiempo generadas de esta manera son usadas como modelos para ruido en aplicacio-

nes de ingenieŕıa, donde ellas son llamadas ruidos blancos, denotaremos este proceso como

wt ∼ wn(0, σ2
w).

Definición 1.3. Una serie de tiempo débilmente estacionaria xt, es una proceso con

varianza finita tal que

• la función de media µt, es constante y no depende del tiempo t.

• la función de covarianza, γ(s, t), depende solo de las diferencias de s y t, | s− t | .

Por consiguiente, usaremos el término estacionaridad para referirnos a estacionaridad

débil; si un proceso es estacionario en el sentido estricto usaremos el término estrictamente

estacionario.

Definición 1.4. Una Serie de Tiempo es un conjunto de observaciones xt, cada una

registrada a un tiempo espećıfico t.

Definición 1.5. Un modelo de serie de tiempo para los datos observados xt es una

especificación de una distribución conjunta de una sucesión de variables aleatorias Xt de las

cuales xt es una realización.

Definición 1.6. Un Modelo Autoregresivo de orden p (AR(p)), es una ecuación

en diferencias finitas de la forma

(1.5) xt = ϕ1xt−1 + ϕ2xt−2 + ...+ ϕpxt−p + wt
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donde xt es un proceso estacionario en sentido debil, ϕ1, ϕ2, ..., ϕp son constantes (ϕp ̸= 0).

A menos que se declare lo contrario, se supone que wt es un ruido blanco i.i.d de media

cero y varianza σ2
w ≤ ∞. La media de xt en (1.5) es cero. Si la media µ de xt no es cero,

reemplazamos Xt por xt − µ en (1.5), es decir,

xt − µ = ϕ1(xt−1 − µ) + ϕ2(xt−2 − µ) + ...+ ϕp(xt−p − µ) + wt

ó escribimos

(1.6) xt = α+ ϕ1xt−1 + ϕ2xt−2 + ϕpxt−p + wt

donde α = µ(1− ϕ1 + ...+ ϕp).

Definición 1.7. El Modelo de Promedio Movil de orden q (MA(q)) se define

como

(1.7) xt = wt + θ1wt−1 + θ2wt−2 + ...+ θqwt−q

donde hay q pasos en el promedio móvil y θ1, θ2, ..., θq (θq ̸= 0) son parámetros. El ruido wt

se supone también como un ruido blanco con varianza σ2
w ≤ ∞.

3. Distribución de Pareto

En estadistica la distribución de Pareto, formulada por el sociólogo, economista y filosofo

Vilfredo Pareto, es una distribución de probabilidad continua con dos parámetros, que tiene

aplicación en disciplinas como la socioloǵıa, geof́ısica y economı́a.

Función de Densidad

Es una distribución de probabilidad que biparamétrica que tiene como función de densi-

dad:

fx(x) =

 α xα
m

xα+1 si x ≥ xm;Xm > 0, α > 0

0 si x < xm,

donde xm como un valor inicial arbitrario y α es conocido como ı́ndice de pareto.
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Su función de distribución viene dada por:

F (x) = 1−
(xm
x

)α
siempre que α > 1

Probabilidad Acumulada

Sea X una sucesión de variables aleatorias de la distribución de Pareto, entonces la

probabilidad de que X sea mayor que un número x viene dada por:

P (X > x) =

 (xm

x
)α si x ≥ xm

1 si x < xm,

donde xm es el valor inicial arbitrario (positivo) de X, y α el ı́ndice de pareto.

Propiedades

• La Esperanza de una variable aleatoria X que sigue una distribución de Pareto con

parámetro α > 1 es E(X) = αxm

α−1
. Si α ≤ 1, el valor esperado no existe.

• La varianza es V ar(X) = ( xm

α−1
)2 α

α−2
. Si α ≤ 2 la varianza no existe.

• Los momentos son µ′
n = αxn

m

α−n
, pero el n-ésimo momento existe sólo para n < α.

• La función generadora de momentos sólo está definida para valores no positivos de

t ≤ 0 según:

M(t, α, xm) = E(exptX) = α(−xmt)αΓ(−α,−xmt) y M(0, α, xm) = 1

3.1. Distribución estable de Pareto.

Paul Lévy [8] probablemente fue el primero en iniciar la investigación de las distribuciones

estables. Lévy demostró que las probabilidades de cola se aproximan a la de la distribución

de Pareto de ah́ı el término Estable Pareto-Levy o distribución Estable de Pareto. Si la cola

derecha de una distribución de Pareto es asintótica entonces, para x grandes,

(1.8) 1− F (x) ≈ cx−αp

donde F (x) es la función de distribución acumulada, αp es el ı́ndice de la cola y αp > 0,

c > 0.
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La distribución estable de Pareto es una generalización natural de la distribución de Nor-

mal. Sin embargo, las distribuciones estables no normales tienen más masa de probabilidad

en las áreas de la cola que en la normal. De hecho, las distribuciones estables no son tan

normales de cola más ancha donde su varianza y la de todos los momentos más elevados son

infinitos.

Más allá de la distribución normal, la distribución de Cauchy, la distribución de Lévy, y

el reflejo de la distribución de Lévy, no hay expresiones de forma cerrada para las densidades

generalmente estables. Las distribuciones estables de Pareto pueden ser expresadas por su

función caracteŕıstica y la parametrización más común es:

(1.9) E(expitX) =

 exp{iµt− σ |t|α [1− iβ tan Πα
2
sgn(t)]} si α ̸= 1

exp{iµt− σ |t| [1− iβ( 2
Π
)sgn(t) ln |t|]} si α = 1

donde

(1.10) sgn(t) =


1 si t > 0

0 si t = 0

−1 si t < 0

La distribución estable de Pareto posee cuatro parámetros: un parámetro de ubicación

(µ), un parámetro de escala (σ), un ı́ndice de asimetŕıa (β) y una medida de la altura de

las zonas extremas de la cola de la distribución, el exponente caracteŕıstico (o ı́ndice de

estabilidad) α.

El exponente caracteŕıstico de una distribución estable de Pareto α determina la proba-

bilidad total en los extremos de las colas en la distribución y puede tomar cualquier valor

en el intervalo 0 < α ≤ 2. Cuando α = 2, estamos en el caso de una distribución normal con

media µ y varianza 2σ2, como α decrece desde 2 hasta 0, las áreas de la cola de la distribución

estable se hicieron cada vez más anchas de lo normal. Excepto para el caso normal (α = 2),

las distribución estable de Pareto tiene varianza infinita.
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El parametro β puede tomar cualquier valor en el intervalo −∞ < µ < +∞. Cuando

β = 0, la distribución es simétrica alrededor de µ. Si α ̸= 1, para positivo (o negativo) β,

la distribución está sesgada a la derecha (o a la izquierda). La dirección de la asimetŕıa se

invierte si α = 1.

µ es el parámetro de ubicación y puede tomar cualquier valor en el intervalo −∞ < µ ≤

+∞. Cuando 1 < α < 2 la distribución estable de Pareto tiene una media dada por µ. Para

0 < α ≤ 1 las colas son tan fuertes que incluso la media no existe. En este caso, µ debeŕıa

ser otro parámetro (la mediana, por ejemplo, cuando β = 0).

El parámetro de escala σ puede tomar cualquier valor positivo: 0 < σ < +∞. Cuando

α < 2 la varianza de una distribución estable de Pareto no existe y σ define la escala de la

distribución, lo cual tampoco es la varianza. Por ejemplo, cuando α = 1 y β = 0 (distribución

de Cauchy) σ es el rango semi-intercuart́ılico.



Caṕıtulo 2

Leyes Estables

En este caṕıtulo daremos a conocer qué son las leyes estables, su definición, propiedades

y ejemplos teóricos donde son aplicadas estas leyes.

Del Teorema Central del Ĺımite (ver teorema 5.3. del apéndice). Sabemos que siX1, X2, ...

v.a.i.i.d, Sn = X1 + ...+Xn. y EXi = µ con var(Xi) = σ2 ∈ (0,∞) entonces

(Sn − nµ)/σn1/2 =⇒ N (0, 1)

En esta sección vamos a investigar el caso EX2
1 = ∞ y dar condiciones necesarias y

suficientes para la existencia de constantes an y bn de modo que

(Sn − bn)/an =⇒ Y

donde Y es una variable aleatoria no degenerada, osea que la var(Y ) > 0.

Comenzamos con un ejemplo. Supongamos que la variable aleatoria X1 tiene una distri-

bución dada por

(2.1) P (X1 > x) = P (X1 < −x) = x−α/2 para x ≥ 1

donde 0 < α < 2. La función caracteristica de X1 viene dada por φ(t) = E(exp(itX1))

luego

1− φ(t) =

∫ ∞

1

(1− expitx)
α

2|x|α+1
dx+

∫ −1

−∞
(1− expitx)

α

2|x|α+1
dx = α

∫ ∞

1

1− cos(tx)

xα+1
dx

usando un cambio de variable tx = u, dx = u/t la última integral se convierte en

= α

∫ ∞

t

1− cos(u)

(u/t)α+1

du

t
= tαα

∫ ∞

t

1− cos(u)

(u)α+1
du

10
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Como u→ 0, 1− cos(u) ∼ u2/2, para (1− cos(u))/uα+1 ∼ u−α+1/2 que es integrable, ya

que α < 2 implica −α + 1 > −1. Si hacemos que

C = α

∫ ∞

0

1− cos(u)

(u)α+1
du <∞

y observamos de (2.1) implica que φ(t) = φ(−t), a continuación los resultados anteriores

demuestran que

(2.2) 1− φ(t) ∼ C|t|α con t→ 0

Sean X1, X2, ... v.a.i.i.d. con la distribución dada en (2.1) y sea Sn = X1 + ...+Xn.

E(exp(itSn/n
1/α)) = φ(t/n1/α)n = (1− {1− φ(t/n1/α)})n

Cuando

(2.3) n→ ∞, n(1− φ(t/n1/α)) −→ C|t|α,

lo que se deduce a partir del teorema 5.4 (ver apéndice) donde

E exp(itSn/n
1/α) −→ exp(−C|t|α)

De lo anterior se deduce que la expresión de la derecha es la función caracteŕıstica de Y

entonces

(2.4) Sn/n
1/α =⇒ Y

Para obtener nuestro resultado general, primero vamos a dar la prueba de (2.4). Si 0 <

a < b y an1/α > 1 entonces

P (an1/α < X1 < bn1/α) =
1

2
(a−α − b−α)n−1

luego usando el teorema 3.6.1 citado en [5]

Nn(a, b) ≡ |{m ≤ n : Xm/n
1/α ∈ (a, b)}| ⇒ Poisson(a, b)
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donde Poisson(a,b) tiene como media (a−α− b−α)/2. Luego, sea A ⊂ R− (−δ, δ) y δn1/α > 1

entonces

P (X1/n
1/α ∈ A) = n−1

∫
A

α

2|x|α+1
dx

para

Nn(A) ≡ |{m ≤ n : Xm/n
1/α ∈ A}| ⇒ Poisson(A)

donde Poisson(A) tiene como media a

µ(A) =

∫
A

α

2|x|α+1
dx <∞

La familia de variables aleatorias Poisson(A) se denomina un proceso de Poisson en

(−∞,∞) con media µ. Observe que para cualquier ϵ > 0, µ(ϵ,∞) = ϵ−α/2 < ∞, para

Poisson(ϵ,∞) <∞.

