Implementación de un dispositivo UPFC
(Unified Power Flow Controller: Controlador Unificado de Flujo de Potencia) en un Sistema de Potencia de 14 Barras.

Elaborado por: Julian M. Pérez Monteverde.

Caracas, julio de 2010
Resumen: En este trabajo se analiza e implementa en un sistema de potencia de 14 barras, el artículo de los autores S. Kannan, Member, IEEE, Shesha Jayaram, and M. M. A. Salama, Fellow, IEEE: Real and Reactive Power Coordination for a Unified Power Flow Controller. (Coordinación de Potencia activa y reactiva para un Controlador Unificado de Flujo de Potencia UPFC). En dicho el artículo se propone un regulador de coordinación de potencia real y reactiva para un Controlador de Flujo de Potencia Unificada (UPFC). El UPFC posee un convertidor serie que controla el flujo de potencia real/reactiva en la línea de transmisión y un convertidor paralelo que controla la tensión de la barra/potencia reactiva y la tensión DC del condensador (o banco de condensadores) de acoplamiento. La demanda de potencia real del convertidor serie es suministrada por el convertidor paralelo del UPFC. Para evitar inestabilidad y la pérdida de la tensión DC del condensador (o banco de condensadores) de enlace durante condiciones de transitorios, se diseñó en este artículo, un controlador de coordinación de potencia real. La necesidad del control de coordinación de potencia reactiva para el UPFC surge del hecho de que se producen tensiones de barra excesivas (la barra a la que el convertidor está conectado en paralelo) durante las transferencias de potencia reactiva, por lo que el nuevo controlador de coordinación de la energía reactiva limitará el exceso de tensión en estos casos. El resultado de la implementación, a través de la modelación del UPFC y su posterior inclusión en un sistema de potencia de prueba, confirma el resultado descrito por los autores.

Palabras claves: Sistema de Transmisión AC Flexible (FACTS), Controlador Unificado de Flujo de Potencia (UPFC), Controlador de Coordinación.

INTRODUCCION
Para alcanzar la confiabilidad operativa y técnica en un Sistema Eléctrico de Potencia (SEP) moderno y ante las necesidades en términos de capacidad, confiabilidad, calidad y seguridad, se requiere un amplio control y una utilización más eficiente de la infraestructura del sistema existente y esto se hace posible con la inclusión de controladores basados en electrónica de potencia o Sistemas de Transmisión AC Flexibles (FACTS), gracias a sus óptimas características de capacidad, velocidad y controlabilidad. El UPFC es considerado el controlador más completo de los Sistemas de Transmisión AC Flexible (FACTS).
La idea operativa fundamental de un dispositivo FACTS es afectar alguno de los parámetros (tensiones de barra, ángulos de las tensiones o impedancias de una línea que une dos barras) de la ecuación de transferencia de potencia entre dos barras de un SEP. Los controladores FACTS de mayor aceptación y uso en diversos sistemas en el mundo son esencialmente el Compensador Estático de VAr (SVC); el Compensador Estático Sincrónico de VAr (STATCO); el Capacitor Serie Controlado por Tiristores (TCSC); el Compensador Estático Sincrónico Serie (SSSC); el Regulador de Ángulo de Fase Controlado por Tiristores (TCPAR), y el UPFC considerado el controlador más completo de los FACTS.
El UPFC (ver figura 1) consiste de un convertidor serie y otro paralelo conectados por un condensador de enlace común que puede, simultáneamente, desempeñar la función de control de flujo de potencia real/reactiva en la línea de transmisión, además de controlar la tensión de la barra y la potencia reactiva de derivación.

![Diagrama del UPFC](image)

Figura 1. Arreglo de convertidores que conforman un dispositivo UPFC.

El convertidor paralelo del UPFC controla la tensión de la barra y la potencia reactiva en derivación y la tensión DC del condensador de enlace. El convertidor serie del UPFC controla el flujo de potencia real y reactiva de la línea de transmisión mediante la inyección de una serie de voltajes de magnitud y ángulo de fase ajustables. La interacción entre las tensiones inyectadas y la corriente en la línea de transmisión hace que la potencia activa y reactiva cambie entre el convertidor serie y el sistema de potencia. La demanda de potencia real del convertidor serie es suministrada por el convertidor paralelo. Pero, durante condiciones transitorias, la demanda de potencia real del convertidor serie es suplida por el banco de condensadores.
II. IMPLEMENTACION DEL CONTROLADOR UPFC EN EL SISTEMA DE POTENCIA DE 14 BARRAS

El UPFC es una fuente de voltaje sincrónica (synchronous voltage source, SVS), representada a la frecuencia fundamental para un SEP por el fasor de voltaje V_B con magnitud controlable ($0 \leq V_B \leq V_{B_{\text{máx}}}$) y ángulo δ_B ($0 \leq \delta_B \leq 2\pi$), en serie con la línea de transmisión, como se muestra en la figura 2, donde se observa un sistema elemental de dos máquinas, con una línea de transmisión entre ellas.

