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Introduccién

El presente Trabajo Especial de Grado se fundamenta en el estudio de la implementacion
de un Test de Portmanteau para series de tiempo ARMA(p,q), cuando el ruido sigue una

ley estable de Pareto con varianza infinita.

Para poder abordar este estudio, se realizaron consultas documentales, que avalan las

teorias relacionadas con el tema.

El Test de Portmanteau es un tipo de prueba de hipétesis estadistica en donde la hipdtesis
nula de independencia de las innovaciones esta bien especificada, con hipétesis alternativas

mas flexible que las pruebas clasicas.

Este test que consideramos, es una extension efectiva del caso a varianza infinita del
ruido de un proceso ARMA(p,q) estacionario. El test puede tener la propiedad de ser mo-
deradamente menos potente, donde existe una amplia gama de alternativas, tal como lo

constataremos en los ejemplos presentados méas adelante.

En las pruebas clasicas de Yule-Walker o de los algoritmos de Durbins-Levinson, la hipote-
sis de la independencia del ruido blanco del proceso ARMA(p,q) estudiado bajo la premisa
fundamental junto con la de la existencia del segundo momento, siendo el test la herramienta
matematica mds utilizada para rechazar esa hipétesis. En [3] hay una clara exposicién de

estas ideas. La potencia del test es calculada con la varianza tedrica del ruido.

La existencia de series de tiempo con distribucion de Pareto han sido detectadas en la
préactica; es decir, series a las cuales se les rechaza la hipdtesis nula de tener varianza finita

estudiada con los residuos. Estudiadas en [1], [7], y en [14].
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Recientemente se ha observado que existe un gran interés en el modelado de las series de
tiempo, usando los procesos ARMA(p,q) con varianza infinita. Ejemplos de estos modelos
han sido encontrados por [16], quienes trabajaron las senales telefonicas. En [6], se presento

un modelo de los precios del mercado de valores.

Este Trabajo Especial de Grado se estructuro sobre la base de la implementacién de
los modelos de series de tiempo en el programa R, para resolver el test de Portmanteau con
varianza infinita. El cual consta de cinco capitulos, siendo que el primero de ellos se muestran
los antecedetes de autores que han realizado estudios utilizando el test, se define qué es una

serie de tiempo y por ultimo se presenta la distribucion de Pareto.

En el segundo capitulo, se aborda la teoria que establece la definicion de las leyes estables,
mostrando con ejemplos tedricos como se usan, asi como tambien las propiedades de una
variable aleatoria estable. En el capitulo tres se presenta el desarrollo del test de Portmanteau
para series de tiempo, el cual sirvio de herramienta al momento de implementar el programa
R. Seguidamente, en el capitulo cuatro se realiza la simulacién de los resultados del test de

Portmanteau con varianza finita e infinita.

Finalmente en el quinto capitulo de este Trabajo Especial de Grado, se aplica la teoria
anteriormente mencionada a través de un ejemplo practico del test de Portmanteau, lo cual
permitié la aplicacién especifica del modelo ARMA(p,q) del test propiamente dicho sobre la
base de series de tiempo y la aplicacién del programa R, para resolver el test en referencia

con varianza infinita.



Capitulo 1

Marco Teorico

1. Antecedentes

El estudio de los Test de Portmanteau se inici6 con la prueba de hipdtesis de Box-Pierce
estudiada en [1] planteo que la distribucién de las autocorrelaciones residuales en modelos de
series de tiempo donde usé el estadistico de prueba () pp basandose en una sucesion Y7, ..., Y,

de variables aleatorias con varianzas finitas, definido por

(1.1) QBPZnZﬁ2<j)

siendo p(j) el coeficiente de correlacién muestral y 0 < h < n. En [1] muestran que v/np*(j),
j = 1,...,h, se comporta asintéticamente como v.a.i.i.d en N(0,1); en consecuencia, Qpp
se distribuye aproximadamente como una variable aleatoria chi-cuadrado con h grados de
libertad. Un valor grande de Qgp sugiere que las autocorrelaciones muestrales de los datos
son demasiado grandes para sostener que las muestras sean una sucesion realmente indepen-
diente. En consecuencia, se rechaza la hipétesis de independencia a nivel a si Q > x3__(h),
donde x?__(h) es el 1 — « cuantil de la distribucién chi-cuadrado con h grados de libertad.
Un refinamiento de esta prueba, formulado por Ljung-Box en 1978 mostrado en [9] donde
tomo la medida de la falta de ajuste de los modelos de series de tiempo, en la que Qgp es

sustituida por

h

(1.2) Qs = n(n+2) Y p*(4)/(n—j)

j=1

cuya distribucion aproxima mejor la distribucién chi-cuadrado con h grados de libertad.

Luego, en 1983, Mcleod-Li formulan en [12] que los modelos ARMA(p,q) de series de

tiempo para la comprobacién de diagnosticos usando autocorrelaciones indican que se puede
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utilizar como un test adicional para la hipétesis de independencia, ya que si los datos son
i.i.d., entonces los datos al cuadrado son también i.i.d.. Se basa en el mismo estadistico
utilizado para el test Ljung-Box, excepto que las autocorrelaciones muestrales de los datos

son sustituidas por la autocorrelacién muestral de los datos al cuadrado, Py, (h), dando

h
(1.3) Qur =n(n+2)Y 5, (k)/(n—k)
k=1

la hipétesis de independencia se rechaza al nivel « si el valor observado de Q7 es mas

grande que el 1 — « cuantil de la distribucién x?(h).

Para el ano 2002, Pena-Rodriguez propusieron en [14] un test de Portmanteau univariado
de bondad de ajuste basado en la raiz m-ésima del determinante de la autocorrelacion de la

matriz residual de Toeplitz

T'o T T'm
~ -1 To Tm—1
(1.4) R =
72—m 72—m—|—1 e f’O

donde 7o =1y 7_y = 74, para todo £.

Luego, para el afio 2006, Pena-Rodriguez sugieren en [15] modificar este ensayo tomando
el logaritmo de la raiz (m + 1)-ésima del determinante en la ecuacién (1.4). Se proponen dos
aproximaciones mediante el uso de las distribuciones Gamma y Normal en la distribucién
asintotica de este test y se indica que el rendimiento de ambas aproximaciones para compro-
bar la bondad de ajuste de los modelos lineales es similar y mas potente para el tamano de

muestra mas pequena que el anterior.

2. Series de Tiempo

Ahora vamos a mostrar algunas definiciones relacionadas con las Series de Tiempo, in-

herentes al Trabajo Especial de Grado.
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DEFINICION 1.1. Un proceso estocdstico a tiempo continuo es una sucesion (X;, ¢ €

T) = (X(w),t € T,we Q,T CRY)) de variables aletorias definidas sobre un espacio §2.

Un proceso estocastico es una funcion de dos variables:

e Para un instante de tiempo t fijo, w € €2, X;(w) es una variable aleatoria.
e Para un w fijo es una funcién del tiempo X;(w),t € T. Esta funcién es llamada

trayectoria del proceso.

DEFINICION 1.2. Una manera sencilla de generar series de tiempo puede ser considerando
una sucesion de variables aleatorias no-correlacionadas, w; con media 0 y varianza o2. Las
series de tiempo generadas de esta manera son usadas como modelos para ruido en aplicacio-
nes de ingenieria, donde ellas son llamadas ruidos blancos, denotaremos este proceso como

wy ~ wn(0,02).

DEFINICION 1.3. Una serie de tiempo débilmente estacionaria x;, es una proceso con

varianza finita tal que
e la funcion de media py, es constante y no depende del tiempo t.
e la funcién de covarianza, y(s,t), depende solo de las diferencias de s y ¢, | s — ¢ | .

Por consiguiente, usaremos el término estacionaridad para referirnos a estacionaridad
débil; si un proceso es estacionario en el sentido estricto usaremos el término estrictamente

estacionario.

DEFINICION 1.4. Una Serie de Tiempo es un conjunto de observaciones z;, cada una

registrada a un tiempo especifico t.

DEFINICION 1.5. Un modelo de serie de tiempo para los datos observados z; es una
especificacion de una distribucién conjunta de una sucesion de variables aleatorias X; de las

cuales z; es una realizacién.

DEFINICION 1.6. Un Modelo Autoregresivo de orden p (AR(p)), es una ecuacién

en diferencias finitas de la forma

(1.5) Ty = Q121 + QaTp—o + ... + Gpxi_py + Wy
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donde z; es un proceso estacionario en sentido debil, ¢, ¢o, ..., ¢, son constantes (¢, # 0).
A menos que se declare lo contrario, se supone que w; es un ruido blanco i.i.d de media
cero y varianza 0121} < 00. La media de z; en (1.5) es cero. Si la media p de z; no es cero,

reemplazamos X; por x; — p en (1.5), es decir,

Ty — o= Q1 (T — ) + Pa(@i—2 — 1) + ... + Op(4—p — 1) + Wy

6 escribimos

(1.6) Ty = O+ Q1741 + P29 + GpTy—p + Wy
donde o = p(1 — 1 + ... + ¢p).

DEFINICION 1.7. El Modelo de Promedio Movil de orden q (MA(q)) se define

COo110

(17) Ty = Wy + 61’(1),571 + 92wt,2 + ...+ qut,q

donde hay ¢ pasos en el promedio mévil y 64,6, ...,0, (6, # 0) son parametros. El ruido w,

2 < 0.

w —

se supone también como un ruido blanco con varianza o

3. Distribucién de Pareto

En estadistica la distribucion de Pareto, formulada por el socidlogo, economista y filosofo
Vilfredo Pareto, es una distribucién de probabilidad continua con dos parametros, que tiene

aplicacion en disciplinas como la sociologia, geofisica y economia.

Funcién de Densidad

Es una distribucién de probabilidad que biparamétrica que tiene como funcién de densi-

dad:

frged .
a=r Six 2> Ty Xy > 0,0 >0
fx(x) = ;

0 Sl T < Ty,

donde z,, como un valor inicial arbitrario y a es conocido como indice de pareto.
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Su funcién de distribucion viene dada por:
T\ .
F(x)=1- (—) siempre que o > 1
x

Probabilidad Acumulada

Sea X una sucesién de variables aleatorias de la distribucién de Pareto, entonces la

probabilidad de que X sea mayor que un nimero x viene dada por:

Im)® gix >x
P(X >z)= >) -
1 Sl x < Ty,

donde z,, es el valor inicial arbitrario (positivo) de X, y « el indice de pareto.

Propiedades

e La Esperanza de una variable aleatoria X que sigue una distribucién de Pareto con

pardmetro o > 1 es E(X) = 2%=_ Si o < 1, el valor esperado no existe.