A partir de este resultado observamos que el conjunto aleatorio

χn = {Xm/n
1/α : 1 ≤ m ≤ n}

puede ser acotado

Para obtener el ĺımite de Sn/n
1/α. Sea ϵ > 0, y consideremos

In(ϵ) = {m ≤ n : |Xm| > ϵn1/α}

Ŝn(ϵ) =
∑

m∈In(ϵ)

Xm S̄n(ϵ) = Sn − Ŝn(ϵ)

Note que In(ϵ) = los ı́ndices de los ”términos grandes”, es decir, aquellos ı́ndices para los

cuales las variables Xm toman valor mayor que ϵn1/α en magnitud. Ŝn(ϵ) es la suma de los

términos grandes, y S̄n(ϵ) es el resto de la suma. Lo primero que haremos será mostrar si la

contribución de los S̄n es pequeño si ϵ tambien lo es. Donde

X̄m(ϵ) = Xm1(|Xm|≤ϵn1/α)

La simetŕıa X̄m implica EX̄m(ϵ) = 0, para E(S̄n(ϵ)
2) = nEX̄1(ϵ)

2.

EX̄1(ϵ)
2 =

∫ ∞

0

2yP (|X̄1(ϵ)| > y)dy ≤
∫ 1

0

2ydy +

∫ ϵn1/α

1

2yy−αdy
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= 1 +
2

2− α
ϵ2−αn2/α−1 − 2

2− α
≤ 2ϵ2−α

2− α
n2/α−1

donde utilizamos α < 2 en el cálculo de la integral y α > 0 en la desigualdad final.

De esto se deduce que la

(2.5) E(S̄n(ϵ)/n
1/α)2 ≤ 2ϵ2−α

2− α

Para calcular el ĺımite de Ŝn(ϵ)/n
1/α, observamos que |In(ϵ)| tiene una distribución bi-

nomial con probabilidad de éxito p = ϵ−α/n. Dado |In(ϵ)| = m, Ŝn(ϵ)/n
1/α es la suma de m

variables aleatorias independientes con distribución F ϵ
n que es simétrica con respecto a 0 y

tiene

1− F ϵ
n(x) = P (X1/n

1/α | |X1|/n1/α > ϵ) = x−α/2ϵ−α para x ≥ ϵ

Note que esta función de distribución es la misma que la de la variable aleatoria X1,

dada en (2,4), multiplicada por ϵ, es decir, ϵX1, además si φ(t) = E exp(itX1), entonces la

distribución F ϵ
n tiene como función caracteŕıstica φ(ϵt). Combinando las observaciones en

este apartado se tiene que

E exp(itŜn(ϵ)/n
1/α) =

n∑
n=0

(
n

m

)
(ϵ−α/n)m(1− ϵ−α/n)n−mφ(ϵt)m

Luego, usando que (
n

m

)
1

nm
=

1

m!

n(n− 1)...(n−m+ 1)

nm
≤ 1

m!
,

donde (1− ϵ−α/n)n ≤ exp(−ϵ−α) y por el teorema de convergencia dominada obtenemos

(2.6) E(exp(itŜn)(ϵ)/n
1/α) →

∞∑
m=0

exp(−ϵ−α)(ϵ−α)mφ(ϵt)m/m! = exp(−ϵ−α1− φ(ϵt))

usando este resultado y la igualdad (2.3) se obtiene la convergencia planteada en (2.4).

Lema 2.1. Si hn(ϵ) → g(ϵ) para cada ϵ > 0 y g(ϵ) → g(0) como ϵ→ 0 entonces podemos

escoger ϵn → 0 de modo que hn(ϵn) → g(0).

Demostración: Sea Nm elegido de modo que | hn(1/m)− g(1/m) |≤ 1/m para n ≥ Nm y

m→ Nm está aumentando. Sea ϵn = 1/m para Nm ≤ n < Nm+1 y = 1 para n < N1. Cuando
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Nm ≤ n < Nm+1, ϵn = 1/m por lo que resulta de la desigualdad triangular y la definición de

ϵn que

| hn(ϵn)− g(0) |≤| hn(1/m)− g(1/m) | + | g(1/m)− g(0) |≤ 1/m+ | g(1/m)− g(0) |

cuando n→ ∞, tenemos m→ ∞ y el resultado se deduce.

Sean hn(ϵ) = E exp(itŜn(ϵ)/n
1/α) y g(ϵ) = exp(−ϵ−α{1−φ(ϵt)}). Luego de (2.2) se tiene

que 1− φ(t) ∼ C|t|α como t→ 0 entonces

g(ϵ) → exp(−C|t|α) cuando ϵ→ 0

del Lema 2.1 sabemos que podemos escoger ϵn → 0 talque hn(ϵn) → exp(−C|t|α). Sea Y con

función caracteristica φ(t) = E exp(itY ) = exp(−C|t|α), donde se deduce que Ŝn(ϵn)/n
1/α ⇒

Y . Si ϵn → 0 luego por (2.5) se tiene que

S̄n(ϵn)/n
1/α ⇒ 0

y de (2.4) se deriva del lema donde converge en ley a cero.

Una vez que damos una definición final, vamos a expresar y probar el resultado general

aludido anteriormente.

Definición 2.2. L se dice que es de variación lenta, si

ĺım
x→∞

L(tx)/L(x) = 1 para todo t > 0

Teorema 2.3. Supongamos que X1, X2, ... son v.a.i.i.d. con una distribución que satis-

face

(i)Limx→∞P (X1 > x)/P (| X1 |> x) = θ ∈ [0, 1]

(ii)P (| X1 |> x) = x−αL(x),

donde α < 2 y L vaŕıa lentamente.

Sea Sn = X1 + ... + Xn, an = inf{x : P (| X1 |> x) ≤ n−1} y bn = nE(X11(|X1|≤an))

entonces cuando n→ ∞, (Sn − bn)/an ⇒ Y donde Y tiene una distribución no degenerada.
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Observación 2.4. En el teorema anterior se muestran las condiciones necesarias para

la existencia de las constantes an y bn de modo que (Sn − bn)/an ⇒ Y , donde Y es una

distribución no degenerada.

Demostración: Veamos primero que la hipótesis (ii) implica que

(2.7) nP (| Xi |> an) → 1

para probar esto, usaremos que nP (| Xi |> an) ≤ 1 y consideremos ϵ > 0. Sea x = an/(1+ ϵ)

y t = 1 + 2ϵ, luego (ii) implica que

(1 + 2ϵ)−α = limn→∞
P (| X1 |> (1 + 2ϵ)an/(1 + ϵ))

P (| X1 |> an/(1 + ϵ))
≤ lim infn→∞

P (| X1 |> an)

1/n

obteniendo aśı (2.7) pues ϵ es arbitrario. Combinando (2.7) con (i) y con (ii) obtenemos

(2.8) nP (X1 > xan) → θx−α para x > 0

por tanto | m ≤ n : Xm > xan |⇒ Poisson(θx−α). El último resultado nos da la conclusión

que χn = {Xm/an : 1 ≤ m ≤ n} converge a un proceso de Poisson en (−∞,∞) con media

µ(A) =

∫
A
∩
(0,∞)

θα | x |−(α+1) dx+

∫
A
∩
(−∞,0)

(1− θ)α | x |−(α+1) dx

Ahora para resumir los puntos, vamos a In(ϵ) = {m ≤ n :| Xm |> ϵan}

µ̂(ϵ) = EXm1(ϵan<|Xm|≤an) Ŝn(ϵ) =
∑

m∈In(ϵ)

Xm

µ̄(ϵ) = EXm1(|Xm|≤ϵan)

S̄n(ϵ) = (Sn − bn)− (Ŝn(ϵ)− nµ̂(ϵ)) =
n∑

m=1

{Xm1(|Xm|≤ϵan) − µ̄(ϵ)}

Si tomamos que X̄m(ϵ) = Xm1(|Xm|≤ϵan) entonces

E(S̄n(ϵ)/an)
2 = n var(X̄1(ϵ)/an) ≤ nE(X̄1(ϵ)/an)

2

E(X1(ϵ)/an)
2 ≤

∫ ϵ

0

2yP (| X1 |> yan)dy = P (| X1 |> an)

∫ ϵ

0

2y
P (| X1 |> yan)

P (| X1 |> an)
dy
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usando (2.7) y (ii) concluimos

nE(X̄1(ϵ)/an)
2 →

∫ ϵ

0

2yy−αdy =
2

2− α
ϵ2−α

por lo tanto

(2.9) ĺım sup
n→∞

E(S̄n/an)
2 ≤ 2ϵ2−α

2− α

intercambiando el limite y la integral y luego tomando δ < 2−α se obtiene el siguiente lema

el cual demostraremos antes de continuar con la demostración del Teorema.

Lema 2.5. Para cualquier δ > 0 hay un C de modo que para todo t ≤ t0 y y ≤ 1

P (| X1 |> yt)/P (| X1 |> t) ≤ Cy−α−δ

Demostración: Usando la parte (ii) del teorema se tiene que como t→ ∞

P (| X1 |> t/2)/P (| X1 |> t) → 2α

por lo que para t ≥ t0 tenemos

P (| X1 |> t/2)/P (| X1 |> t) ≤ 2α+δ

iterando t/2m < t0 para todo n ≥ 1

P (| X1 |> t/2n)/P (| Xt |> t) ≤ C2(α+δ)n,

donde C = 1/P (| X1 |> t0). Aplicando el último resultado a los n primeros números con

1/2n < y y notando que y ≤ 1/2n−1 tenemos

P (| X1 |> yt)/P (| X1 |> t) ≤ C2α+δy−α−δ

lo que demuestra el lema.

Con este resultado en mano podemos continuar con la demostración del teorema 2.3.

Para calcular el ĺımite de Ŝn(ϵ), se observa que |In(ϵ)| ⇒ Poisson(ϵ−α). Dado |In(ϵ)| = m,

Ŝn(ϵ)/n
1/α es la suma de m variables aleatorias independientes con distribución F ϵ

n que

satisfacen que

1− F ϵ
n = P (X1/an > x||X1|/an > ϵ) → θx−α/ϵ−α

F ϵ
n(−x) = P (X1/an < −x||X1|/an > ϵ) → (1− θ)|x|−α/ϵ−α
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para x ≥ ϵ. Si denotamos por φϵ
n(t) denota la función caracteŕıstica de F ϵ

n, entonces

implica

φϵ
n → φϵ =

∫ ∞

ϵ

expitx ϵααx−(α+1)dx+

∫ −ϵ

−∞
expitx(1− θ)ϵαα|x|−(α+1)dx

como n → ∞. Luego, siguiendo un procedimiento analogo realizado. Para obtener la

demostración de la igualdad (2.6) tenemos que

E(exp(itŜn(ϵ)/an)) → exp(−ϵ−α{1− φϵ(t)})

= exp

(∫ ∞

ϵ

(expitx −1)θαx−(α+1)dx+

∫ ϵ

−∞
(expitx −1)(1− θ)α|x|−(α+1)dx

)

donde hemos utilizado ϵ−α =
∫∞
ϵ
αx−(α+1)dx. Lo cual obtenemos

µ̂(ϵ) = EXm1(ϵan<|Xm|≤an)

observamos que (2.7) implica nP (xan < Xm ≤ yan) → θ(x−α − y−α). Aśı

nµ̂(ϵ)/an →
∫ 1

ϵ

xθαx−(α+1)dx+

∫ −ϵ

−1

x(1− θ)α|x|−(α+1)dx

De esto se deduce que

(2.10) E(exp(it{Ŝn(ϵ)− nµ̂(ϵ)/an})) → exp(

∫ ∞

1

(expitx −1)θαx−(α+1)dx

+

∫ 1

ϵ

(expitx −1− itx)θαx−(α+1)dx

+

∫ −ϵ

−1

(expitx−1− itx)(1− θ)α|x|−(α+1)dx+

∫ −1

−∞
(expitx −1)(1− θ)α|x|(α+1)dx)

La última expresión es complicada, pero expitx −1− itx ∼ −t2x2/2 ya que t→ 0, por lo

que necesitamos restar el itx para hacer∫ 1

0

(expitx −1− itx)x−(α+1)dx converge cuando α ≥ 1

Para reducir el número de integrales de cuatro hasta dos, podemos escribir el ĺımite ϵ→ 0

de la parte izquierda de (2.9) como
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(2.11)

exp

(
itc+

∫ ∞

0

(
expitx −1− itx

1 + x2

)
θαx−(α+1)dx+

∫ 0

−∞

(
expitx −1− itx

1 + x2

)
(1− θ)α|x|−(α+1)dx

)
donde c es constante. Combinando (2.8) y (2.9) usando el lema 2.1, obtenemos que

(Sn − bn)/an ⇒ Y ya que E expitY se da en la ecuación (2.10).

Definición 2.6. Una variable aleatoria Y se dice que tiene una Ley Estable si para

cada k > 0 existen constantes ak y bk de modo que si Y1, ..., Yk son i.i.d. y tienen la misma

distribución que Y, entonces (Y1 + ...+ Yk − bk)/ak =d Y .

Teorema 2.7. Y es el ĺımite de (X1 + ...+Xk − bk)/ak para la secuencia i.i.d. de Xi si

y sólo si Y tiene una ley estable.

Demostración: Si Y tiene una ley estable podemos tomar una sucesión X1, X2, ... v.a.i.i.d.

con distribución Y. Ahora consideremos

Zn = (X1 + ...+Xn − bn)/an

y Sj
n = X(j−1)n+1 + ...+Xjn. Luego,

Znk = (S1
n + ...+ Sk

n − bnk)/ank

ankZnk = (S1
n − bn + ...+ (Sk

n − bn) + (kbn − bnk))

ankZnk/an = (S1
n − bn)/an + ...+ (Sk

n − bn)/an + (kbn − bnk)/an.

Los k primeros términos en el lado derecho ⇒ Y1+ ...+Yk ya que n→ ∞ donde Y1+ ...+Yk

son independientes y tienen la misma distribución que Y, y Znk ⇒ Y . Tomando Wn = Znk y

W ′
n =

akn
an

Znk −
kbn − bnk

an

obteniendo aśı el resultado deseado.

1. Propiedades de una variable aleatoria estable

Algunas de las propiedades importantes de Y se enumeran a continuación. Para un análisis

más extenso de variables aleatorias estables.
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(1) La función caracteŕıstica φ(u) = E exp(iuY ), viene dada por

(2.12) φ(u) =

 exp{iut− d |u|α (1− iθsgn(u) tan(Πα
2
))} si α ̸= 1

exp{iut− d |u| (1− iθ 2
Π
sgn(u) ln |u|)} si α = 1

donde sgn(u) es u/ | u | si u ̸= 0, y cero si no se cumple. Los parámetros α ∈ (0, 2],

β ∈ R, d 1
α ∈ [0,∞) y θ ∈ [−1, 1] se conocen como el exponente, la ubicación, la

escala y los parámetros de simetŕıa respectivamente.

(2) Si α = 2 entonces Z ∼ Poisson(β, 2d).

(3) Si θ = 0 entonces la distribución de Y es simétrica respecto β. Las distribuciones

simétricas estables (es decir, aquellas que son simétricas con respecto a 0) tienen

función caracteŕıstica de la forma

(2.13) φ(u) = exp−d|u|α .

(4) Si α = 1 y θ = 0 entonces Y tiene la distribución de Cauchy con densidad de

probabilidad f(y) = (d/y)[d2 + (y − β)2]−1, y ∈ R.

(5) Las distribuciones simétricas estables satisfacen la propiedad de la definición 2.6 con

an = n1/α y bn = 0, ya que si las variables aleatorias Y, Y1, ..., Yn tienen la función

caracteŕıstica dada en (2.13) y son variables aleatorias independientes, entonces

E exp[iu(Y1 + ...+ Yn)] = e−nd|u|α = E exp[iuY n1/α].

(6) Si F es la función de distribución de Y y α ∈ (0, 2) entonces se satisface la definición

(2.13) con p = (1 + θ)/2 y

(2.14) C =

 d/(Γ(1− α) cos(πα/2)) si α ̸= 1

2d/π si α = 1

En la siguiente proposición, proporcionaremos las condiciones suficientes bajo las cuales

la suma
∑∞

j=−∞ φjYt−j existe cuando Yt es una sucesión que satisface la definición 2.6.

Proposición 2.8. Sea Yt una sucesión de variables aleatorias i.i.d. que satisfacen la

definición 2.6. Si φj es una sucesión de constantes tales que
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(2.15)
∞∑

j=−∞

| φ |δ<∞ para algun δ ∈ (0, α) ∩ [0, 1],

entonces la serie infinita,
∑∞

j=−∞ φjYt−j, converge absolutamente con probabilidad uno.

Demostración: Consideraremos primero el caso 1 < α < 2. Entonces por (3.3), E | Y1 |<

∞ y por lo tanto

E(
∞∑

j=−∞

| φjYt−j |) =
∞∑

j=−∞

| φj | E | Yt−j |=
∞∑

j=−∞

| φj | E | Y1 |<∞.

Aśı
∑∞

j=−∞ | φjYt−j | es finita con probabilidad uno.

Ahora supongamos 0 < α < 1. Desde 0 < α < 1, podemos aplicar la desigualdad

triangular | x + y |δ=| x |δ + | y |δ a la suma infinita
∑∞

j=−∞ φjYt−j. Haciendo uso de (3.3)

a continuación, encontrará que

E(
∞∑

j=−∞

| φjYt−j |)δ ≤ E(
∞∑

j=−∞

| φj |δ| Yt−j |δ) =
∞∑

j=−∞

| φj |δ E | Y1 |δ<∞.

Por lo tanto
∑∞

j=−∞ | φjYt−j |<∞ con probabilidad uno.

Observación 2.9. La distribución de la suma infinita
∑∞

j=−∞ φjYt−j satisface la ecua-

ción (3.2). Especificamente

xαP (|
∞∑

j=−∞

φjYt−j |> x) → (
∞∑

j=−∞

| φj |α)C.

Observación 2.10. Si Y1 tiene una distribución simétrica estable con función carac-

teŕıstica e−d|t|α (y dispersión C propuesta por (2.14)), entonces
∑∞

j=−∞ φjYt−j también tiene

una distribución simétrica estable con dispersión C̃ = C
∑∞

j=−∞ | φj |α.



Caṕıtulo 3

Test de Portmanteau en una distribución de Pareto

En este caṕıtulo, estudiaremos el test de Portmanteau, utilizando la distribución de Pare-

to. Pero primero daremos a conocer algunas observaciones para usar el test de Portmanteau

con varianza infinita.

1. Procesos lineales con varianza infinita

Todas las series de tiempo que exhiben picos intensos o explosiones ocasionales de obser-

vaciones at́ıpicas sugieren el posible uso de un modelo de varianza infinita. En esta sección

vamos a restringir nuestra atención a los procesos generados por la aplicación de un filtro

lineal de una sucesión v.a.i.i.d., {Yt, t = 0,±1, ...} cuya distribución F es de Pareto, es decir,

(3.1)

 xα(1− F (x)) = xαP (Yt > x) → pC, si x→ ∞

xαF (−x) = xαP (Yt ≤ −x) → qC, si x→ ∞

donde 0 < α < 2, 0 ≤ p = 1− q ≤ 1, y C es una constante finita positiva que vamos a llamar

dispersión, disp(Yt), de la variable aleatoria Yt. El sistema (3.1) lo podemos reescribir como

(3.2) xα(1− F (x) + F (−x)) = xαP (| Yt |> x) → C, six→ ∞

de donde

(3.3)

 E | Yt |δ= ∞ si δ ≥ α

E | Yt |δ<∞ si δ < α

la ecuación (3.3) la obtuvimos usando la función de densidad de la disp(Yt).

Por lo tanto V ar(Yt) = ∞ para 0 < α < 2 y E | Yt |< ∞ sólo si 1 < α < 2. Una clase

importante de distribuciones que cumplen (3.1) es la de las variables aleatorias estables no

gaussianas.

21
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Definición 3.1. Si definimos por

(3.4) Xt =
∞∑

j=−∞

φjYt−j,

donde (3.4) se denomina Proceso Lineal.

Si φj y Yt satisfacen los supuestos de la proposición 2.8, este proceso existe con probabili-

dad uno y es estrictamente estacionario; es decir, la distribución conjunta de (X1, ..., Xk)
′ es

la misma que la de (X1+h, ..., Xk+h)
′ para todo entero h y k número natural. En particular,

si los coeficientes φj se escogen de manera que φj = 0 para j < 0 y

(3.5)
∞∑
j=0

φjy
j = θ(y)/ϕ(y), | y |≤ 1,

donde θ(y) = 1+θ1y+...+θqy
q y ϕ(y) = 1−ϕ1y−...−ϕpy

p ̸= 0 para |y| ≤ 1, entonces es fácil

demostrar que Xt como se espećıfica en la definición 2.6 donde se satisfacen las ecuaciones

ARMA(p,q) con ϕ(B)Xt = θ(B)Yt donde B es el operador de desplazamiento.