)?-25. Si @ < 2 la varianza no existe.

e La varianza es Var(X) = (ﬁ
2,

/ «
e Los momentos son j;, =

a—n’

pero el n-ésimo momento existe sélo para n < a.
e La funcién generadora de momentos sélo esta definida para valores no positivos de

t <0 segun:
M(t, o, zy) = E(exp’ X) = a(—2,t)*T(—a, —xpt) y M(0,a, 2,,) = 1

3.1. Distribucién estable de Pareto.

Paul Lévy [8] probablemente fue el primero en iniciar la investigacién de las distribuciones
estables. Lévy demostro que las probabilidades de cola se aproximan a la de la distribucion
de Pareto de ahi el término Estable Pareto-Levy o distribuciéon Estable de Pareto. Si la cola

derecha de una distribucién de Pareto es asintotica entonces, para x grandes,

(1.8) 1—F(x)~cax

donde F(z) es la funcién de distribucién acumulada, «, es el indice de la cola y o, > 0,

c> 0.
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La distribucién estable de Pareto es una generalizacion natural de la distribucién de Nor-
mal. Sin embargo, las distribuciones estables no normales tienen méas masa de probabilidad
en las areas de la cola que en la normal. De hecho, las distribuciones estables no son tan
normales de cola més ancha donde su varianza y la de todos los momentos més elevados son
infinitos.

Mas alla de la distribucion normal, la distribucién de Cauchy, la distribucion de Lévy, y
el reflejo de la distribucion de Lévy, no hay expresiones de forma cerrada para las densidades
generalmente estables. Las distribuciones estables de Pareto pueden ser expresadas por su

funcién caracteristica y la parametrizacion mas comun es:

exp{ipt — o [t|" [1 — iB tan B2 sgn(t)]} sia#1

(1.9) E(exp™) =
exp{ipt — o [t|[1 —if(&)sgn(t) In|t]]} sia=1
donde
1 sit>0
(1.10) sgn(t) =4 0 sit=0
-1 sit<0

La distribucion estable de Pareto posee cuatro parametros: un parametro de ubicacion
(), un pardametro de escala (o), un indice de asimetria () y una medida de la altura de
las zonas extremas de la cola de la distribucién, el exponente caracteristico (o indice de

estabilidad) a.

El exponente caracteristico de una distribucién estable de Pareto o determina la proba-
bilidad total en los extremos de las colas en la distribucién y puede tomar cualquier valor
en el intervalo 0 < a < 2. Cuando a = 2, estamos en el caso de una distribucién normal con
media p y varianza 202, como « decrece desde 2 hasta 0, las dreas de la cola de la distribucién
estable se hicieron cada vez mas anchas de lo normal. Excepto para el caso normal (a = 2),

las distribucién estable de Pareto tiene varianza infinita.
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El parametro § puede tomar cualquier valor en el intervalo —oo < p < +o00. Cuando
f = 0, la distribucién es simétrica alrededor de p. Si o # 1, para positivo (o negativo) [,
la distribucién estéd sesgada a la derecha (o a la izquierda). La direccién de la asimetria se

invierte si o« = 1.

1 es el parametro de ubicacién y puede tomar cualquier valor en el intervalo —oo < pu <
+00. Cuando 1 < a < 2 la distribucién estable de Pareto tiene una media dada por p. Para
0 < a <1 las colas son tan fuertes que incluso la media no existe. En este caso, u deberia

ser otro pardmetro (la mediana, por ejemplo, cuando g = 0).

El parametro de escala o puede tomar cualquier valor positivo: 0 < ¢ < 400. Cuando
a < 2 la varianza de una distribucién estable de Pareto no existe y o define la escala de la
distribucién, lo cual tampoco es la varianza. Por ejemplo, cuando v = 1y 5 = 0 (distribucién

de Cauchy) o es el rango semi-intercuartilico.



Capitulo 2

Leyes Estables

En este capitulo daremos a conocer qué son las leyes estables, su definicién, propiedades

y ejemplos tedricos donde son aplicadas estas leyes.

Del Teorema Central del Limite (ver teorema 5.3. del apéndice). Sabemos que si X7, Xo, ...

vaiid, S, = X1+ ... + X,,. y EX; = p con var(X;) = 0% € (0,00) entonces
(S, —npu)/on'? = N(0,1)

En esta seccién vamos a investigar el caso EX? = oo y dar condiciones necesarias y

suficientes para la existencia de constantes a, y b, de modo que
(Sp—bn)/a, =Y

donde Y es una variable aleatoria no degenerada, osea que la var(Y) > 0.
Comenzamos con un ejemplo. Supongamos que la variable aleatoria X; tiene una distri-

buciéon dada por

(2.1) PXy>z)=P(X1 < —x)=2"%2paraz >1

donde 0 < v < 2. La funcidn caracteristica de X, viene dada por ¢(t) = E(exp(itX;))

luego

0 | -1 | 1 — cos(t
1—p(t) = /1 (1 — exp™) " +/ (1 — exp™) @y = a/ ;a;fl(x)dx
- 1

2|x|a+1 - 2|x|a+1

usando un cambio de variable tx = u,dxr = u/t la dltima integral se convierte en

:&/ 1—cos(u)@:taa/ 1—cos(u)du
t t

(u/t)+t (u)ott

10
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Como u — 0,1 — cos(u) ~ u?/2, para (1 — cos(u))/u®™ ~ u=**1/2 que es integrable, ya

que o < 2 implica —a + 1 > —1. Si hacemos que

1 — cos(u)
C:aé (U)—QHCZU<OO

y observamos de (2.1) implica que ¢(t) = ¢(—t), a continuacién los resultados anteriores

demuestran que

(2.2) 1—o(t) ~C|t|* cont — 0
Sean X1, Xy, ... v.a.ii.d. con la distribucién dada en (2.1) y sea S, = X; + ... + X,,.
E(exp(itS,/n'/®)) = @(t/n"/*)" = (1 = {1 = p(t/n'*)})"

Cuando

(2.3) n — oo,n(l — gp(t/nl/“)) — Ct|°,

lo que se deduce a partir del teorema 5.4 (ver apéndice) donde

Eexp(itS,/n'/*) — exp(—C|t|*)

De lo anterior se deduce que la expresion de la derecha es la funcion caracteristica de Y

entonces

(2.4) S, /nt/* =Y

Para obtener nuestro resultado general, primero vamos a dar la prueba de (2.4). Si 0 <

1/

a<byan’/*>1 entonces

1
P(an'* < X, < bn/*) = §(a*a —b )t

luego usando el teorema 3.6.1 citado en [5]

Np(a,b) = [{m <n: X,,/n** € (a,b)}| = Poisson(a,b)
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donde Poisson(a,b) tiene como media (a=® —b~%)/2. Luego, sea A C R—(—0,0) y on*/* > 1

entonces

1o _ -1 o
P(Xi/n7’*€ A)=n /A—2|$|a+1dx

para

No(A) = [{m < n: X, /n'* € A}| = Poisson(A)

donde Poisson(A) tiene como media a

(6%
A) = —d
) = [ gt <

La familia de variables aleatorias Poisson(A) se denomina un proceso de Poisson en
(—o00,00) con media p. Observe que para cualquier € > 0,u(e,00) = € /2 < oo, para
Poisson(e, 00) < 00.

A partir de este resultado observamos que el conjunto aleatorio

Xn = {Xm/n 1 <m < n}

puede ser acotado

1/a

Para obtener el limite de S,,/n'/®. Sea € > 0, y consideremos

L(e) ={m <n:|X,| > en*/*}

Sn(e) = Z X Sn(e) = S, — S, (e)
méeln(e)
Note que I,,(¢) = los indices de los "términos grandes”, es decir, aquellos indices para los

cuales las variables X,, toman valor mayor que en'/® en magnitud. S, (¢) es la suma de los
términos grandes, y S, (¢€) es el resto de la suma. Lo primero que haremos serd mostrar si la

contribucién de los S, es pequefio si € tambien lo es. Donde
Xm<6) = Xm1(|Xm\§enl/a)
La simetrfa X, implica EX,,(¢) = 0, para E(S,(¢)?) = nEX,(e)2.

1/«

0 1 en
EXi(e)? =/ 2yP(|X1(e)| > y)dy S/ 2ydy+/ 2y~ *dy
0 0 1
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1+

2 2e2~
2—a, 2/a—1 < 2/a—1
©n 2—a " 2-— an
donde utilizamos a < 2 en el célculo de la integral y a > 0 en la desigualdad final.
De esto se deduce que la

2—«

(2.5)

Para calcular el limite de S, (e)/n'/®, observamos que |I,(e)| tiene una distribucién bi-
nomial con probabilidad de éxito p = e~ /n. Dado |I,(¢)| = m, S,(€)/n'/* es la suma de m
variables aleatorias independientes con distribucién F; que es simétrica con respecto a 0 y

tiene

1 — Fé(x) = P(Xy/n' | | X1|/nY® > €) = 7% /2 para x > €

Note que esta funcién de distribucién es la misma que la de la variable aleatoria Xj,
dada en (2,4), multiplicada por €, es decir, eX;, ademads si p(t) = Fexp(itX;), entonces la

distribucién FY tiene como funcién caracteristica o(et). Combinando las observaciones en
este apartado se tiene que

n

= (:%> (€/m)"™ (1= € /n)" " (et)"

E exp(itSy () /n'/*) =

Luego, usando que

(n) L dam-D.(n-m+1) _ 1

m/nm ml nm

m!’

donde (1 — e “/n)" < exp(—e~*) y por el teorema de convergencia dominada obtenemos

(2.6)  E(exp(itSy)(€)/n'/*) = Y " exp(—e *)(e )" p(et)™ /m! = exp(—€ 1 — p(et))
m=0
usando este resultado y la igualdad (2.3) se obtiene la convergencia planteada en (2.4).

LEMA 2.1. Si h,(€) — g(€) para cada € > 0 y g(€) — g(0) como € — 0 entonces podemos
escoger €, — 0 de modo que hy,(e,) — ¢(0).

Demostracién: Sea N, elegido de modo que | h,(1/m) — g(1/m) |< 1/m paran > N,, y

m — N, estd aumentando. Sea €, = 1/m para N,,, <n < N1 y = 1 paran < N;. Cuando
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Ny, <n < Ny, €, = 1/m por lo que resulta de la desigualdad triangular y la definicién de

€, que
| hn(en) = 9(0) [<] hn(1/m) — g(1/m) | + | g(1/m) — g(0) |< 1/m+ [ g(1/m) — g(0) |

cuando n — oo, tenemos m — oo y el resultado se deduce.
Sean hy,(€) = E exp(itS,(€)/n'/*) y g(€) = exp(—e {1 —p(et)}). Luego de (2.2) se tiene

que 1 — p(t) ~ C|t|* como t — 0 entonces
g(€) — exp(—CIt|*) cuando € — 0

del Lema 2.1 sabemos que podemos escoger €, — 0 talque h,(€,) — exp(—C|t|*). Sea Y con
funcién caracteristica p(t) = E exp(itY") = exp(—C|t|*), donde se deduce que S, (e,)/n'/* =
Y. Si €, — 0 luego por (2.5) se tiene que

Sn(en)/nY =0

y de (2.4) se deriva del lema donde converge en ley a cero.
Una vez que damos una definicion final, vamos a expresar y probar el resultado general

aludido anteriormente.