Proposición 3.2. Sea Yt una suceción de v.a.i.i.d. con función de distribución F que

satisface la definición 2.6. Entonces si θ(·) y ϕ(·) son polinomios tales que ϕ(y) ̸= 0 para

| y |≤ 1, las ecuaciones en diferencias

(3.6) ϕ(B)Xt = θ(B)Yt,

tiene una solución estrictamente estacionaria,

(3.7) Xt =
∞∑
j=0

φjYt−j,

donde los coeficientes φj se determina por la relación (3.5). Si además φ(y) y θ(y) no

tienen ceros comunes, entonces el proceso (3.7) es invertible si y sólo si θ(y) ̸= 0 para

| y |≤ 1.

Para entender el siguiente teorema usaremos las siguientes ecuaciones
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(3.8) ρ(h) :=

∑
j ψjψj+h∑

j ψ
2
j

, h = 1, 2, ...

y su estimador

(3.9) ρ̃(h) =
n−h∑
t=1

XtXt+h/
n∑

t=1

X2
t , h = 1, 2, ...,

Teorema 3.3. Sea {Yt} una sucesión i.i.d. de variables aleatorias simétricas que satis-

facen (2.6) y sea {Xt} el proceso estrictamente estacionario,

Xt =
∞∑

j=−∞

φjYt−j,

donde
∞∑

j=−∞

| j || φj |δ para algun δ ∈ (0, α) ∩ [0, 1].

entonces, para cualquier número entero positivo h,

(3.10) (n/ ln(n))1/n(ρ̃(1)− ρ(1), ..., ρ̃(h)− ρ(h))′ ⇒ (Y1, ..., Yh)
′,

donde

Yk =
∞∑
j=1

(ρ(k + j) + ρ(k − j)− 2ρ(j)ρ(k))Sj/S0, k = 1, ..., h,

y S0, S1, ..., son variables aleatorias independientes estables; S0 es estable positiva con la

función caracteŕıstica

(3.11) E exp(iuS0) = exp{−CΓ(1− α) cos(πα/4) | u |α/2 (1− isgn(u) tan(πα/4))}

y S1, S2, ..., son i.i.d. con función caracteŕıstica,

(3.12) E exp(iuS1) =

 exp{−C2Γ(1− α) cos(πα/2) | u |α si α ̸= 1

exp{−C2π | u | /2} si α = 1
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Si α > 1 entonces (2.13) también es cierto cuando p̃(θ) se sustituye por su valor medio

corregido por la versión ρ̂(h) =
∑n−h

t=1 (Xt − X̄)(Xt+h − X̄)/
∑n

t=1(Xt − X̄)2, donde X̄ =

n−1(X1 + ...+Xn).

La consecuencia inmediata de el teorema anterior es que ρ̃(h)
p→ ρ(h), más especifica-

mente que ρ̃(h) − ρ(h) = Op([n/ ln(n)]
−1/α) = Op(n

−1/β) para todo β > α. Este ı́ndice de

convergencia a cero se compara favorablemente con el Op(n
−1/2), para la diferencia ρ̃(h)−ρ(h)

en el caso de la varianza finita.

La forma de la distribución asintótica de ρ̃(h), puede ser un tanto simplificada. Hacemos

esto porque Yh tiene la misma distribución que

(3.13)

(
∞∑
j=1

|ρ(h+ j) + ρ(h− j) + 2ρ(j)ρ(h)|α
)1/α

U

V
,

donde V (≥ 0) y U son variables aleatorias independientes con funciones caracteŕısticas

dadas por las ecuaciones (3.9) y (3.10) respectivamente tomando C = 1. Los percentiles de

la distribución de U/V los encontramos ya sea por la simulación de copias independientes

de U/V o por la integración numérica de la densidad conjunta de (U, V ) sobre una región

apropiada.

Cuando tomamos α = 1, la densidad conjunta de U y V no la podemos escribir en forma

cerrada. Para el mismo caso de α = 1, U es una variable aleatoria de Cauchy con función de

densidad

fU(u) =
1

2
[π2/4 + u2]−1

la ecuación anterior la obtuvimos usando la propiedad 4 de una variable aleatoria estable, y

V es una variable aletoria no negativa estable con función de densidad,

fV (v) =
1

2
v−3/2 exp−π/4v, v ≥ 0.

Por lo tanto, la función de distribución de U/V viene dada por

(3.14)

P (U/V ≤ x) =

∫ ∞

0

P (U ≤ xy)fV (y)dy =

∫ ∞

0

2−1/2(πw)−3/2[arctan(xw)+(π/2)] exp(−1/(2w))dw.
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donde U/V tiene la misma distribución que el producto de una variable aleatoria de Cauchy

estándar, donde su función de densidad π−1(1+x2)−1, y una variable aleatoria independiente

distribuida como χ2(1).

2. Test de Portmanteau para series de tiempo estables de Pareto

En esta sección, estudiaremos los test de Portmanteau para comprobar la aleatoriedad de

una sucesión de variables aleatorias estables de Pareto. Consideraremos la estabilidad para

los test de Portmanteau de [1] y [14], denotados por QBP y D̂, respectivamente.

2.1. Distribución asintótica de la función de autocorrelación.

Sea {Yt : t = 0,±1,±2, ...} una sucesión de variables aleatorias i.i.d. estables de Pareto

y Xt el proceso estrictamente estacionario definido por

(3.15) Xt =
∞∑

j=−∞

φjYt−j, t = 1, ..., n,

donde

(3.16)
∞∑

j=−∞

| j || φj |δ<∞, para algun δ ∈ (0, α) ∩ [0, 1].

El análogo estable de la función de autocorrelación (ACF) en el retraso k se define como

(3.17) ρk =
∑
j

φjφj+k/
∑
j

φ2
j , k = 1, 2, ...,

El estimador de (3.17) puede ser estimado por la función de autocorrelación de la muestra

de la siguiente manera:

(3.18) rk =

{
n−k∑
t=1

XtXt+k

}
/

n∑
t=1

X2
t , k = 1, 2, ...,

para α > 0. Según [4], para cualquier entero positivo k, la distribución ĺımite de funciones

de autocorrelación de la muestra está dada por
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(3.19)

[
n

log(n)

]1/α
(r1 − ρ1, ..., rk − ρk)

T → (Y1, ..., Yk)
T ,

donde ⇒ denota convergencia en la distribución y

(3.20) Yh =
∞∑
j=1

(ρk+j + ρk−j − 2ρjρk)
Sj

S0

, h = 1, ..., k,

donde S0, S1, ... son variables independientes estables; S0 es positivo con S0 ∼ Yα/2(C
−2/α
α/2 , 1, 0)

donde Yα/2 es una N(0, 1), y la Sj son Yα(C
−1/α
α , 0, 0) lo cual Yα es una χ2, y

Cα =

 (1− α)/(Γ(2− α) cos(πα/2)) si α ̸= 1

2/π si α = 1,

Bajo la hipótesis nula de que Xt es una sucesión de v.a.i.i.d. estables de Pareto, tenemos

ρ0 = 1 y ρk = 0 para k ≥ 1 por lo que la distribución ĺımite muestral ACF, puede simplificar

aún más la siguiente ecuación:

(3.21)

[
n

log(n)

]1/α
(r1, ..., rk)

T → (W1, ...,Wk)
T ,

donde Wh está dada por

(3.22) Wh =
Sh

S0

, h = 1, ..., k.

Tengamos en cuenta que, para α > 1, también podemos utilizar la función media-

corregida para la autocorrelación de la muestra en el retardo k, denotado como r̃k, que

se da por

(3.23) r̃k =
n−k∑
t=1

(Xt − X̄)(Xt+k − X̄)/
n∑

t=1

(Xt − X̄)2, k = 1, 2, ....

en [4] se indica que la distribución ĺımite de r̃k es la misma que el de rk.
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2.2. Distribución asintótica de la función de autocorrelación parcial.

La función de autocorrelación parcial en el retardo k se define como la estimación de

la muestra del k-ésimo elemento de la solución de Yule-Walker [3] a un proceso AR. La

función de autocorrelación parcial (PACF) también puede ser calculada usando el algoritmo

de Durbin-Levinson [3].

Sea πk la PACF en el retardo k, y π(m) = (π1, ..., πm)
T . Según el algoritmo de Durbin-

Levison [3], el vector π(m) puede expresarse como una función de r(m), π(m) = ψ(r(m)), con

el k-ésimo elemento propuesta por

(3.24) πk = ψ(r(k)) =
rk − rT(k−1)R

−1
(k−1)r

∗
(k−1)

1− rT(k−1)R
−1
(k−1)r(k−1)

donde r(p) = (r1, ..., rp)
T es el p × 1 vector de funcion de autocorrelación, R(p) = (r|i−j|)p×p

es la p× p matrix de autocorrelación y r∗(k) = (rk, ..., r1)
T .

Bajo la hipótesis nula de que los Xt son independientes, las funciones de autocorrelación

son todas cero, y de acuerdo con [2] que nos explica el uso del orden de la probabilidad,

rh = Op

([
n

log(n)

]−1/α
)
, h = 1, 2, ...

por lo tanto,

R(k) = 1k +Op

([
n

log(n)

]−1/α
)
,

donde 1k es un k × k matriz de identidad. Por la ecuación (3.20)

(3.25) π(m) = r(m) +Op

([
n

log(n)

]−2/α
)

usando la ecuación (3.17), se tiene que

(3.26)

[
n

log(n)

]1/α
(π1, ..., πm)

T → (W1, ...,Wm)
T .
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2.3. Distribuciones asintóticas de QBP y el test D̃.

Bajo la suposición de que 1 < α < 2, derivado de la distribución limite de QBP de [1],

basado en el valor medio corregido de las funciones de autocorrelación. Su resultado se da

por

(3.27) QBP (m) =

(
n

log(n)

)2/α m∑
j=1

r̃2j → W 2
1 + ...+W 2

m,

donde Wk : k = 1, ...,m se definen en la ecuación (3.18). Donde tenemos 0 < α ≤ 1, la

distribución ĺımite de la ecuación (3.23) sigue dando la misma si sustituimos r̃k por rk.

Consideremos el siguiente test D̂ de [14]. En el caso estable, podemos definir el estad́ıstico

del test,

(3.28) D̂(m) =

(
n

log(n)

)2/α

(1− | R(m) |1/m).

utilizando los resultados de 2.1 y 2.2, y siguiendo los argumentos en [11] sobre la matrix

de autocorrelación, es posible obtener la distribución asintótica de la ecuación (3.28) en el

siguiente Teorema.

Teorema 3.4. D̂(m) en la ecuación (3.28) se distribuye asintóticamente como

m∑
i=1

m+ 1− i

m
W 2

1 ,

donde {Wi : i = 1, ...,m} se define en la ecuación (3.18).

Demostración: Primero, usando la descomposición del determinante de la matrix de au-

tocorrelación R(m), [11] mostraron que | R(m) |1/m es una función de autocorrelación parcial

de los primeros m datos. Especificamente,

(3.29) | R(m) |1/m=
m∏
i=1

(1− π2
i )

(m+1−i)/m

Supongamos, bajo la hipotesis nula de que D̂ se distribuye asintóticamente como X 2.

Aplicando el δ-método a g(x) = log(1 − x), resulta que −(n/ log(n))2/α log(| R(m) |1/m) se
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distribuye asintóticamente como X 2. A partir de la ecuación (3.25), se puede tener

(3.30) −
(

n

log(n)

)2/α

log(| Rm |1/m) = −
(

n

log(n)

)2/α m∑
i=1

m− i+ 1

m
log(1− π2

i )

Ahora suponemos que

(3.31)

(
n

log(n)

)2/α

(π2
1, π

2
2, ..., π

2
m)

T ⇒ Y

al aplicar el δ-método multivariado a

g(π2
1, π

2
2, ..., π

2
m) = −

m∑
i=1

m− i+ 1

m
log(1− π2

i ),

resulta que

(3.32) −
m∑
i=1

m− i+ 1

m
log(1− π2

i ) ⇒
(
1,
m− 1

m
, ...,

1

m

)
Y.

Por el Teorema de Cramer-Wold, resulta que

(3.33)

(
1,
m− 1

m
, ...,

1

m

)((
n

log(n)

)2/α

π2
1, ...,

(
n

log(n)

)2/α

π2
m

)
⇒
(
1,
m− 1

m
, ...,

1

m

)
Y

Ahora, bajo la hipótesis nula de que Xt son una sucesión de variables aleatorias i.i.d.

estables de Pareto, tenemos ρ0 = 1 y ρk = 0 para k ≥ 1 donde la distribución ĺımite de ACF

la podemos simplificar como:

(3.34)

[
n

log(n)

]1/α
(r1, ..., rk)

T ⇒ (W1, ...,Wk)
T ,

donde Wh estan dadas por:

(3.35) Wh =
Sh

S0

, h = 1, ..., k.

Notemos que para α > 1, tambien utilizamos la función de autocorrelación, corregida

por la media aritmética en el retardo k, denotado por r̃k, que está dada por

(3.36) r̃k =
n−k∑
t=1

(Xt − X̄)(Xt+k − X̄)/
n∑

t=1

(Xt − X̄)2, k = 1, 2, ...

Usando la ecuación (3.17), tenemos

(3.37)

[
n

log(n)

]1/α
(π1, ..., πm)

T ⇒ (W1, ...,Wm)
T .
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resulta que

(3.38)(
1,
m− 1

m
, ...,

1

m

)((
n

log(n)

)2/α

π2
1, ...,

(
n

log(n)

)2/α

π2
m

)
⇒W 2

1 +
m− 1

m
W 2

2 , ...,
1

m
W 2

m.

Finalmente, de las ecuaciones (3.29) y (3.34),

(3.39)

(
1,
m− 1

m
, ...,

1

m

)
Y ⇒

m∑
i=1

m+ 1− i

m
W 2

i ,

y desde la ecuación (3.27), tenemos

D̂ ⇒
m∑
i=1

m+ 1− i

m
W 2

i .



Caṕıtulo 4

Análisis del test de Portmanteau

En este caṕıtulo presentaremos tres ejemplos prácticos que hacen el uso del test de

Portmanteau donde compararemos sus p-valores utilizando las distribuciones asintóticas y

estables.

1. Intel Data Corporation

Consideraremos los rendimientos mensuales del registro de valores de la empresa Intel

Data Corporation desde Enero de 1973 hasta Diciembre del 2003 con una serie de tamaño

n = 372 citados de [17].

Intel Data Corporation
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Figura 4.1. Comportamiento de los rendimientos
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La figura 4.1, nos muestra como fue el comportamiento de los rendimientos mensuales,

donde existen ciertas variaciones que nos indican que puede haber varianza infinita. Claro

existen ciertos puntos que nos indican que existe cierta variación alta donde los rendimientos

aumentaron su precio, aśı como tambien hubo cierta perdida grande de su valor.

Antes de hacer uso y el analisis del test de Portmanteau debemos seleccionar una hipótesis

nula la cual es donde basaremos el analisis de este ejemplo.

La hipótesis nula seleccionada

H0 : los datos son independientes identicamente distribuidos con varianza finita

y como hipótesis alternativa a

HA : los datos no se distribuyen de forma independiente y no tienen varianza finita

Para realizar el estudio de este primer ejemplo tomamos los retardos de 5,10,15,20,25,30,

donde lo aplicamos a los rendimientos utilizando las distribuciones asintotica (DA) y estable.

Test Metodos ρ = 5 ρ = 10 ρ = 15 ρ = 20 ρ = 25 ρ = 30

QBP Normal-DA 0.457 0.156 0.081 0.242 0.238 0.370

QBP Estable-DA 0.985 0.729 0.829 0.824 0.862 0.825

QLB Normal-DA 0.449 0.144 0.068 0.211 0.197 0.310

QLB Estable-DA 0.984 0.712 0.810 0.796 0.829 0.773

D̂ Normal-DA 0.513 0.263 0.184 0.173 0.177 0.203

D̂ Estable-DA 0.945 0.886 0.842 0.806 0.815 0.771

Cuadro 1. P-valores usando los Test de Box-Pierce, Ljung-box y Peña-Rodŕıguez en los

Rendimientos Mensuales de la Intel Data Corporation

En el Cuadro 1, utilizando el test de Box-Pierce (QBP ), para el caso estable en todos los

retardos escogidos nos indica que la hipótesis nula se acepta. Ahora para el caso normal en

los retardos 10 y 15 aceptamos la hipótesis alternativa.
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Utilizando el test de Ljung-Box (QLB), para el caso estable sucede lo mismo que en el

caso estable del test anterior. Para el caso normal para los retardos 10 y 15 debemos rechazar

la hipótesis nula.

Para el test de Peña-Rodŕıguez (D̂) para el caso estable en todos los retardos señalados

aceptamos la hipótesis nula. Para el caso normal en los retardos 15, 20 y 25 la hipótesis nula

debe ser rechazada.

Esto lo obtenemos de tomar el nivel de significancia adecuado, ya que los test se distri-

buyen igual que una χ2.

En la siguiente figura mostraremos como estan distribuidos los datos al aplicarle la dis-

tribución estable.
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Figura 4.2. Comportamiento de los Rendimientos
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En la figura 4.2, al tomar α =1.2 la gran mayoria de los datos se estabilizán en una franja

a excesión de algunos datos at́ıpicos que nos pueden explicar que hubo una subida de los

precios en ese momento, ahora al aumentar el α los datos se van dispersando pero siempre

permanecen en una franja a excesión de los datos at́ıpicos que cada vez que se aumenta el α

se alejan más.

En la siguiente figura mostramos la Esperanza y la Varianza de los datos de la Intel Data

Corporation.
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Figura 4.3. Esperanza y Varianza de los Rendimientos

La figura 4.3, nos indica que existe homocedasticidad en los datos al calcular su esperanza

y varianza, lo que quiere decir que la varianza de los errores es constante. Osea la variable se

mantiene a lo largo de las observaciones no de todas pero si de la mayoŕıa. Lo que nos dice

que los datos tienen varianza finita.
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2. IBM y Standard and Poor’s 500

Ahora para este ejemplo, podemos considerar la colocación de una var(k) donde k =

1, 2, 3 para los modelos de las declaraciones mensuales de los registros de las acciones de

IBM y Standard and Poor’s 500 desde Enero de 1926 hasta Diciembre de 1999 tomado de

[17].
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Figura 4.4. Distribución de las Acciones

En la figura 4.4, se comparan las acciones de IBM y Standard and Poor’s 500, donde se

muestran que la gran mayoŕıa de los datos accionarios estan distribuidos en la parte central

de la figura, a excesión de algunos datos at́ıpicos que son de gran interés para el estudio.
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Para hacer uso de los test de Portmanteau debemos tomar como hipótesis nula

H0 : los datos son independientes identicamente distribuidos con varianza finita

y como hipótesis alternativa a

HA : los datos no se distribuyen de forma independiente y no tienen varianza finita

Para este ejemplo vamos a trabajar aumentando el autoregresivo hasta grado 3, aśı poder

compararlos.

Caso k = 1 (autoregresivo de orden 1)

Aplicamos un modelo autoregresivo de orden 1 a los datos por mı́nimos cuadrados que

hace la selección de la complejidad de el criterio de Akaike(AIC).

ar IBM SP500

IBM 0.019195 0.10616

SP500 -0.005419 0.08019

Cuadro 2. Estimación del autorregresivo AR del modelo ajustado con k=1

En el Cuadro 2, nos dice el valor del autorregresivo de ambas empresas durante todo el

tiempo de estudio de las acciones, durante este tiempo cuando se compararon las dos hubo

un momento en que las acciones perdieron valor y luego hubo una alza que nos arroja un

uso significativo del modelo.

var.pred IBM SP500

IBM 44.80 23.86

SP500 23.86 31.67

Cuadro 3. Varianza de predicción de la serie de tiempo con k=1
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En el Cuadro 3, la varianza de predicción nos muestra los valores at́ıpicos de el estudio

de las acciones en las dos empresas para compararlos dando que no existe mucha diferencia

entre las dos empresas.

En el siguiente cuadro mostramos los p-valores para el caso k=1.