DEFINICION 2.2. L se dice que es de variacién lenta, si

lim L(tx)/L(x) = 1 para todo t > 0

T—r00

TEOREMA 2.3. Supongamos que X1, Xs, ... son v.a.i.i.d. con una distribucion que satis-

face

(i) Limysoo P(X, > 2)/P(| X1 |> 2) = 0 € [0, 1]

(@) P(| Xy |> ) = 27 L(x),

donde o < 2 y L varia lentamente.

Sea S, = X1+ ...+ X, a, = inf{z : P(| Xy [> z) < n7'} y b, = nE(X11(x|<an))

entonces cuando n — oo, (S, — by)/a, =Y donde Y tiene una distribucion no degenerada.
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OBSERVACION 2.4. En el teorema anterior se muestran las condiciones necesarias para
la existencia de las constantes a, y b, de modo que (S, — b,)/a, = Y, donde Y es una

distribucién no degenerada.

Demostracién: Veamos primero que la hipétesis (ii) implica que

(2.7) nP(] X; |> a,) =1
para probar esto, usaremos que nP(] X; |> a,) < 1y consideremos € > 0. Sea z = a,, /(1 +¢€)

y t =14 2, luego (ii) implica que

P(| X1 |> (14 26)an/(1+€))
P(| X1 [> an/(1+¢€))

P(’ Xl ‘> an)
1/n

(142¢)™ = limy 00 < lim infy_eo

obteniendo asi (2.7) pues € es arbitrario. Combinando (2.7) con (i) y con (ii) obtenemos

(2.8) nP(X, > za,) — 0z~ para x > 0

por tanto | m < n: X, > za, |= Poisson(fx~*). El ultimo resultado nos da la conclusién

que Xn = {Xmm/a, : 1 <m < n} converge a un proceso de Poisson en (—oo, 00) con media

pu(A) = / b | x|~ dx —1—/ (1—0)a| x|~ dy
AN(0,00) AN(=00,0)

Ahora para resumir los puntos, vamos a I,,(¢) = {m < n:| X,, |> ea,}

ﬂ(€> = EXm1(€an<|Xm‘§an) Sn(e) = Z Xm

meln(e)

fi(€) = EXon1(x,|<ean)

Sn(€) = (Sp —bn) — (Sn( ) — nji(e Z{X L X, <can) — B(€) }

Si tomamos que X,,(€) = X, 1(x,.|<can) €ntONCES

E(S,(€)/an)* = n var(Xy(e)/a,) < nE(X1(e)/a,)?

¢ Pl X1 |> an,
E(X:(€)/an)’ /QZJP‘Xl 1> ya,)dy = P(| Xy |> an)/ 2y ([ X1 >y )dy
0

P(| X1 |> an)
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usando (2.7) y (ii) concluimos

2
2—«

E2704

nE(Xi(€)/an)* = /0 6 2yy~“dy =

por lo tanto

B 2 2—«
(2.9) limsup E(S, /a,)? < =5

n—oo 2-0[

intercambiando el limite y la integral y luego tomando § < 2 — « se obtiene el siguiente lema

el cual demostraremos antes de continuar con la demostracion del Teorema.
LEMA 2.5. Para cualquier 6 > 0 hay un C de modo que para todo t <ty yy <1
P(| X1 |> yt)/P(| X1 [>t) < Cy=°

Demostracién: Usando la parte (ii) del teorema se tiene que como t — oo

P(] X1 |>t/2)/P(| X1 |>t) — 2¢
por lo que para t > ty tenemos
P( X1 |>t/2)/P(] Xy |>t) <20
iterando t/2™ < to para todon > 1
P(| Xy [> t/2")/P(| X, |> t) < €200,

donde C' = 1/P(] X; |> to). Aplicando el tltimo resultado a los n primeros nimeros con

1/2" <y y notando que y < 1/2"! tenemos
P(| Xy [> yt)/P(| Xy [> t) < G200y ~°

lo que demuestra el lema.
Con este resultado en mano podemos continuar con la demostracién del teorema 2.3.
Para calcular el limite de S, (€), se observa que |I,,(¢)| = Poisson(e~*). Dado |I,,(¢)| = m,
gn(e) /n'/® es la suma de m variables aleatorias independientes con distribucién F¢ que

satisfacen que

1 - F: = P(Xi/an, > x|| X1|/a, > €) — 07/ @

Fé(—2) = P(X1/an < —2||X1]/an > €) — (1 — 0)|z|~* /e
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para x > e. Si denotamos por ¢ (t) denota la funcién caracteristica de FY, entonces

implica

0l — o = / exp™® *ar~ Vg + / exp™(1 — 0)e“alz| =@tV dy

[e.e]
como n — oo. Luego, siguiendo un procedimiento analogo realizado. Para obtener la

demostracion de la igualdad (2.6) tenemos que
E(exp(itSa(€) /an)) — exp(— {1 = *(t)})

= exp (/ (exp™® —1)fax= @Dz 4 / (exp™ —1)(1 — 9)a|x\(°‘+1)dx)

[e.9]

[0

donde hemos utilizado e = fe * oz~ @t dz. Lo cual obtenemos

fi(€) = EX il (ean<|Xm|<an)
observamos que (2.7) implica nP(za, < X, < ya,) — 0(x~* —y~*). Asi

—€

1
nji(e)/an —>/ x@ax(““)dx—i-/ z(1 — 0)alz|" @ Vdy

1

De esto se deduce que

(2.10) E(exp(it{Sa(e) — nji(e)/an})) — exp( /1 ™ (expi® — 1)z ds

1
—I—/ (exp™™® —1 — itz)fax™ @tz

e B
—|—/ (exp™® —1 — itz)(1 — O)a|z| " Vdx + / (exp™ —1)(1 — B)ar|z| @+ Vdz)

1 —00
La tltima expresién es complicada, pero exp™ —1 — itz ~ —t222/2 ya que t — 0, por lo

que necesitamos restar el itz para hacer
l .
/ (exp™™® —1 — itz)z~ @ Ddy converge cuando o > 1
0

Para reducir el niimero de integrales de cuatro hasta dos, podemos escribir el limite ¢ — 0

de la parte izquierda de (2.9) como
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(2.11)

exp | itc + /°° exp™ —1 — it Oaz~ @t dy + /0 exp™ —1 — it (1 —0)alz|" @ Vdz
0 1+ 22 - 1+ 22

donde ¢ es constante. Combinando (2.8) y (2.9) usando el lema 2.1, obtenemos que

(Sp —bp)/an =Y va que Eexp™ se da en la ecuacién (2.10).

DEFINICION 2.6. Una variable aleatoria Y se dice que tiene una Ley Estable si para
cada k > 0 existen constantes a; y by de modo que si Y7, ..., Y, son i.i.d. y tienen la misma

distribucién que Y, entonces (Y; + ... + Yy — by)/ar =4 Y.

TEOREMA 2.7. Y es el limite de (X1 + ... + Xy — b)) /ax. para la secuencia i.i.d. de X; si

y solo si Y tiene una ley estable.

Demostracion: Si'Y tiene una ley estable podemos tomar una sucesion Xy, Xo, ... v.a.i.i.d.

con distribucion Y. Ahora consideremos
Zn=X1+ ...+ X, —by)/a,
y S% = X(j—vn+1 + ... + X, Luego,
Zyie = (Sp 4 . + Sk — b)) /@
e Zng = (Sh — by + oo 4+ (S5 = by,) + (kby, — bug))

Ui Zngs ) = (SE = bp)/an + ... 4+ (S* = by) /an + (kb — bug) /.

Los k primeros términos en el lado derecho = Y; + ...+ Y} ya que n — oo donde Y; + ...+ Y}

son independientes y tienen la misma distribucién que Y,y Z,r = Y. Tomando W,, = Z,; y
Wy = Gy B = b
n an

obteniendo asi el resultado deseado.

1. Propiedades de una variable aleatoria estable

Algunas de las propiedades importantes de Y se enumeran a continuacion. Para un analisis

mas extenso de variables aleatorias estables.
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(1) La funcién caracteristica ¢(u) = Eexp(iuY), viene dada por

(2.12) olu) = eXP{@:Ut —du|* (1 —-iﬁsgn(u) tan(12))} s? a1
exp{iut —d [u] (1 — i6Zsgn(u) Inful)}  sia=1

donde sgn(u) es u/ | u | si u # 0, y cero si no se cumple. Los pardmetros a € (0, 2],
B € R, ds € [0,00) y 8 € [—1,1] se conocen como el exponente, la ubicacién, la
escala y los parametros de simetria respectivamente.

(2) Si o = 2 entonces Z ~ Poisson(,2d).

(3) Si @ = 0 entonces la distribucién de Y es simétrica respecto (5. Las distribuciones
simétricas estables (es decir, aquellas que son simétricas con respecto a 0) tienen

funcién caracteristica de la forma

(2.13) o(u) = exp~ Ul

(4) Sia =1y 6 = 0 entonces Y tiene la distribucién de Cauchy con densidad de
probabilidad f(y) = (d/y)[d* + (y — B)*], y € R.

(5) Las distribuciones simétricas estables satisfacen la propiedad de la definicién 2.6 con
an = n'* y b, =0, ya que si las variables aleatorias Y, Y1, ...,Y,, tienen la funcién

caracteristica dada en (2.13) y son variables aleatorias independientes, entonces
Eexpliu(Y; + ... + V)] = e ™" = Eexpliuyn'/?).

(6) SiF esla funcién de distribucién de Y y a € (0, 2) entonces se satisface la definicién

(2.13) conp=(1+6)/2y

d/(T'(1 — a)cos(ma/2)) sia#1

(2.14) C =
2d/m sia=1

En la siguiente proposicién, proporcionaremos las condiciones suficientes bajo las cuales

la suma )77 ¢;Y; ; existe cuando Y; es una sucesién que satisface la definicién 2.6.

PROPOSICION 2.8. Sea Y, una sucesion de variables aleatorias i.i.d. que satisfacen la

definicion 2.6. St @; es una sucesion de constantes tales que
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(2.15) Z | ¢ |°< oo para algun & € (0,a) N[0, 1],

j=—00

entonces la serie infinita > Y,_:, converge absolutamente con probabilidad uno.
) j=—00 1 77

Demostracién: Consideraremos primero el caso 1 < a < 2. Entonces por (3.3), E | V] |<

oo y por lo tanto

[e.9] [e9] o0

E(Y  leYiil)= > |9 |E|Yijl= > |¢|E[Y1]< oo

j=—c0 j=—o0 j=—oc0

Asi 27 | ¢;Yij | es finita con probabilidad uno.

Ahora supongamos 0 < a < 1. Desde 0 < a < 1, podemos aplicar la desigualdad
triangular | z +y [°=] 2 |° + | y |° a la suma infinita > e o ¥jYi—j. Haciendo uso de (3.3)

a continuacion, encontrara que

[e.e] [e.e] o)

E(> oY P <SE(Y . o P1Yi )= ) [ PE| Y < 0.

j:—oo j:—OO j:—OO

Por lo tanto > 72 | ¢;Y;—; |< oo con probabilidad uno.

OBSERVACION 2.9. La distribucién de la suma infinita Z‘;‘;foo ©;Y;_; satisface la ecua-

cién (3.2). Especificamente

o0

P Y oY l>2) = () ¢ M€

OBSERVACION 2.10. Si Y; tiene una distribucién simétrica estable con funcién carac-

—d|t|> (

teristica e y dispersién C propuesta por (2.14)), entonces Z;’O:_OO ©;Y;_; también tiene

una distribucién simétrica estable con dispersion C =C> 2 | ¢; |*.



Capitulo 3

Test de Portmanteau en una distribucion de Pareto

En este capitulo, estudiaremos el test de Portmanteau, utilizando la distribucion de Pare-
to. Pero primero daremos a conocer algunas observaciones para usar el test de Portmanteau

con varianza infinita.

1. Procesos lineales con varianza infinita

Todas las series de tiempo que exhiben picos intensos o explosiones ocasionales de obser-
vaciones atipicas sugieren el posible uso de un modelo de varianza infinita. En esta seccion
vamos a restringir nuestra atencion a los procesos generados por la aplicacién de un filtro

lineal de una sucesién v.a.ii.d., {Y;,t = 0,+1, ...} cuya distribucién F es de Pareto, es decir,

(3.1) z*(1— F(z)) =a2*P(Y; >z) - pC, siz— o0
. r®F(—x) =2*P(Y; < —z) - ¢C, siz—
donde 0 < < 2,0<p=1—¢q <1, yC es una constante finita positiva que vamos a llamar

dispersion, disp(Y;), de la variable aleatoria Y;. El sistema (3.1) lo podemos reescribir como

(3.2) (1 = F(x) + F(—z)) =2*P(| Yy |> z) — C, six = 0

de donde

E|Y;|[’=c0 sid>a
(3.3)
E|Y;|’<oc0 sid<a
la ecuacién (3.3) la obtuvimos usando la funcién de densidad de la disp(Y}).
Por lo tanto Var(Y;) = oo para0 < a <2y E | Y; |< co sdlosi 1 < a < 2. Una clase

importante de distribuciones que cumplen (3.1) es la de las variables aleatorias estables no

gaussianas.

21
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DEFINICION 3.1. Si definimos por

(3.4) Xt = Z ©iYi—j

j=—o0

donde (3.4) se denomina Proceso Lineal.

Si p; v Y, satisfacen los supuestos de la proposicién 2.8, este proceso existe con probabili-
dad uno y es estrictamente estacionario; es decir, la distribucién conjunta de (X7, ..., Xj)" es
la misma que la de (Xyyp, ..., Xx1n)" para todo entero h y k nimero natural. En particular,

si los coeficientes ¢; se escogen de manera que ¢; =0 para j <0y

(3.5) D e’ =0)/ewy), |y <1,
=0
donde O(y) = 14+61y+... 40,97y &(y) = 1 =1y —...— dpyP # 0 para |y| < 1, entonces es facil

demostrar que X; como se especifica en la definicién 2.6 donde se satisfacen las ecuaciones

ARMA(p,q) con ¢(B)X; = 0(B)Y; donde B es el operador de desplazamiento.

PROPOSICION 3.2. Sea Y; una sucecion de v.a.i.i.d. con funcién de distribucion F que
satisface la definicion 2.6. Entonces si 0(-) y ¢(-) son polinomios tales que ¢(y) # 0 para

| y |< 1, las ecuaciones en diferencias

(3.6) ¢(B)X; =0(B)Y,,

tiene una solucion estrictamente estacionaria,

(3.7) Xt = Z ©iYi—j
=0

donde los coeficientes @; se determina por la relacion (3.5). Si ademds o(y) y 0(y) no
tienen ceros comunes, entonces el proceso (3.7) es invertible si y solo si O(y) # 0 para

|y <1

Para entender el siguiente teorema usaremos las siguientes ecuaciones
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5, itbien
(3.8) p(h) = =25— h=1,2..
25 ¥5
y su estimador
n—h n
(39) ﬁ(h’) :ZXtXt+h/ZXt27 h = 1727‘“7
t=1 t=1

TEOREMA 3.3. Sea {Y;} una sucesidn i.i.d. de variables aleatorias simétricas que satis-

facen (2.6) y sea {X;} el proceso estrictamente estacionario,

X, = Z SOjY;t—ja

j=—00
donde
Z |31l @ |° para algun § € (0,a) N [0,1].
Jj=—00

entonces, para cualquier numero entero positivo h,

(3.10) (n/In(n))""(p(1) = p(1), ..., p(h) — p(h))" = (Y1, ..., Y2)',
donde
Y= (p(k+35) + plk —j) = 20(j)p(k))S;/ S0,k = 1,.... b,
j=1
y So, S1, ..., son variables aleatorias independientes estables; Sy es estable positiva con la

funcion caracteristica

(3.11) E exp(iuSy) = exp{—CT(1 — ) cos(rar/4) | u [*/* (1 — isgn(u) tan(ra/4))}
y S1, 5, ..., son i.i.d. con funcion caracteristica,

exp{—C?T'(1 — a)cos(ma/2) |u |* sia#1

(3.12) E exp(iuS)) =
exp{—C?r | u| /2} sia=1
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Si a > 1 entonces (2.13) también es cierto cuando p(0) se sustituye por su valor medio
corregido por la version p(h) = S 1"(X, — X)(Xopn — X)/ 001 (X; — X)2, donde X =
nHX + .+ X,).

La consecuencia inmediata de el teorema anterior es que p(h) = p(h), més especifica-
mente que p(h) — p(h) = O,([n/In(n)]~Y*) = O,(n"1/#) para todo B > a. Este indice de
convergencia a cero se compara favorablemente con el O,(n~'/2), para la diferencia p(h)—p(h)
en el caso de la varianza finita.

La forma de la distribucién asintética de p(h), puede ser un tanto simplificada. Hacemos

esto porque Y}, tiene la misma distribucién que

<<

Y

- 1/a
(3.13) (Z (b + §) + p(h — j) + 2p(j)p(h>|a)

j=1
donde V (> 0) y U son variables aleatorias independientes con funciones caracteristicas
dadas por las ecuaciones (3.9) y (3.10) respectivamente tomando C' = 1. Los percentiles de
la distribucién de U/V los encontramos ya sea por la simulacién de copias independientes
de U/V o por la integracion numérica de la densidad conjunta de (U, V') sobre una region
apropiada.

Cuando tomamos a = 1, la densidad conjunta de U y V no la podemos escribir en forma

cerrada. Para el mismo caso de « = 1, U es una variable aleatoria de Cauchy con funcién de

densidad
1
Jo(u) = §[W2/4 +u’] ™
la ecuacién anterior la obtuvimos usando la propiedad 4 de una variable aleatoria estable, y

V es una variable aletoria no negativa estable con funcién de densidad,

1
fv(v) = 51)_3/2 exp ™ v > 0.

Por lo tanto, la funcién de distribucién de U/V viene dada por

(3.14)
PU/V <x) :/0 P(U < zy) fv(y)dy :/0 2_1/2(7Tw)_3/2[arctan(xw)+(7r/2)] exp(—1/(2w))dw.
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donde U/V tiene la misma distribucién que el producto de una variable aleatoria de Cauchy
estdndar, donde su funcién de densidad 7~ (14z?)~!, y una variable aleatoria independiente

distribuida como x?(1).

2. Test de Portmanteau para series de tiempo estables de Pareto

En esta seccion, estudiaremos los test de Portmanteau para comprobar la aleatoriedad de
una sucesion de variables aleatorias estables de Pareto. Consideraremos la estabilidad para

los test de Portmanteau de [1] y [14], denotados por Qpp y D, respectivamente.

2.1. Distribucién asintética de la funcién de autocorrelacién.
Sea {Y; : t = 0,£1,£2, ...} una sucesién de variables aleatorias i.i.d. estables de Pareto

y X; el proceso estrictamente estacionario definido por

(3.15) Xi= ) ¢Yit=1..n,
j=—00
donde
(3.16) Z |5 1] ¢, |°< 00, para algun § € (0,a) N[0, 1].
j=—o00

El anélogo estable de la funcién de autocorrelacién (ACF) en el retraso k se define como

(3.17) pr = Z%‘%’M/Z@?a k=1,2,..,
J J

El estimador de (3.17) puede ser estimado por la funcién de autocorrelacién de la muestra

de la siguiente manera:

n—=k n
(3.18) = {ZXtXHk}/ZXE,k: 1,2, ...,
t=1 t=1

para o > 0. Segin [4], para cualquier entero positivo k, la distribucién limite de funciones

de autocorrelacion de la muestra esta dada por
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1/
n
(319) Log(n)} (7"1 — P15 Tk —Pk)T - (}/17"'7Yk)T7

donde = denota convergencia en la distribucién y

(e 9]

S.
(3.20) Y, = Z(:OkJrj + pr—j — 2pjpk)s_27 h=1,..k,

j=1

donde Sy, St, ... son variables independientes estables; Sy es positivo con Sy ~ Y, /2(C;/22/ “1,0)

donde Y, /> es una N(0,1), y la S; son YQ(C’;UQ, 0,0) lo cual Y, es una x?, y

(1—a)/(I'(2—a)cos(ra/2)) sia#1
2/m sia=1,

Co, =

Bajo la hipdtesis nula de que X; es una sucesiéon de v.a.i.i.d. estables de Pareto, tenemos
po =1y pr =0 para k > 1 por lo que la distribucién limite muestral ACF, puede simplificar

aun mas la siguiente ecuacion:

1/a
n
21 — )T r
(3 ) Log(n)] (Tla 7Tk) - (Wla ,Wk) )
donde W, esta dada por
(3.22) Wy, = &,h: 1,..., k.
So

Tengamos en cuenta que, para o > 1, también podemos utilizar la funcién media-

corregida para la autocorrelacion de la muestra en el retardo k, denotado como 7, que

se da por
n—k B B n ~

(3.23) Fro=> (X; = X)(Xesx — X)/ D (X = X)) k=1,2,...
t=1 t=1

en [4] se indica que la distribucion limite de 7 es la misma que el de 7.
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2.2. Distribucion asintética de la funcién de autocorrelacion parcial.

La funcién de autocorrelacion parcial en el retardo k se define como la estimacion de
la muestra del k-ésimo elemento de la solucién de Yule-Walker [3] a un proceso AR. La
funcién de autocorrelacion parcial (PACF) también puede ser calculada usando el algoritmo

de Durbin-Levinson [3].