Test Metodos ρ = 5 ρ = 10 ρ = 15 ρ = 20 ρ = 25 ρ = 30

QBP Normal-DA 0.00142 0.00566 0.06891 0.00163 0.00035 0.00100

QBP Estable-DA 0.02127 0.05987 0.33001 0.02580 0.00943 0.02053

QLB Normal-DA 0.00131 0.00502 0.06177 0.00115 0.00020 0.00056

QLB Estable-DA 0.02028 0.05505 0.30936 0.01999 0.00632 0.01333

D̂ Normal-DA 0.01006 0.00507 0.00960 0.00638 0.00369 0.00294

D̂ Estable-DA 0.16977 0.18989 0.26078 0.18238 0.10384 0.07416

Cuadro 4. P-valores con k=1 usando los Test de Box-Pierce Ljung-Box y Peña-

Rodŕıguez en los Registros de las acciones de IBM y Standard and Poor’s 500 desde Enero

de 1926 hasta Diciembre de 1999

En el Cuadro 4, comparamos los p-valores del modelo usando k=1 tomando α =1.9,

donde nos indican que para el Test de Box-Pierce (QBP ) tanto estable como no estable la

hipótesis nula se rechaza, igual sucede al utilizar el test Ljung-Box (QLB), ya al usar el Test

de Peña-Rodŕıguez (D̂) al ser no estable los p-valores nos dicen que se rechaza la hipótesis

nula pero al aplicar la estabilidad los p-valores nos dicen que tambien se debe rechazar la

hipótesis nula y tomar como cierta la hipótesis alternativa como verdadera, ya que existen

valores at́ıpicos de la serie.
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En la siguiente figura mostramos como se distribuyen los datos con k = 1 al aplicarle la

distribución estable.
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Figura 4.5. Estabilidad de los Datos de IBM y SP500 con k=1

En la figura 4.5, se muestran los datos at́ıpicos seleccionas a mi consideración el programa

los escogio por ser los de mayor importancia claro estos datos muestran que las acciones se

mantuvieron estables tanto en los meses en que sus precios bajaron asi como en los que los

precios aumentaron dandole mayor importancia a estos.
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Caso k = 2 (autoregresivo de orden 2)

Para este caso cambiamos el orden del autorregresivo usando el método de los mı́nimos

cuadrados.

ar IBM SP500

IBM 0.09122 -0.1514

SP500 0.04467 -0.0551

Cuadro 5. Estimación del autorregresivo AR del modelo ajustado con k=2

En el Cuadro 5, el valor del autorregresivo de ambas empresas no varia mucho en com-

paración con al autorregresivo de orden 1, para este modelo al principio funciono muy bien

luego en cierto tiempo al compararlas tendieron a perder valor.

var.pred IBM SP500

IBM 44.39 23.70

SP500 23.70 31.61

Cuadro 6. Varianza de predicción de la serie de tiempo con k=2

En el Cuadro 6, nos muestra que los valores at́ıpicos de las dos empresas donde compa-

rando con el modelo anterior no existe mucha variación en las acciones.
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En el siguiente cuadro mostramos los p-valores para el caso k=2.

Test Metodos ρ = 5 ρ = 10 ρ = 15 ρ = 20 ρ = 25 ρ = 30

QBP Normal-DA 0.00553 0.02279 0.18319 0.00983 0.00197 0.00547

QBP Estable-DA 0.02127 0.05987 0.33001 0.02580 0.00943 0.02053

QLB Normal-DA 0.00519 0.02064 0.16859 0.00737 0.00123 0.00329

QLB Estable-DA 0.02028 0.05505 0.30936 0.01999 0.00632 0.01333

D̂ Normal-DA 0.04647 0.02910 0.04688 0.03091 0.01701 0.01272

D̂ Estable-DA 0.16977 0.18989 0.26078 0.18238 0.10384 0.07416

Cuadro 7. P-valores con k=2 usando los Test de Box-Pierce, Ljung-Box y Peña-

Rodŕıguez en los Registros de las acciones de IBM y Standard and Poor’s 500 desde Enero

de 1926 hasta Diciembre de 1999

Para el Cuadro 7, al comparar los Test, para el caso del Box-Pierce (QBP ) tanto estable

como no estable nos muestran que la hipótesis nula es falsa, igual sucede al usar Ljung-Box

(QLB), pero al usar el Test de Peña-Rodŕıguez (D̂) se cumple que la hipótesis nula la debemos

rechazar pero, igual sucede para el caso estable donde debemos rechazar la hipótesis nula

como sucedio igual en el caso para k=1.
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Figura 4.6. Estabilidad de los Datos de IBM y SP500 con k=2

En la figura 4.6, se muestra como estan distribuidos los datos de las acciones para el

modelo de k = 2, donde los datos son estables mostrando su mayor valor mes en los años de

estudio, claro no existe mucha diferencia entre este modelo k = 2 con el modelo anterior.
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Caso k = 3 (autoregresivo de orden 3)

Ahora calculamos el último caso cambiando el orden del autorregresivo usando el método

de los mı́nimos cuadrados.

ar IBM SP500

IBM 0.035851 -0.1093

SP500 -0.008115 -0.1061

Cuadro 8. Estimación del autorregresivo AR del modelo ajustado con k=3

En el Cuadro 8, nos indica el valor del autorregresivo de ambas empresas durante el

tiempo de estudio de las acciones,en este tiempo donde se compararon las dos y en un

tiempo las acciones de IBM aumentaron para luego bajar su valor, pero para la Standard

and Poor’s 500 las acciones estuvieron a la baja en todo momento claro eso es para este

modelo.

var.pred IBM SP500

IBM 44.02 23.36

SP500 23.36 31.21

Cuadro 9. Varianza de predicción de la serie de tiempo con k=3

Para el Cuadro 9, la varianza de predicción nos da los valores at́ıpicos del modelo para

k = 3 donde las acciones da las no muestran mucha diferencia con los demas modelos

propuestos.
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En el siguiente cuadro mostramos los p-valores para el caso k=3.

Test Metodos ρ = 5 ρ = 10 ρ = 15 ρ = 20 ρ = 25 ρ = 30

QBP Normal-DA 0.02127 0.05987 0.33001 0.02580 0.00943 0.02053

QBP Estable-DA 0.02127 0.05987 0.33001 0.02580 0.00943 0.02053

QLB Normal-DA 0.02028 0.05505 0.30936 0.01999 0.00632 0.01333

QLB Estable-DA 0.02028 0.05505 0.30936 0.01999 0.00632 0.01333

D̂ Normal-DA 0.16977 0.18989 0.26078 0.18238 0.10384 0.07416

D̂ Estable-DA 0.16977 0.18989 0.26078 0.18238 0.10384 0.07416

Cuadro 10. P-valores con k=3 usando los Test de Box-Pierce, Ljung-Box y Peña-

Rodŕıguez en los Registros de las acciones de IBM y Standard and Poor’s 500 desde Enero

de 1926 hasta Diciembre de 1999

En el Cuadro 10, tomamos el modelo para k = 3 donde los p-valores indican que para el

Box-Pierce (QBP ) en el caso no estable nos indican que se debe rechazar la h́ıpotesis nula,

para el caso estable los retardos m = 5, 10, 20, 25, 30 nos dicen que rechasemos la h́ıpotesis

nula pero el retardo para m = 15 nos indica una observación at́ıpica del modelo usando este

Test. Para el test de Ljung-Box (QLB) sucede el mismo caso tanto para los estables como los

no estables. Para el Test de Peña-Rodŕıguez D̂ sucede que se debe rechazar la hipótesis nula

tanto para el caso estable como no estable pero en el retardo m = 30 existe un dato at́ıpico

que nos comprueba que la hipótesis alternativa debe ser aceptada.
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Figura 4.7. Estabilidad de los Datos de IBM y SP500 con k=3

En la figura 4.7, representa como se distribuyen los datos de las acciones donde estan

representadas por los meses donde hubo mayor variación para el modelo de k = 3.
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En la siguiente figura mostramos la esperanza y varianza de las acciones de IBM y

Standard and Poor’s 500.
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Figura 4.8. Esperanza y Varianza de las Acciones de IBM y Standard and

Poor’s 500

La figura de la esperanza nos indica que existe homocedasticidad en los datos esto quiere

de decir que puede existe varianza infinita en las acciones. Ahora la figura de la varianza nos

muestra que es constante en todos los datos pero en ellos no existe homocedasticidad ya que

en cierto punto los datos pierden la constancia, lo que puede indicarnos que tiene varianza

finita.
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3. Standard and Poor’s 500

En este ejemplo se considera el indice de acciones de la Standard and Poor’s desde el 2 de

Enero de 1999 al 29 de Diciembre del 2006 que se obtuvo del Servicio de Wharton Research

Data. Esto resulta en una serie con una longitud de n = 2011 tomado de [13].

En el siguiente grafico se muestra como están distribuidos los datos de las acciones de

Standard and Poor´s 500.
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Figura 4.9. Acciones de la Standard and Poor’s 500
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Para hacer al analisis de este ejemplo tomaremos como hipótesis nula

H0 : los datos son independientes identicamente distribuidos con varianza finita

y como hipótesis alternativa a

HA : los datos no se distribuyen de forma independiente y no tienen varianza finita

donde usando el siguiente cuadro mostramos los p-valores de los datos lo cual compara-

remos a ver si se rechazan o no lo las hipótesis.

Test Metodos ρ = 5 ρ = 10 ρ = 15 ρ = 20 ρ = 25 ρ = 30

QBP Normal-DA NA NA 0.0000116 0.0000399 0.00000817 0.00000204

QBP Estable-DA 0.820 0.797 0.670 0.843 0.866 0.962

QLB Normal-DA NA NA 0.0000109 0.0000367 0.00000712 0.00000167

QLB Estable-DA 0.820 0.795 0.666 0.839 0.861 0.960

D̂ Normal-DA NA NA NA 0.0000177 0.0000115 0.00000619

D̂ Estable-DA 0.667 0.717 0.680 0.728 0.785 0.845

Cuadro 11. Cuadro de P-valores usando los Test de Box-Pierce, Ljung-Box y Peña-

Rodŕıguez en los Registros de las acciones de Standard and Poor’s 500 desde el 2 de Enero

de 1999 al 29 de Diciembre del 2006

En el cuadro 11, utilizando el test de Box-Pierce (QBP ), los retardos 5 y 10 para el caso

normal no ofrecen información para aśı comparar, para los retardos restantes aceptamos la

hipótesis nula ya que es la más acertada. Para el caso estable aceptamos la hipótesis nula en

todos los retardos estudiados.

Para el test de Ljung-Box QLB y el test de Peña-Rodŕıguez D̂ sucede igual que en el test

anterior La hipótesis nula debe ser aceptada en los mismos retardos antes señalados.
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En el siguiente grafico mostramos como se distribuyen los datos luego de aplicarle la

distribución estable.
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Figura 4.10. Estabilidad de las Acciones de la Standard and Poor’s 500

En la figura 4.10, nos muestra que los datos al aplicarle la distribución estable donde la

gran mayoria de los datos se situan en una franja central mostrando que algunos datos son

atipicos ya que se salen del rango de estudio donde la distribución no los toma en cuenta.
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Figura 4.11. Esperanza y Varianza de las Acciones de la Standard and

Poor’s 500

En la figura 4.11, nos muestra que tanto para la esperanza y la varianza cuando las

acciones llegan a las 500 muestras han tenido un ascenso marcado, ya al pasar de 500 a las

1000 muestras las acciones tienen un fuerte descenso ya en los datos faltantes las acciones se

estabilizan hasta que en cierta muestra las acciones comienzan a aumentar, lo que nos indica

que hay ciertos datos que aceptan hipótesis de varianza finita.



Caṕıtulo 5

Análisis ilustrativo del test de Portmanteau

En este caṕıtulo presentaremos la parte práctica de todo lo expuesto en los caṕıtulos

anteriores, donde haremos uso del test de Portmanteau con varianza infinita.

Consideraremos las declaraciones mensuales simples del CRSP desde Enero de 1926 hasta

Diciembre de 1997 donde usamos una serie de N = 864 tomados de [13] y [17].
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Figura 5.1. Gráfica de las Declaraciones Mensuales del ı́ndice de CRSP
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Donde para el analisis de ejemplo tomaremos como hipótesis nula a

H0 : los datos son independientes identicamente distribuidos con varianza infinita

y como la hipótesis alternativa a

HA : los datos no se distribuyen de forma independiente y no tienen varianza infinita

Test Metodos ρ = 10 ρ = 20 ρ = 30

QBP Normal-DA 0.049796306 0.002509011 0.003073340

QBP Estable-DA 0.2163080 0.5202569 0.5875264

QLB Normal-DA 0.047376040 0.002032229 0.002286158

QLB Estable-DA 0.2091730 0.5030665 0.5587248

D̂ Normal-DA 0.16859404 0.05003861 0.01030248

D̂ Estable-DA 0.4188991 0.4873653 0.4929209

Cuadro 1. P-valores obtenidos usando los Test de Box-Pierce, Ljung-Box y Peña-

Rodŕıguez en las Declaraciones mensuales del ı́ndice de CRSP desde Enero de 1926 hasta

Diciembre de 1997

En el Cuadro 1 realizamos un análisis usando un autorregresivo de orden 5 (AR5) donde

comparamos los p-valores que hemos obtenido para los test D̂, QBP y QLB tanto para los

casos estables, como para los casos normales tomando como retardos m = 10, 20, 30.

Como era de esperar el test de QBP casi concuerda con el test de QLB. Es interesante que

cuando m = 10 todas las pruebas tienen similares p-valores, pero cuando m = 20 ó m = 30

los p-valores de los test basados en la distribución normal son mucho más pequeños, por un

factor alrededor de 10, que es la prueba mas correcta basada en la distribución estable.
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En general parece que el uso de los Test usando la distribución normal nos indica que

las innovaciones producen p-valores que son demasiado pequeños en comparación con los

generados por una distribución estable.

En el siguiente figura mostramos como estan distribuidos los datos al aplicarle la Distri-

bución Estable.
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Figura 5.2. Estabilidad de los Datos de CRSP

En la Figura 5.2, sele aplicó la distribución estable donde tomamos como constantes

an = 1,9 y bn = 0 lo cual nos indica que los datos sufren una leve variación en los primeros

datos de la serie que logran estabilizarse en su recorrido ya al final de los datos se consigue

un dato atipico fuera del rango de estudio.
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Figura 5.3. Esperanza y Varianza de los Datos de CRSP

La Figura 5.3 se muestran la esparanza y la varianza donde nos indican que existe un

modelo de Homocedasticidad ya que en ellas se mantienen a lo largo de las observaciones lo

cual nos indica que la esperanza y la varianza son constantes, lo cual nos ayuda a concluir

que los datos poseen varianza infinita.



Conclusión

En primer lugar el estudio del test de Portmanteau resultó, ser una herramienta muy útil

en el estudio de los modelos ARMA(p,q) con varianza infinita.

En este trabajo especial de grado podemos observar, como se comportan los modelos con

varianza finita y con varianza infinita. Por cuanto los ejemplos antes mencionados nos lleva

a pensar que el uso de este test es muy acertado para estos modelos estad́ısticos.

Además hemos concluido que los resultados obtenidos a través de los modelos aplicados

no dejan de ser de gran utilidad para observar el comportamiento de los rendimientos o

acciones de una empresa, que se ajustan a los modelos estudiados a lo largo de este trabajo

especial de grado.

Por lo tanto, es de vital importancia que los proximos en estudiar el test de Portmanteau

profundicen la investigación, ya que este tema es de gran importancia para ser establecido

dentro del sistema de una organización empresarial.
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Apéndice

Función Caracteŕıstica

Si X es una variable aleatoria se define su función caracteŕıstica por

φ(t) = E(expitX) = E(cos(tX)) + iE(sin(tX))

La última fórmula requiere tomar el valor esperado de una variable aleatoria compleja.

Si Z es un valor complejo se define EZ = E(ReZ) + iE(ImZ) donde Re(a + ib) = a es la

parte real y Im(a+ ib) = b es la parte imaginaria. Algunas propiedades son inmediatas:

(1) φ(0) = 1

(2) φ(−t) = E(cos(−tX) + i sin(−tX)) = φ(t), donde z denota el conjugado complejo

de z, a+ ib = a− ib

(3) |φ(t)| = |E expitX | ≤ E| expitX | = 1

Por aqúı |z| denota el módulo de un número complejo z, |a+ ib| = (a2 + b2)
1
2 .

(4) |φ(t+h)+φ(t)| = |E(expi(t+h)X − expitX)| ≤ E| expi(t+h)X − expitX | = E| expihX −1|

ya que |zw| = |z| · |w|. La ultima esperanza tiende a 0 como h −→ 0 por el teorema

de convergencia acotada, por lo que φ(t) es uniformemente continua en (−∞,∞).

(5) E(expit(aX+b)) = expitb E(expi(ta)X) = expitb φ(at)
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(6) Si X1 y X2 son independientes y tienen funciones caracteŕısticas φ1 y φ2 entonces

X + Y tienen función caracteŕıstica φ1(t)φ2(t).

Demostración: E(expit(X1+X2)) = E(expitX1 expitX2) = E(expitX1)E(expitX2).

Teorema 5.1. EX = µ y E|X|2 = σ2 <∞ entonces φ(t) = 1 + itµ− t2σ2

2
+ o(t2).

Teorema 5.2. Si aj → ∞ y ajcj → λ entonces (1 + cj)
aj → expλ.

Teorema Central del Ĺımite

Teorema 5.3. Sea X1, X2, ..., son i.i.d, con E(Xi) = µ, var(Xi) = σ2 ∈ (0,∞). Si

Sn = X1 + ...+Xn entonces

(Sn − nµ)/σn1/2 ⇒ χ

donde χ tiene distribución normal estandar.

Demostración: Considerando X ′
i = Xi − µ, basta para demostrar el resultado cuando

µ = 0. Por (1.1) φ(t) = E(exp(itX1)) = 1− t2σ2

2
+o(t2) por consiguiente E(exp(itSn/σn

1
2 )) =

(1 − t2

2n
+ o(n−1))n. Por (1.2) debe quedar claro que la ultima expresión → exp(−t2/2) es

n→ ∞, por el teorema de la continuidad se completa la demostración.

Sin embargo, la demostración es necesaria extenderla al caso complejo para aśı completar

la demostración.

Teorema 5.4. Si cn −→ c ∈ C entonces (1 + cn/n)
n −→ expc.

Para probar el teorema primero probaremos dos lemas.

Lema 5.5. Sean z1, ..., zn y w1, ..., wn son módulos de números complejos ≤ 0. Entonces

|
n∏

m=1

zm −
n∏

m=1

wm |≤ θn−1Σn
m=1 | zm − wm |

.
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Demostración: Usando inducción. El resultado es verdad para n = 1. Ahora para n > 1

observe que

|
∏n

m=1 zm −
∏n

m=1wm |≤| z1
∏n

m=2 zm − z1
∏n

m=2wm | + | z1
∏n

m=2 zm − w1

∏n
m=2wm |≤|∏n

m=2 zm −
∏n

m=2wm | +θn−1 | z1 − w1 |

Lema 5.6. Si b es un número complejo con | b |≤ 1 entonces | expb −(1 + b) |≤| b |2.

Demostración: expb −(1 + b) = b2/2! + b3/3! + b4/4! + ... por lo que si | b |≤ 1 entonces

| expb−(1 + b) |≤ |b|2
2
(1 + 1/2 + 1/22 + ...) =| b |2.

Demostración del Teorema: Si zm = (1 + cn/n), wm = exp(cn/n), y γ >| c |. Para todo

n, | cn |< γ y | cn/n |≤ 1, lo que se deduce de los lemas (1.5) y (1.6) que como n −→ ∞

| (1 + cn
n
)n − expcn |≤ (1 + γ

n
)n−1n | cn

n
|2≤ expγ γ2

n
−→ 0.

Teorema de Cramér-Wold

Teorema 5.7. Sean X̄n = (Xn1, ..., Xnk) y X̄ = (X1, ..., Xk) son vectores aleatorios

k-dimensionales. Entonces X̄n en distribución si y sólo si

k∑
i=1

tiXni
D−→

k∑
i=1

tiXi.

para cada (t1, ..., tk) ∈ Rk. Es decir, si cada combinación lineal fija las coordenadas de

X̄n converge en distribución a la combinación lineal correspondiente a las coordenadas de X̄.

δ −metodo

Definición 5.8. Es un método para derivar una distribución de probabilidad aproxi-

mada para una función de un estimador estad́ıstico asintóticamente normal a partir de los

conocimientos de la varianza de ese estimador.
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Test de Portmanteau de QLB

Consideremos una serie de tiempo {wt} generada por un modelo autorregresivo estacio-

nario de medias moviles (ARMA(p,q)).

ϕ(B)wt = θ(B)at,

donde ϕ(B) = 1− ϕ1B − ...− ϕpB
p, θ(B) = 1− θ1B − ...− θqB

q, Bkwt = wt−k, y at es

una sucesión i.i.d de variables aleatorias N(0, σ2). Los wt en general, puede representar la

d-ésima diferencia o alguna otra transformación adecuada de una serie no estacionaria {zt}.

Después de que un modelo de esta forma ha sido ajustado a una serie w1, ..., wn; es

útil para estudiar la adecuación del ajuste mediante el examen del residual â1, ..., ân y, en

particular, sus autocorrelaciones

r̂k =
n∑

t=k+1

âtât−k/
n∑

t=1

â2t (k = 1, 2, ...).

Box and Pierce [1] observaron que cuando el modelo es apropiado y los parámetros lo

son tambien, entonces su ecuación

(5.1) Q̃(r) = n(n+ 2)
m∑
k=1

(n− k)−1r2k

donde

rk =
n∑

t=k+1

atat−k/
n∑

t=1

a2t ,

para un n grande, se distribuye como χ2
m dado que la distribución ĺımite de r = (r1, ..., rm)

′

es normal multivariada con vector de media cero, var(rk) = (n−k)/{n(n+2)} y cov(rk, rl) =

0 (k ̸= l). Usando la aproximación var(rk) = 1/n, [1] sugirieron que la distribución de

(5.2) Q(r) = n

m∑
k=1

r2k
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puede ser aproximado por una χ2
m−p−q dando una prueba aproximada para la de bondad

de ajuste.

Sin embargo, la principal dificultad es causada por la aproximación de (3.36) por (3.37).

Un ensayo modificado basado en el criterio

QLB(r̂) = n(n+ 2)
m∑
k=1

(n− k)−1r̂2k

donde la varianza de QLB(r̂) es superior al de la distribución χ2
m−p−q. [9] muestran sin

embargo que la prueba modificada proporciona una aproximación sustancialmente mejorada

que debe ser adecuada para los propósitos más prácticos.