Sea 7, la PACF en el retardo k, y 74, = (1, ..., mm)". Segtin el algoritmo de Durbin-
Levison [3], el vector m(,,) puede expresarse como una funcion de r(y), Ty = ¥(ra)), con

el k-ésimo elemento propuesta por

1 *
e = TRy

(3.24) T = @/J(I‘(k)) = —
1 - rg;c—l)R(kl—l)r(k—l)

donde r(,) = (r1,...,m,)" es el p x 1 vector de funcion de autocorrelacion, R, = (7i—j|)pxp
es la p X p matrix de autocorrelacion y r,) = (rgy ey )T
Bajo la hipdtesis nula de que los X; son independientes, las funciones de autocorrelacion

son todas cero, y de acuerdo con [2] que nos explica el uso del orden de la probabilidad,

n -1/«
Th:Op<|:10g(n):| ) ,h:1,2,...

n -1/«

donde 1, es un k x k matriz de identidad. Por la ecuacién (3.20)

n -2/
(3.25) T(m) = T(m) + Op ({M} >

usando la ecuacién (3.17), se tiene que

por lo tanto,

(3.26) Logn)} " (T1s e ) = (Wi oo, W)Y
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2.3. Distribuciones asintéticas de Qgp y el test D.
Bajo la suposicién de que 1 < a < 2, derivado de la distribucién limite de Qgp de [1],
basado en el valor medio corregido de las funciones de autocorrelacién. Su resultado se da

por

2/a m
n
3.27 = §j~2. W2+ ..+ W?
( ) QBP<m> <log(n)) j:1r]—> LW,

donde Wy : k =1,...,;m se definen en la ecuacién (3.18). Donde tenemos 0 < o < 1, la
distribucion limite de la ecuacién (3.23) sigue dando la misma si sustituimos 7y por 7.
Consideremos el siguiente test D de [14]. En el caso estable, podemos definir el estadistico

del test,

) n 2/
(3.25) D) = (o) 0= [ R 17

utilizando los resultados de 2.1 y 2.2, y siguiendo los argumentos en [11] sobre la matrix

de autocorrelacion, es posible obtener la distribucién asintética de la ecuacién (3.28) en el

siguiente Teorema.

TEOREMA 3.4. D(m) en la ecuacion (3.28) se distribuye asintéticamente como

im:ﬂt_iwlz’

=1

donde {W; :i=1,...,m} se define en la ecuacion (3.18).

Demostracion: Primero, usando la descomposicion del determinante de la matrix de au-

tocorrelacion R, [11] mostraron que | Ry |/ es una funcién de autocorrelacién parcial
de los primeros m datos. Especificamente,

(3.29) | Ry V7= H(l _ p2)(m1=i)/m
i=1
Supongamos, bajo la hipotesis nula de que D se distribuye asintéticamente como X2,

Aplicando el §-método a g(z) = log(1 — ), resulta que —(n/log(n))**log(] Remy [V/™) se
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distribuye asintéticamente como X2. A partir de la ecuacién (3.25), se puede tener

Ahora suponemos que

2/«
n
31 2ma LT =Y
(33 ) (10g(n)> (71'1,71'2, @ )

al aplicar el -método multivariado a
2 2 2 —~m—it1 2
=— —— log(1 — 7
9(71-1771-27 77Tm> Z m Og( 7Tz)7
resulta que
“m—i+1 -1 1
(3.32) —Zm L (1 — 72) = (1m——) Y.
Por el Teorema de Cramer-Wold, resulta que

(3.33) <1, mT_l %) ((logrzn))wa w2 (mézn))m 72

Ahora, bajo la hipotesis nula de que X; son una sucesién de variables aleatorias i.i.d.

NG
|3
~/
‘S
3|
=
N——
o

estables de Pareto, tenemos py = 1y pr = 0 para k > 1 donde la distribucion limite de ACF

la podemos simplificar como:

1/a
n
(3.34) {m} (riy e i)t = (W, o, W)™,
donde W), estan dadas por:
(3.35) Wy = &,h: 1. k.
So

Notemos que para o > 1, tambien utilizamos la funcién de autocorrelacion, corregida

por la media aritmética en el retardo k, denotado por 7, que esta dada por
(3.36) Fo= > (X — X)(Xipn — /Z =1,2,..
Usando la ecuacién (3.17), tenemos

(3.37) [%] " (1 eons )T = (W oo, W)
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resulta que

(3.38)

1 1 2/c 2/ 1 1
L ) (=) () ) w2
m m log(n) log(n) m m

Finalmente, de las ecuaciones (3.29) y (3.34),

m—-1 1 “mAl—i,
: L,—— .., —]Y — W
(3.39) (, - ) =) —— W7

m m —
y desde la ecuacion (3.27), tenemos

R m 1_
[kéijﬁj;_lwz
m

%
i=1



Capitulo 4

Analisis del test de Portmanteau

En este capitulo presentaremos tres ejemplos practicos que hacen el uso del test de
Portmanteau donde compararemos sus p-valores utilizando las distribuciones asintéticas y

estables.

1. Intel Data Corporation

Consideraremos los rendimientos mensuales del registro de valores de la empresa Intel
Data Corporation desde Enero de 1973 hasta Diciembre del 2003 con una serie de tamano

n = 372 citados de [17].

Intel Data Corporation
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Ficura 4.1. Comportamiento de los rendimientos

31



1. INTEL DATA CORPORATION 32

La figura 4.1, nos muestra como fue el comportamiento de los rendimientos mensuales,
donde existen ciertas variaciones que nos indican que puede haber varianza infinita. Claro
existen ciertos puntos que nos indican que existe cierta variacion alta donde los rendimientos

aumentaron su precio, asi como tambien hubo cierta perdida grande de su valor.

Antes de hacer uso y el analisis del test de Portmanteau debemos seleccionar una hipétesis
nula la cual es donde basaremos el analisis de este ejemplo.

La hipotesis nula seleccionada
Hy : los datos son independientes identicamente distribuidos con varianza finita
y como hipétesis alternativa a
H, : los datos no se distribuyen de forma independiente y no tienen varianza finita

Para realizar el estudio de este primer ejemplo tomamos los retardos de 5,10,15,20,25,30,

donde lo aplicamos a los rendimientos utilizando las distribuciones asintotica (DA) y estable.

Test| Metodos |p=5|p=10|p=15|p=20|p=25|p=30
Qpp | Normal-DA | 0.457 | 0.156 | 0.081 | 0.242 | 0.238 | 0.370
Qpp | Estable-DA | 0.985 | 0.729 | 0.829 | 0.824 | 0.862 | 0.825
Qrp | Normal-DA | 0.449 | 0.144 | 0.068 | 0.211 | 0.197 | 0.310
Q.5 | Estable-DA | 0.984 | 0.712 | 0.810 | 0.796 | 0.829 | 0.773
D | Normal-DA | 0.513 | 0.263 | 0.184 | 0.173 | 0.177 | 0.203

D | Estable-DA | 0.945 | 0.886 | 0.842 | 0.806 | 0.815 | 0.771
CUADRO 1. P-valores usando los Test de Box-Pierce, Ljung-box y Pena-Rodriguez en los

Rendimientos Mensuales de la Intel Data Corporation

En el Cuadro 1, utilizando el test de Box-Pierce (Qpp), para el caso estable en todos los
retardos escogidos nos indica que la hipdtesis nula se acepta. Ahora para el caso normal en

los retardos 10 y 15 aceptamos la hipotesis alternativa.
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Utilizando el test de Ljung-Box (Qrp), para el caso estable sucede lo mismo que en el
caso estable del test anterior. Para el caso normal para los retardos 10 y 15 debemos rechazar
la hipdtesis nula.

Para el test de Pena-Rodriguez (ﬁ) para el caso estable en todos los retardos senalados
aceptamos la hipétesis nula. Para el caso normal en los retardos 15, 20 y 25 la hip6tesis nula

debe ser rechazada.

Esto lo obtenemos de tomar el nivel de significancia adecuado, ya que los test se distri-
buyen igual que una x?.
En la siguiente figura mostraremos como estan distribuidos los datos al aplicarle la dis-

tribucion estable.

Intel Data Corporation (Estable)
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Fi1GURA 4.2. Comportamiento de los Rendimientos
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En la figura 4.2, al tomar a =1.2 la gran mayoria de los datos se estabilizan en una franja
a excesion de algunos datos atipicos que nos pueden explicar que hubo una subida de los
precios en ese momento, ahora al aumentar el a los datos se van dispersando pero siempre
permanecen en una franja a excesion de los datos atipicos que cada vez que se aumenta el «
se alejan més.

En la siguiente figura mostramos la Esperanza y la Varianza de los datos de la Intel Data

Corporation.
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FicurA 4.3. Esperanza y Varianza de los Rendimientos

La figura 4.3, nos indica que existe homocedasticidad en los datos al calcular su esperanza
y varianza, lo que quiere decir que la varianza de los errores es constante. Osea la variable se
mantiene a lo largo de las observaciones no de todas pero si de la mayoria. Lo que nos dice

que los datos tienen varianza finita.
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2. IBM y Standard and Poor’s 500

Ahora para este ejemplo, podemos considerar la colocacién de una var(k) donde k =
1,2,3 para los modelos de las declaraciones mensuales de los registros de las acciones de
IBM y Standard and Poor’s 500 desde Enero de 1926 hasta Diciembre de 1999 tomado de
[17].

IBMy Standard and Poor’s 500

10 20

SP500
0
|
O

-30 -20 -10 0 10 20 30

IBM

FicuRrA 4.4. Distribucién de las Acciones

En la figura 4.4, se comparan las acciones de IBM y Standard and Poor’s 500, donde se
muestran que la gran mayoria de los datos accionarios estan distribuidos en la parte central

de la figura, a excesion de algunos datos atipicos que son de gran interés para el estudio.
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Para hacer uso de los test de Portmanteau debemos tomar como hipétesis nula

Hy : los datos son independientes identicamente distribuidos con varianza finita

y como hipétesis alternativa a

H, : los datos no se distribuyen de forma independiente y no tienen varianza finita

Para este ejemplo vamos a trabajar aumentando el autoregresivo hasta grado 3, asi poder

compararlos.

Caso k =1 (autoregresivo de orden 1)

Aplicamos un modelo autoregresivo de orden 1 a los datos por minimos cuadrados que

hace la seleccién de la complejidad de el criterio de Akaike(AIC).

ar IBM SP500
IBM | 0.019195 | 0.10616

SP500 | -0.005419 | 0.08019
CUADRO 2. Estimacién del autorregresivo AR del modelo ajustado con k=1

En el Cuadro 2, nos dice el valor del autorregresivo de ambas empresas durante todo el
tiempo de estudio de las acciones, durante este tiempo cuando se compararon las dos hubo
un momento en que las acciones perdieron valor y luego hubo una alza que nos arroja un

uso significativo del modelo.

var.pred | IBM | SP500
IBM | 44.80 | 23.86

SP500 | 23.86 | 31.67
CUADRO 3. Varianza de prediccién de la serie de tiempo con k=1
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En el Cuadro 3, la varianza de prediccién nos muestra los valores atipicos de el estudio

de las acciones en las dos empresas para compararlos dando que no existe mucha diferencia

entre las dos empresas.

En el siguiente cuadro mostramos los p-valores para el caso k=1.

Test | Metodos =5 | p=10 | p=15 | p=20 | p=25| p=30
@ pp | Normal-DA | 0.00142 | 0.00566 | 0.06891 | 0.00163 | 0.00035 | 0.00100
Qpp | Estable-DA | 0.02127 | 0.05987 | 0.33001 | 0.02580 | 0.00943 | 0.02053
Qrp | Normal-DA | 0.00131 | 0.00502 | 0.06177 | 0.00115 | 0.00020 | 0.00056
Qrp | Estable-DA | 0.02028 | 0.05505 | 0.30936 | 0.01999 | 0.00632 | 0.01333

D | Normal-DA | 0.01006 | 0.00507 | 0.00960 | 0.00638 | 0.00369 | 0.00294

D | Estable-DA | 0.16977 | 0.18989 | 0.26078 | 0.18238 | 0.10384 | 0.07416

CUADRO 4. P-valores con k=1 usando los Test de Box-Pierce Ljung-Box y Peifia-
Rodriguez en los Registros de las acciones de IBM y Standard and Poor’s 500 desde Enero

de 1926 hasta Diciembre de 1999

En el Cuadro 4, comparamos los p-valores del modelo usando k=1 tomando a =1.9,

donde nos indican que para el Test de Box-Pierce (Qpp) tanto estable como no estable la

hipétesis nula se rechaza, igual sucede al utilizar el test Ljung-Box (Qrp), va al usar el Test

de Pena-Rodriguez (15) al ser no estable los p-valores nos dicen que se rechaza la hipdtesis

nula pero al aplicar la estabilidad los p-valores nos dicen que tambien se debe rechazar la

hipotesis nula y tomar como cierta la hipdétesis alternativa como verdadera, ya que existen

valores atipicos de la serie.
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En la siguiente figura mostramos como se distribuyen los datos con k = 1 al aplicarle la

distribucién estable.

Estabilidad de IBM—-SP500 con k=1
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FicuraA 4.5. Estabilidad de los Datos de IBM y SP500 con k=1

En la figura 4.5, se muestran los datos atipicos seleccionas a mi consideracién el programa
los escogio por ser los de mayor importancia claro estos datos muestran que las acciones se
mantuvieron estables tanto en los meses en que sus precios bajaron asi como en los que los

precios aumentaron dandole mayor importancia a estos.
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Caso k = 2 (autoregresivo de orden 2)

Para este caso cambiamos el orden del autorregresivo usando el método de los minimos

cuadrados.

ar IBM | SP500
IBM 1]0.09122 | -0.1514

SP500 | 0.04467 | -0.0551
CUADRO 5. Estimacién del autorregresivo AR del modelo ajustado con k=2

En el Cuadro 5, el valor del autorregresivo de ambas empresas no varia mucho en com-
paracion con al autorregresivo de orden 1, para este modelo al principio funciono muy bien

luego en cierto tiempo al compararlas tendieron a perder valor.

var.pred | IBM | SP500
IBM | 44.39 | 23.70

SP500 | 23.70 | 31.61
CUADRO 6. Varianza de prediccién de la serie de tiempo con k=2

En el Cuadro 6, nos muestra que los valores atipicos de las dos empresas donde compa-

rando con el modelo anterior no existe mucha variacion en las acciones.
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En el siguiente cuadro mostramos los p-valores para el caso k=2.

Metodos

p=>5

p =10

p=15

p =20

p=25

p =30

Normal-DA
Estable-DA

0.00553
0.02127

0.02279
0.05987

0.18319
0.33001

0.00983
0.02580

0.00197
0.00943

0.00547
0.02053

Normal-DA
Estable-DA

0.00519
0.02028

0.02064
0.05505

0.16859
0.30936

0.00737
0.01999

0.00123
0.00632

0.00329
0.01333

D | Normal-DA
D | Estable-DA

0.04647
0.16977

0.02910
0.18989

0.04688
0.26078

0.03091
0.18238

0.01701
0.10384

0.01272
0.07416

CUADRO 7. P-valores con k=2 usando los Test de Box-Pierce, Ljung-Box y Pena-
Rodriguez en los Registros de las acciones de IBM y Standard and Poor’s 500 desde Enero
de 1926 hasta Diciembre de 1999

Para el Cuadro 7, al comparar los Test, para el caso del Box-Pierce (Qpp) tanto estable
como no estable nos muestran que la hipotesis nula es falsa, igual sucede al usar Ljung-Box
(QLB), pero al usar el Test de Pena-Rodriguez (ﬁ) se cumple que la hipétesis nula la debemos
rechazar pero, igual sucede para el caso estable donde debemos rechazar la hipotesis nula

como sucedio igual en el caso para k=1.
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Estabilidad de IBM—SP500 con k=2
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F1cURA 4.6. Estabilidad de los Datos de IBM y SP500 con k=2

En la figura 4.6, se muestra como estan distribuidos los datos de las acciones para el
modelo de £ = 2, donde los datos son estables mostrando su mayor valor mes en los anos de

estudio, claro no existe mucha diferencia entre este modelo k = 2 con el modelo anterior.
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Caso k = 3 (autoregresivo de orden 3)

Ahora calculamos el 1ltimo caso cambiando el orden del autorregresivo usando el método

de los minimos cuadrados.

ar IBM SP500
IBM | 0.035851 |-0.1093

SP500 | -0.008115 | -0.1061
CUADRO 8. Estimacién del autorregresivo AR del modelo ajustado con k=3

En el Cuadro 8, nos indica el valor del autorregresivo de ambas empresas durante el
tiempo de estudio de las acciones,en este tiempo donde se compararon las dos y en un
tiempo las acciones de IBM aumentaron para luego bajar su valor, pero para la Standard
and Poor’s 500 las acciones estuvieron a la baja en todo momento claro eso es para este

modelo.

var.pred | IBM | SP500
IBM | 44.02 | 23.36

SP500 | 23.36 | 31.21
CUADRO 9. Varianza de prediccién de la serie de tiempo con k=3

Para el Cuadro 9, la varianza de predicciéon nos da los valores atipicos del modelo para
k = 3 donde las acciones da las no muestran mucha diferencia con los demas modelos

propuestos.
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En el siguiente cuadro mostramos los p-valores para el caso k=3.

Test | Metodos p=> | p=10| p=15 | p=20 | p=25| p=30
@ pp | Normal-DA | 0.02127 | 0.05987 | 0.33001 | 0.02580 | 0.00943 | 0.02053
Qpp | Estable-DA | 0.02127 | 0.05987 | 0.33001 | 0.02580 | 0.00943 | 0.02053
Qrp | Normal-DA | 0.02028 | 0.05505 | 0.30936 | 0.01999 | 0.00632 | 0.01333
Qs | Estable-DA | 0.02028 | 0.05505 | 0.30936 | 0.01999 | 0.00632 | 0.01333

D | Normal-DA | 0.16977 | 0.18989 | 0.26078 | 0.18238 | 0.10384 | 0.07416

D | Estable-DA | 0.16977 | 0.18989 | 0.26078 | 0.18238 | 0.10384 | 0.07416

CUADRO 10. P-valores con k=3 usando los Test de Box-Pierce, Ljung-Box y Pena-
Rodriguez en los Registros de las acciones de IBM y Standard and Poor’s 500 desde Enero
de 1926 hasta Diciembre de 1999

En el Cuadro 10, tomamos el modelo para k£ = 3 donde los p-valores indican que para el
Box-Pierce (@pp) en el caso no estable nos indican que se debe rechazar la hipotesis nula,
para el caso estable los retardos m = 5, 10, 20, 25, 30 nos dicen que rechasemos la hipotesis
nula pero el retardo para m = 15 nos indica una observacion atipica del modelo usando este
Test. Para el test de Ljung-Box (Q1p) sucede el mismo caso tanto para los estables como los
no estables. Para el Test de Pena-Rodriguez D sucede que se debe rechazar la hipotesis nula
tanto para el caso estable como no estable pero en el retardo m = 30 existe un dato atipico

que nos comprueba que la hipétesis alternativa debe ser aceptada.
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Estabilidad de IBM—SP500 con k=3
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FicuraA 4.7. Estabilidad de los Datos de IBM y SP500 con k=3

En la figura 4.7, representa como se distribuyen los datos de las acciones donde estan

representadas por los meses donde hubo mayor variacion para el modelo de k = 3.
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En la siguiente figura mostramos la esperanza y varianza de las acciones de IBM vy

Standard and Poor’s 500.
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FiGURA 4.8. Esperanza y Varianza de las Acciones de IBM y Standard and
Poor’s 500

La figura de la esperanza nos indica que existe homocedasticidad en los datos esto quiere
de decir que puede existe varianza infinita en las acciones. Ahora la figura de la varianza nos
muestra que es constante en todos los datos pero en ellos no existe homocedasticidad ya que
en cierto punto los datos pierden la constancia, lo que puede indicarnos que tiene varianza

finita.
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3. Standard and Poor’s 500

En este ejemplo se considera el indice de acciones de la Standard and Poor’s desde el 2 de
Enero de 1999 al 29 de Diciembre del 2006 que se obtuvo del Servicio de Wharton Research
Data. Esto resulta en una serie con una longitud de n = 2011 tomado de [13].

En el siguiente grafico se muestra como estan distribuidos los datos de las acciones de

Standard and Poor s 500.

Standard and Poor’s 500
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FicurA 4.9. Acciones de la Standard and Poor’s 500
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Para hacer al analisis de este ejemplo tomaremos como hipdtesis nula
H, : los datos son independientes identicamente distribuidos con varianza finita
y como hipétesis alternativa a
H, : los datos no se distribuyen de forma independiente y no tienen varianza finita

donde usando el siguiente cuadro mostramos los p-valores de los datos lo cual compara-

remos a ver si se rechazan o no lo las hipotesis.

Test | Metodos |p=5|p=10 p=15 p =20 p =25 p =30
@pp | Normal-DA | NA NA ]0.0000116 | 0.0000399 | 0.00000817 | 0.00000204
@pp | Estable-DA | 0.820 | 0.797 0.670 0.843 0.866 0.962
Qrp | Normal-DA | NA NA ]0.0000109 | 0.0000367 | 0.00000712 | 0.00000167
Q1 | Estable-DA | 0.820 | 0.795 0.666 0.839 0.861 0.960
D | Normal-DA | NA NA NA 0.0000177 | 0.0000115 | 0.00000619
D | Estable-DA | 0.667 | 0.717 0.680 0.728 0.785 0.845

CUADRO 11. Cuadro de P-valores usando los Test de Box-Pierce, Ljung-Box y Pena-
Rodriguez en los Registros de las acciones de Standard and Poor’s 500 desde el 2 de Enero

de 1999 al 29 de Diciembre del 2006

En el cuadro 11, utilizando el test de Box-Pierce (Qpp), los retardos 5 y 10 para el caso
normal no ofrecen informacion para asi comparar, para los retardos restantes aceptamos la
hipotesis nula ya que es la mas acertada. Para el caso estable aceptamos la hipdtesis nula en

todos los retardos estudiados.