Ejemplos prácticos

Serie de Tiempo Intel Data Corporation

nslaves < −2

monthintel < −as.ts(monthintel)

Test box-Pierce Normal

TBP1 = BoxPierce(monthintel) BP

Test Ljung-Box Normal

TBP3 = LjungBox(monthintel) LB

Test Peña-Rodŕıguez Normal

TBP5 = gvtest(monthintel) PR

Gráfico de Intel Data Corporation

plot(monthintel,main = IntelData

Corporation, xlab = Rendimientos, ylab = V ariacionMensual, col = green)

par(mfrow = c(2, 1))

acf(monthintel,main = AutoCorrelacionIntel, col = red, xlab = Retardos)

pacf(monthintel,main = AutoCorrelacionParcialIntel, col = yellow, xlab = Retardos)
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Esperanza y Varianza de Intel Data Corporation

Esperanza

y[370 : 372]

y < −monthintel

n < −372

myve < −NULL

for(iin0 : n)

myve < −c(myve,mean(as.numeric(y[0 : i])))

plot(myve,main = Esperanza)

Varianza

Y 2 < −y2

mvar < −NULL

for(iin0 : n)

mvar < −c(mvar,mean(as.numeric(Y 2[0 : i]))−mean(as.numeric(y[0 : i])))

par(mfrow = c(2, 1))

plot(myve,main = Esperanza, xlab = Indice, col = blue)

plot(mvar,main = V arianza, xlab = Indice, col = red)

Serie de tiempo Intel Data Corporation Estable

alpha = 1,2

beta = 0

nslaves = 2

z = rstable(monthintel, alpha, beta)

Test de Box-Pierce Estable

TBP1 = BoxPierce(z)

Test de Ljung-Box Estable

TBP3 = LjungBox(z)

Test de Peña-Rodŕıguez Estable

TBP5 = gvtest(z)
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Serie de Tiempo IBM y Standard and Poor’s 500

Con k=1 autoregresivo de orden 1

IBMSP500 = monthibmspln

F itIBMSP5001 = ar.ols(IBMSP500, aic = TRUE, intercept = F, order.max = 1)

Test de Box-Pierce Normal

BP1 = BoxPierce(FitIBMSP5001)

Test de Ljung-Box Normal

LJ1 = LjungBox(FitIBMSP5001)

Test de Peña-Rodŕıguez Normal

PR1 = gvtest(FitIBMSP5001)

Grafico de IBM y Standard and Poor´s 500 Normal

FitIBMSP5001

windows()

plot(IBMSP500,main = IBMyStandardandPoors500, col = purple)

Con k=2 autoregresivo de orden 2

FitIBMSP5002 = ar.ols(IBMSP500, aic = TRUE, intercept = F, order.max = 2)

Test de Box-Pierce Normal

BP1 = BoxPierce(FitIBMSP5002)

Test de Ljung-Box Normal

LJ1 = LjungBox(FitIBMSP5002)

Test de Peña-Rodŕıguez

PR1 = gvtest(FitIBMSP5002)

FitIBMSP5002

Con k=3 autoregresivo de orden 3

FitIBMSP5003 = ar.ols(IBMSP500, aic = TRUE, intercept = F, order.max = 3)

Test de Box-Pierce Normal

BP1 = BoxPierce(FitIBMSP5003)

Test de Ljung-Box Normal
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LJ1 = LjungBox(FitIBMSP5003)

Test de Peña-Rodŕıguez Normal

PR1 = gvtest(FitIBMSP5003)

FitIBMSP5003

Serie de Tiempo IBM y Standard and Poor’s 500 Estable

alpha = 1,9

beta = 0

nslaves = 2

conk = 1autoregresivodeorden1

t1 = rstable(FitIBMSP5001, alpha, beta)

Test de Box-Pierce Estable

BP1 = BoxPierce(t1)

Test de Ljung-Box Estable

LjungBoxLJ1 = LjungBox(t1)

Test de Peña-Rodŕıguez Estable

PR1 = gvtest(t1)

Grafico de IBM y Standard and Poor’s 500 Estable

windows()

plot(t1,main = EstabilidaddeIBM − SP500conk = 1, xlab = Acciones, col = blue)

conk = 2autoregresivodeorden2

t2 = rstable(FitIBMSP5002, alpha, beta)

Test de Box-Pierce Estable

BP1 = BoxPierce(t2)

Test de Ljung-Box Estable

LJ1 = LjungBox(t2)

Test de Peña-Rodŕıguez Estable

PR1 = gvtest(t2)
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Grafico de IBM y Standard and Poor’s 500 Estable

windows()

plot(t2,main = EstabilidaddeIBM − SP500conk = 2, xlab = Acciones, col = blue)

conk = 3autoregresivodeorden3

t3 = rstable(FitIBMSP5003, alpha, beta)

Test de Box-Pierce Estable

BP1 = BoxPierce(t3)

Test de Ljung-Box Estable

LJ1 = LjungBox(t3)

Test de Peña-Rodŕıguez Estable

PR1 = gvtest(t3)

windows()

Grafico de IBM y Standard and Poor’s 500

plot(t3,main = EstabilidaddeIBM − SP500conk = 3, xlab = Acciones, col = blue)

Esperanza y Varianza de IBM y Standard and Poor’s 500

Esperanza

o[2777 : 2780]

o = SP500

n = 2780

myve < −NULL

for(iin0 : n)

myve < −c(myve,mean(as.numeric(o[0 : i])))

Varianza

o2 < −o2

mvar < −NULL

for(iin0 : n)

mvar < −c(mvar,mean(as.numeric(o2[0 : i]))−mean(as.numeric(o[0 : i])))

par(mfrow = c(2, 1))

plot(myve,main = Esperanza, xlab = Indice, col = blue)
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plot(mvar,main = V arianza, xlab = Indice, col = red)

Serie de Tiempo Standard and Poor’s 500

sap = DATOS[, 2]

nslaves < −2

p < −SelectModel(sap,ARModel = AR,Criterion = BIC,Best = 1)

FitSap < −FitAR(sap, p, ARModel = AR)

plot(FitSap)

Test de Box-Pierce Normal

TBP1 = BoxPierce(FitSap)

Test de Ljung-Box Normal

TBP3 = LjungBox(FitSap)

Test de Peña-Rodŕıguez Normal

TBP5 = gvtest(FitSap)

Grafico Standard and Poor’s 500

plot(sap,main = StandardandPoors500, col = red, xlab = Observaciones)

Serie de Tiempo Standard and Poor’s 500 Estable

sap = DATOS[, 2]

nslaves < −2

alpha = 1,9

beta = 0

sap1 = rstable(sap, alpha, beta)

Test de Box-Pierce Estable

TBP1 = BoxPierce(u)

Test de Ljung-Box Estable

TBP3 = LjungBox(u)

Test de Peña-Rodriguez Estable

TBP5 = gvtest(u)

Grafico de Standard and Poor’s 500 Estable

plot(sap1,main = StandardandPoors500(Estable), col = blue, xlab = Observaciones)
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Esperanza y Varianza de la Standard and Poor’s 500

Esperanza

y < −sap

n < −2011

myve < −NULL

for(iin0 : n)

myve < −c(myve,mean(as.numeric(y[0 : i])))

Varianza

Y 2 < −y2

mvar < −NULL

for(iin0 : n)

mvar < −c(mvar,mean(as.numeric(Y 2[0 : i]))−mean(as.numeric(y[0 : i])))

par(mfrow = c(2, 1))

plot(myve,main = EsperanzaSP500, col = blue)

plot(mvar,main = V arianzaSP500, col = yellow)

Serie de Tiempo de la Simulación Final Normal

data(CRSP )

CRSP.AR5 < −arima(CRSP, c(5, 0, 0))

NREP < −1000

lags = c(10, 20, 30)

Test Box-Pierce Normal

portest(CRSP.AR5, lags = lags, test = BoxPierce, nslaves = 8,MonteCarlo =

FALSE,NREP = NREP, InfiniteV arianceQ = TRUE)

Test Ljung-Box Normal

portest(CRSP.AR5, lags = lags, test = LjungBox, nslaves = 8,MonteCarlo =

FALSE,NREP = NREP, InfiniteV arianceQ = TRUE)

Test Peña-Rodŕıguez Normal

portest(CRSP.AR5, lags = lags, test = gvtest, nslaves = 8,MonteCarlo =

FALSE,NREP = NREP, InfiniteV arianceQ = TRUE)
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Grafico de la Simulación Final Normal

plot(CRSP,main = CRSP (CenterforResearchinSecurityPrices), col = orange, xlab =

Indices)

Serie de Tiempo de la Simulación Final Estable

data(CRSP )

alpha = 1,9

beta = 0

CRSPes = rstable(CRSP, alpha, beta)

lags = c(10, 20, 30)

Test Box-Pierce Estable

BP1 = BoxPierce(CRSPes, lags = lags)

Test Ljung-Box Estable

LJ1 = LjungBox(CRSPes, lags = lags)

Test Peña-Rodŕıguez Estable

PR1 = gvtest(CRSPes, lags = lags)

Grafico Simulación Final Estable

plot(CRSPes,main = CRSPEstable, col = purple, xlab = IndicesdeEvaluacion)

Esperanza y Varianza Simulación Final

Esperanza

y[859 : 864]

y < −CRSP

n < −864

myve < −NULL

for(iin0 : n)

myve < −c(myve,mean(as.numeric(y[0 : i])))

Varianza

Y 2 < −y2

mvar < −NULL

for(iin0 : n)
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mvar < −c(mvar,mean(as.numeric(Y 2[0 : i]))−mean(as.numeric(y[0 : i])))

par(mfrow = c(2, 1))

plot(myve,main = Esperanza(CRSP ), xlab = Indice, col = blue)

plot(mvar,main = V arianza(CRSP ), xlab = Indice, col = red)



Bibliograf́ıa

[1] Box G, Pierce D., ”Distribution of Residual Autocorrelation in Autoregressive- Integrated Moving

Average Time Series Models”. Journal of American Statistical Association, 65, 1509-1526, (1970).

[2] Brockwell, P.J. and Davis, R.A., Time Series: Theory and Methods. Springer, New York Inc, New

York (1991).

[3] Brockwell, P.J. and Davis, R.A., Introduction to Time Series and Forecasting. Springer- Verlag,

New York Inc, New York (2002).

[4] Davis, R.A. and Resnick, S., ”Limit Theory for the Sample Covariance and Correlation Functions of

Moving Averages”. The Annals of Stastics, 14, 533-558, (1986).

[5] Durrett, D., Probability: Theory and Examples. International Thompson Publishing Company, USA

(1996).

[6] Fama E., ”The Behavior of Stock-Market Prices”. The Journal of Business, 38(1), 34-105, (1965).

[7] Hosking, J.R.M., ”The Multivariate Portmanteau Statistic”. Journal of American Sta- tistical Associa-

tion, 75(371), 602-607, (1980).
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