Para el test de Ljung-Box ()5 y el test de Pena-Rodriguez D sucede igual que en el test

anterior La hipétesis nula debe ser aceptada en los mismos retardos antes senalados.
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En el siguiente grafico mostramos como se distribuyen los datos luego de aplicarle la
distribucion estable.

Standard and Poor’s 500 (Estable)
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Ficura 4.10. Estabilidad de las Acciones de la Standard and Poor’s 500

En la figura 4.10, nos muestra que los datos al aplicarle la distribucién estable donde la
gran mayoria de los datos se situan en una franja central mostrando que algunos datos son

atipicos ya que se salen del rango de estudio donde la distribucién no los toma en cuenta.
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FiGUurA 4.11. Esperanza y Varianza de las Acciones de la Standard and
Poor’s 500

En la figura 4.11, nos muestra que tanto para la esperanza y la varianza cuando las
acciones llegan a las 500 muestras han tenido un ascenso marcado, ya al pasar de 500 a las
1000 muestras las acciones tienen un fuerte descenso ya en los datos faltantes las acciones se
estabilizan hasta que en cierta muestra las acciones comienzan a aumentar, lo que nos indica

que hay ciertos datos que aceptan hipétesis de varianza finita.



Capitulo 5

Analisis ilustrativo del test de Portmanteau

En este capitulo presentaremos la parte préactica de todo lo expuesto en los capitulos
anteriores, donde haremos uso del test de Portmanteau con varianza infinita.
Consideraremos las declaraciones mensuales simples del CRSP desde Enero de 1926 hasta

Diciembre de 1997 donde usamos una serie de N = 864 tomados de [13] y [17].

CRSP (Center for Research in Security Prices)

0.4

0.1 0.2 0.3

CRSP

0.0
|

0 200 400 600 800

Indices

F1GURA 5.1. Gréfica de las Declaraciones Mensuales del indice de CRSP
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5. ANALISIS ILUSTRATIVO DEL TEST DE PORTMANTEAU

Donde para el analisis de ejemplo tomaremos como hipétesis nula a

H, : los datos son independientes identicamente distribuidos con varianza infinita

y como la hipdtesis alternativa a

H, : los datos no se distribuyen de forma independiente y no tienen varianza infinita

Test | Metodos p =10 p =20 p =30
®pp | Normal-DA | 0.049796306 | 0.002509011 | 0.003073340
®pp | Estable-DA | 0.2163080 0.5202569 0.5875264
Qrp | Normal-DA | 0.047376040 | 0.002032229 | 0.002286158
Q1 | Estable-DA | 0.2091730 0.5030665 0.5587248
D | Normal-DA | 0.16859404 | 0.05003861 | 0.01030248
D | Estable-DA | 0.4188991 0.4873653 0.4929209

CUADRO 1. P-valores obtenidos usando los Test de Box-Pierce, Ljung-Box y Peifia-

Rodriguez en las Declaraciones mensuales del indice de CRSP desde Enero de 1926 hasta

Diciembre de 1997

En el Cuadro 1 realizamos un andlisis usando un autorregresivo de orden 5 (AR5) donde
comparamos los p-valores que hemos obtenido para los test D, Qpp y Qrp tanto para los

casos estables, como para los casos normales tomando como retardos m = 10, 20, 30.

Como era de esperar el test de (Qpp casi concuerda con el test de (5. Es interesante que
cuando m = 10 todas las pruebas tienen similares p-valores, pero cuando m = 20 6 m = 30
los p-valores de los test basados en la distribucion normal son mucho mas pequenos, por un

factor alrededor de 10, que es la prueba mas correcta basada en la distribucién estable.
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En general parece que el uso de los Test usando la distribucién normal nos indica que
las innovaciones producen p-valores que son demasiado pequenios en comparacién con los

generados por una distribucion estable.

En el siguiente figura mostramos como estan distribuidos los datos al aplicarle la Distri-

bucién Estable.

CRSP Estable

10 15

CRSPes

Indices de Evaluacion

FicurA 5.2. Estabilidad de los Datos de CRSP

En la Figura 5.2, sele aplicé la distribucién estable donde tomamos como constantes
a, = 1,9 y b, = 0 lo cual nos indica que los datos sufren una leve variacién en los primeros
datos de la serie que logran estabilizarse en su recorrido ya al final de los datos se consigue

un dato atipico fuera del rango de estudio.
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Ficgura 5.3. Esperanza y Varianza de los Datos de CRSP

La Figura 5.3 se muestran la esparanza y la varianza donde nos indican que existe un
modelo de Homocedasticidad ya que en ellas se mantienen a lo largo de las observaciones lo
cual nos indica que la esperanza y la varianza son constantes, lo cual nos ayuda a concluir

que los datos poseen varianza infinita.



Conclusion

En primer lugar el estudio del test de Portmanteau resultd, ser una herramienta muy til

en el estudio de los modelos ARMA(p,q) con varianza infinita.

En este trabajo especial de grado podemos observar, como se comportan los modelos con
varianza finita y con varianza infinita. Por cuanto los ejemplos antes mencionados nos lleva

a pensar que el uso de este test es muy acertado para estos modelos estadisticos.

Ademas hemos concluido que los resultados obtenidos a través de los modelos aplicados
no dejan de ser de gran utilidad para observar el comportamiento de los rendimientos o
acciones de una empresa, que se ajustan a los modelos estudiados a lo largo de este trabajo

especial de grado.
Por lo tanto, es de vital importancia que los proximos en estudiar el test de Portmanteau

profundicen la investigacion, ya que este tema es de gran importancia para ser establecido

dentro del sistema de una organizacién empresarial.
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Apéndice
Funcién Caracteristica

Si X es una variable aleatoria se define su funcién caracteristica por

o(t) = E(exp™) = E(cos(tX)) + iE(sin(t X))

La tultima féormula requiere tomar el valor esperado de una variable aleatoria compleja.
Si Z es un valor complejo se define EZ = E(ReZ) + iE(ImZ) donde Re(a + ib) = a es la

parte real y I'm(a + ib) = b es la parte imaginaria. Algunas propiedades son inmediatas:

(1) ¢(0) =1

(2) p(—t) = E(cos(—tX) + isin(—tX)) = ¢(t), donde Z denota el conjugado complejo
de z, a +1ib=a —1ib

(3) lo(t)] = [Eexp™ | < E[exp™ | =1
Por aqui |z| denota el médulo de un nimero complejo z, |a + ib| = (a® + b?)2.
(4) lo(t+h)+ot)] = [E(exp X —exp)| < Efexp/ MY —expX | = Ef exp™* —1|
ya que |zw| = |z| - Jw|. La ultima esperanza tiende a 0 como h — 0 por el teorema

de convergencia acotada, por lo que ¢(t) es uniformemente continua en (—o0, ).

(5) E(expz't(aX+b)) — eXpitb E(expi(ta)X) — eXpitb gp(at)
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(6) Si X; y X5 son independientes y tienen funciones caracteristicas 1 y ¢y entonces

X +Y tienen funcién caracteristica ¢;(t)ps(t).

Demostracién: E(exp¥1+X2)) = E(exp™*t exp™¥2) = E(exp™)E(exp™*?).

. 20.2
TEOREMA 5.1. EX =y y E|X|* = 0% < 00 entonces ¢(t) = 1+ itp — 5= + o(t?).

TEOREMA 5.2. Sia; — oo y ajc; — X entonces (1 + ¢;)% — exp™.

Teorema Central del Limite
TEOREMA 5.3. Sea X1, Xo, ..., son i.i.d, con E(X;) = u, var(X;) = 0% € (0,00). Si
Sp, = X1+ ... + X, entonces
(S, —np)/on'/? = x

donde x tiene distribucion normal estandar.

Demostracién: Considerando X! = X; — pu, basta para demostrar el resultado cuando
w=0.Por (1.1) p(t) = E(exp(itX;)) = 1— %—i—o(ﬁ) por consiguiente E(exp(itS, /on?)) =
(1-— % + o(n~1))". Por (1.2) debe quedar claro que la ultima expresién — exp(—t?/2) es
n — oo, por el teorema de la continuidad se completa la demostracion.

Sin embargo, la demostracion es necesaria extenderla al caso complejo para asi completar

la demostracion.

TEOREMA 5.4. Si ¢, — ¢ € C entonces (1 + ¢,/n)" — exp®.

Para probar el teorema primero probaremos dos lemas.

LEMA 5.5. Sean zy, ..., 2, Yy Wy, ..., w, son modulos de niumeros complejos < 0. Entonces

n
] H 2 — Wy | < 0"*12:;:1 | 2 — Wi, |
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Demostracion: Usando induccion. El resultado es verdad para n = 1. Ahora para n > 1

observe que

‘ Hnmzl Fm H:anl W, |<| 21 HZ=2 Zm T 1 Hnmzz Wy, | + | 21 H;:Z Am — W1 Hnmzz Wy, | <

Hzlzz Fm H:Ln:2 Wy, | A | 21 — w1 |

LEMA 5.6. Si b es un nimero complejo con | b |< 1 entonces | exp® —(1+ b) |<| b |2.

Demostracién: exp® —(1 +b) = b%/2! + b%/3! + b*/4! + ... por lo que si | b |< 1 entonces
lexpt —(1+0) |[< L1 +1/24+1/22+ ) =[ b |2

Demostracién del Teorema: Si z,, = (1 + ¢,/n), wy, = exp®/™ y v >| ¢ |. Para todo

n, | ¢ |[<vy|e/n|< 1, lo que se deduce de los lemas (1.5) y (1.6) que como n — oo

| (L4 )" —exp™ |[< (1+2)"In | 2 [°< exp? % — 0.

Teorema de Cramér-Wold

TEOREMA 5.7. Sean X, = (Xn1,..., Xox) ¥ X = (X1,..., X)) son vectores aleatorios

k-dimensionales. Entonces X,, en distribucion si y solo si

k k
> X D, S X
=1 =1

para cada (ty,...,t;) € R*. Es decir, si cada combinacién lineal fija las coordenadas de

X, converge en distribucion a la combinacion lineal correspondiente a las coordenadas de X .

0 — metodo

DEFINICION 5.8. Es un método para derivar una distribucién de probabilidad aproxi-
mada para una funcién de un estimador estadistico asintéticamente normal a partir de los

conocimientos de la varianza de ese estimador.
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Test de Portmanteau de Qg

Consideremos una serie de tiempo {w;} generada por un modelo autorregresivo estacio-

nario de medias moviles (ARMA(p,q)).

o(B)w, = 0(B)ay,

donde ¢(B) =1—¢ B —...— ¢,B?, 0(B) =1 —6,B — ... — 0,B9, B*w; = w;_y, y a; es
una sucesién i.i.d de variables aleatorias N(0,0?). Los w; en general, puede representar la

d-ésima diferencia o alguna otra transformacién adecuada de una serie no estacionaria {z;}.

Después de que un modelo de esta forma ha sido ajustado a una serie w, ..., w,; es
util para estudiar la adecuacién del ajuste mediante el examen del residual aq,...,a, y, en

particular, sus autocorrelaciones

Z Ay k/z 2,...).

t=k+1

Box and Pierce [1] observaron que cuando el modelo es apropiado y los pardmetros lo

son tambien, entonces su ecuacién

(5.1) Q(r) =n(n+2)) (n—

donde

Z QpQy— k/Z%m

t=k+1
para un n grande, se distribuye como x2, dado que la distribucién limite de r = (ry, ..., 7,)’
es normal multivariada con vector de media cero, var(ry) = (n—k)/{n(n+2)} y cov(rg,m) =

0 (k #1). Usando la aproximacién var(ry) = 1/n, [1] sugirieron que la distribucién de

(5.2) Q(r) = ani
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puede ser aproximado por una X%ﬁ,—p—q dando una prueba aproximada para la de bondad

de ajuste.

Sin embargo, la principal dificultad es causada por la aproximacién de (3.36) por (3.37).

Un ensayo modificado basado en el criterio

m

Qup(f) =n(n+2)> (n— k)"
k=1
donde la varianza de Qpp(7) es superior al de la distribucién x2,_, . [9] muestran sin

embargo que la prueba modificada proporciona una aproximacion sustancialmente mejorada

que debe ser adecuada para los propdsitos mas practicos.

Ejemplos practicos
Serie de Tiempo Intel Data Corporation
nslaves < —2
monthintel < —as.ts(monthintel)
Test box-Pierce Normal
TBP1 = BoxPierce(monthintel) BP
Test Ljung-Box Normal
TBP3 = LjungBox(monthintel) LB
Test Pena-Rodriguez Normal
T BP5 = guvtest(monthintel) PR
Gréfico de Intel Data Corporation
plot(monthintel, main = Intel Data
Corporation, xlab = Rendimientos, ylab = VariacionMensual, col = green)
par(mfrow = ¢(2,1))
acf(monthintel, main = AutoCorrelacionIntel, col = red, xlab = Retardos)

pacf(monthintel, main = AutoCorrelacionParcialIntel, col = yellow, xlab = Retardos)
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Esperanza y Varianza de Intel Data Corporation
Esperanza
y[370 : 372
y < —monthintel
n < —372
myve < —NULL
for(iin0 : n)
myve < —c(myve, mean(as.numeric(y[0 : i])))
plot(myve, main = Esperanza)
Varianza
Y2 < —y?
mvar < —NULL
for(iin0 : n)
muar < —c(muvar, mean(as.numeric(Y2[0 : i])) — mean(as.numeric(y[0 : i)))
par(mfrow = ¢(2,1))
plot(myve, main = Esperanza, zlab = Indice, col = blue)

plot(mvar, main = Varianza, xlab = Indice, col = red)

Serie de tiempo Intel Data Corporation Estable
alpha = 1,2
beta = 0
nslaves = 2
z = rstable(monthintel, alpha, beta)
Test de Box-Pierce Estable
TBP1 = BoxPierce(z)
Test de Ljung-Box Estable
TBP3 = LjungBozx(z)
Test de Pena-Rodriguez Estable
TBP5 = gutest(z)
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Serie de Tiempo IBM y Standard and Poor’s 500
Con k=1 autoregresivo de orden 1
IBMSP500 = monthibmspln
FitIBMSP5001 = ar.ols(IBMSP500,aic = TRUE, intercept = F, order.max = 1)
Test de Box-Pierce Normal
BP1 = BoxPierce(FitI BMSP5001)
Test de Ljung-Box Normal
LJ1 = LjungBox(FitI BMSP5001)
Test de Pena-Rodriguez Normal
PR1 = gutest(Fit] BMSP5001)

Grafico de IBM y Standard and Poor“s 500 Normal
FitI1BMSP5001
windows()

plot(I BM S P500, main = I BMyStandardandPoors500, col = purple)

Con k=2 autoregresivo de orden 2
FitIBMSP5002 = ar.ols(IBMSP500,aic = TRUE, intercept = F, order.mazx = 2)

Test de Box-Pierce Normal

BP1 = BozPierce(Fit] BM SP5002)
Test de Ljung-Box Normal

LJ1 = LjungBox(Fit]l BMSP5002)

Test de Pena-Rodriguez
PR1 = gutest(Fit] BMSP5002)
FitI BM SP5002

Con k=3 autoregresivo de orden 3
FitIBM SP5003 = ar.ols(IBMSP500,aic = TRUE, intercept = F, order.max = 3)
Test de Box-Pierce Normal
BP1 = BozPierce(Fit] BMSP5003)
Test de Ljung-Box Normal
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LJ1 = LjungBox(Fitl BMSP5003)
Test de Pena-Rodriguez Normal
PR1 = gutest(FitlI BMSP5003)

FitIBMSP5003

Serie de Tiempo IBM y Standard and Poor’s 500 Estable
alpha = 1,9
beta = 0
nslaves = 2
conk = lautoregresivodeordenl
t1 = rstable( F'it] BM S P5001, alpha, beta)
Test de Box-Pierce Estable
BP1 = BoxPierce(tl)
Test de Ljung-Box Estable
LjungBoxLJ1 = LjungBox(t1)
Test de Pena-Rodriguez Estable
PR1 = gutest(t1)
Grafico de IBM y Standard and Poor’s 500 Estable
windows()

plot(tl, main = Estabilidadde] BM — SP500conk = 1, zlab = Acciones, col = blue)

conk = 2autoregresivodeorden?2
t2 = rstable( F'it] BM S P5002, alpha, beta)
Test de Box-Pierce Estable
BP1 = BozxPierce(t2)
Test de Ljung-Box Estable
LJ1 = LjungBox(t2)
Test de Pena-Rodriguez Estable
PR1 = gutest(t2)
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Grafico de IBM y Standard and Poor’s 500 Estable
windows()

plot(t2, main = Estabilidadde] BM — SP500conk = 2, zlab = Acciones, col = blue)

conk = 3autoregresivodeordend
t3 = rstable( F'it]I BM S P5003, alpha, beta)
Test de Box-Pierce Estable
BP1 = BoxPierce(t3)
Test de Ljung-Box Estable
LJ1 = LjungBox(t3)
Test de Pena-Rodriguez Estable
PR1 = gutest(t3)
windows()
Grafico de IBM y Standard and Poor’s 500
plot(t3, main = Estabilidadde] BM — SP500conk = 3, zlab = Acciones, col = blue)

Esperanza y Varianza de IBM y Standard and Poor’s 500
Esperanza
o[2777 : 2780]
o = SP500
n = 2780
myve < —NULL
for(iin0 : n)
myve < —c(myve, mean(as.numeric(o[0 : i])))
Varianza
02 < —0?
mvar < —NULL
for(iin0 : n)
movar < —c(mvar, mean(as.numeric(02[0 : i])) — mean(as.numeric(ol0 : i])))
par(mfrow = ¢(2,1))

plot(myve, main = Esperanza, xlab = Indice, col = blue)
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plot(mvar, main = Varianza, xlab = Indice, col = red)

Serie de Tiempo Standard and Poor’s 500
sap = DATOS], 2]
nslaves < —2
p < —SelectModel(sap, ARModel = AR, Criterion = BIC, Best = 1)
FitSap < —FitAR(sap,p, ARModel = AR)
plot(FitSap)
Test de Box-Pierce Normal
TBP1 = BoxPierce(FitSap)
Test de Ljung-Box Normal
TBP3 = LjungBox(FitSap)
Test de Pena-Rodriguez Normal
TBP5 = gutest(FitSap)
Grafico Standard and Poor’s 500

plot(sap, main = StandardandPoors500, col = red, xlab = Observaciones)

Serie de Tiempo Standard and Poor’s 500 Estable
sap = DATOS], 2]
nslaves < —2
alpha = 1,9
beta = 0
sapl = rstable(sap, alpha, beta)
Test de Box-Pierce Estable
TBP1 = BoxPierce(u)
Test de Ljung-Box Estable
TBP3 = LjungBox(u)
Test de Pena-Rodriguez Estable
TBP5 = gutest(u)
Grafico de Standard and Poor’s 500 Estable
plot(sapl, main = StandardandPoors500( Estable), col = blue, xlab = Observaciones)
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Esperanza y Varianza de la Standard and Poor’s 500

Esperanza
y < —sap
n < —2011

myve < —NULL
for(iin0 : n)
myve < —c(myve, mean(as.numeric(y[0 : i])))
Varianza
Y2 < —y?
mvar < —NULL
for(iin0 : n)
muar < —c(mwvar, mean(as.numeric(Y2[0 : i])) — mean(as.numeric(y[0 : i])))
par(mfrow = ¢(2,1))
plot(myve, main = EsperanzaSP500, col = blue)

plot(mvar, main = VarianzaSP500, col = yellow)

Serie de Tiempo de la Simulacion Final Normal
data(CRSP)
CRSP.AR5 < —arima(CRSP, c(5,0,0))
NREP < —1000
lags = ¢(10, 20, 30)
Test Box-Pierce Normal
portest(CRSP.ARb, lags = lags, test = Box Pierce, nslaves = 8, MonteCarlo =
FALSE,NREP = NREP, InfiniteVarianceQ) = TRUFE)
Test Ljung-Box Normal
portest(CRSP.ARb, lags = lags, test = LjungBox,nslaves = 8, MonteCarlo =
FALSE,NREP = NREP, InfiniteVarianceQ) = TRUFE)
Test Pena-Rodriguez Normal
portest(CRSP.ARb, lags = lags, test = gutest, nslaves = 8, MonteCarlo =
FALSE,NREP = NREP, InfiniteVarianceQ) = TRUFE)
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Grafico de la Simulaciéon Final Normal
plot(C RSP, main = C RSP (Center for ResearchinSecurityPrices), col = orange, xlab =

Indices)

Serie de Tiempo de la Simulacién Final Estable

data(CRSP)
alpha = 1,9
beta = 0

CRSPes = rstable(C RSP, alpha, beta)
lags = ¢(10, 20, 30)

Test Box-Pierce Estable

BP1 = BozPierce(CRSPes,lags = lags)
Test Ljung-Box Estable

LJ1 = LjungBox(CRSPes,lags = lags)

Test Pena-Rodriguez Estable
PR1 = gutest(CRSPes,lags = lags)
Grafico Simulacion Final Estable

plot(C RS Pes, main = C' RSP Estable, col = purple, xlab = Indicesde Evaluacion)

Esperanza y Varianza Simulacién Final
Esperanza
y[859 : 864]
y < —CRSP
n < —864
myve < —NULL
for(iin0 : n)
myve < —c(myve, mean(as.numeric(y[0 : i])))
Varianza
Y2 < —y?
mvar < —NULL
for(iin0 : n)
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muar < —c(mvar, mean(as.numeric(Y2[0 : i])) — mean(as.numeric(y[0 : i])))
par(mfrow = ¢(2,1))
plot(myve, main = Esperanza(CRSP), xlab = Indice, col = blue)

plot(mvar, main = Varianza(CRSP), xlab = Indice, col = red)
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