![Diagrama de UPFC](image)

Figura 2. Fuente de voltaje sincrónica: Representación conceptual de un UPFC en un sistema de potencia de dos máquinas

La principal función del UPFC es realizada por el convertidor serie, que inyecta un voltaje de magnitud y ángulo controlables, a través del transformador de acoplamiento en serie con la línea de transmisión. La potencia activa P intercambiada con la línea es suministrada por el mismo sistema a través del convertidor paralelo y el enlace DC, por el cual la potencia activa puede fluir libremente en ambas direcciones entre los terminales AC de los dos convertidores. La potencia reactiva Q, intercambiada en el terminal AC del convertidor serie, es generada internamente por el convertidor y la potencia real intercambiada se convierte en potencia DC y aparece como potencia real negativa o positiva en el enlace DC. El lado AC del convertidor paralelo está conectado en paralelo con la línea de transmisión a través de un transformador e inyecta al sistema, o absorbe desde él, una corriente de magnitud y ángulo controlables. La función básica de este convertidor es suministrar o absorber la potencia activa demandada por el lado DC del convertidor serie. Sin embargo, puede también generar o absorber reactivos, proporcionando así compensación en paralelo independientemente del convertidor serie, permitiendo un control local de voltaje.
Existen diferentes modos de operación y control del UPFC, entre los que están el fijar valores de P y Q específicos en la línea en la que se inserta, además de controlar la tensión de la barra en la que se encuentra acoplado. Es éste, precisamente, el modo de operación que se utilizará en el desarrollo del proyecto.

Modelo del UPFC

El llamado modelo del UPFC con impedancias corresponde a la versión más completa de un modelo para UPFC. Considera ambos transformadores de acoplamiento como fuentes de tensión con sus respectivas impedancias en serie. Esta representación corresponde a la figura 3.

![Figura 3. Modelo UPFC con impedancias](image)

Figura 3. Modelo UPFC con impedancias

El modelo y la nomenclatura que define la ubicación de un UPFC en cualquier sistema, se ilustra en la figura 4.

![Figura 4. Inclusión de UPFC en línea de transmisión](image)

Figura 4. Inclusión de UPFC en línea de transmisión

- Barra de origen: es la barra en la que se conecta el dispositivo. Su fasor de voltaje será expresado como $\vec{V}_s = V_s \angle \delta_s$.

5
- Barra de destino: barra terminal de la línea en la que se incluye el dispositivo UPFC. Su fasor de voltaje será expresado como: \(\vec{V}_R = V_R \angle \delta_R \).

- Barra de acople: Barra que aparece en el sistema al interrumpir la línea en la que se incluye el dispositivo, necesaria para acoplar el UPFC a la barra de destino. Su fasor de voltaje será expresado como \(\vec{V}_n = V_n \angle \delta_n \).

El modelo final con impedancias a ser incluido en el SEP, se presenta en la figura 5.

Figura 5. Inclusión de un modelo UPFC con impedancias en un SEP

Modelación de las contingencias necesarias para requerir la inclusión de un controlador UPFC en el SEP de 14 barras:

a) Se ejecutó la contingencia que consiste en la pérdida del transformador que se encuentra entre las barras 5 y 6 del Sistema de transmisión de prueba de 14 barras del artículo "Test Systems for Harmonics Modeling and Simulation".

b) Se elaboró la nueva matriz de admitancia que será utilizada para correr los flujos de carga. La obtención de dicha matriz se encuentra en un documento en Maple que se anexa.

c) El resultado del perfil de tensiones, luego de la contingencia es comparado con las tensiones del caso base, tal como se muestra en la figura 6:
Figura 6. Perfil de Tensiones después de la contingencia.

d) Se puede apreciar (Figura 6 y Tabla 1) que los niveles de tensión, si bien disminuyen luego de la contingencia debido a la “radialización” del circuito, se mantienen por encima de 1,01 en p.u.

<table>
<thead>
<tr>
<th>Barra</th>
<th>Vbases</th>
<th>Contingencia</th>
<th>Índices</th>
<th>Índice Promedio: 0,00008567</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,0600</td>
<td>1,0600</td>
<td>0,00000000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,0450</td>
<td>1,0376</td>
<td>0,00005530</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,0427</td>
<td>1,0292</td>
<td>0,00018492</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1,0282</td>
<td>1,0117</td>
<td>0,00027157</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1,0337</td>
<td>1,0213</td>
<td>0,00015407</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1,0700</td>
<td>1,0700</td>
<td>0,00000000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1,0183</td>
<td>1,0105</td>
<td>0,00007729</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1,0209</td>
<td>1,0117</td>
<td>0,00008481</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1,0147</td>
<td>1,0147</td>
<td>0,00000000</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1,0168</td>
<td>1,0168</td>
<td>0,00000000</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1,0394</td>
<td>1,0393</td>
<td>0,00000001</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1,0528</td>
<td>1,0528</td>
<td>0,00000000</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1,0458</td>
<td>1,0496</td>
<td>0,00001496</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1,0154</td>
<td>1,0279</td>
<td>0,00015709</td>
<td></td>
</tr>
<tr>
<td>301</td>
<td>1,0417</td>
<td>1,0281</td>
<td>0,00018538</td>
<td></td>
</tr>
<tr>
<td>302</td>
<td>1,0417</td>
<td>1,0281</td>
<td>0,00018538</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 1. Comparación de tensiones del caso base, con las obtenidas luego de la contingencia.

e) Para requerir la inclusión del controlador UPFC en el SEP, se procedió a convertir la barra 6 (PV) en barra PQ con la intención de dejar de controlar o fijar...
su tensión, con lo que una nueva corrida del flujo de carga bajo estas últimas condiciones, da como resultado que se depriman las tensiones de las barras cercanas (barras 6, 7, 8, 9, 10, 11, 12, 13 y 14), como puede apreciarse en el perfil de tensiones representado en la figura 7.

![Figura 7. Perfil de Tensiones después de la contingencia.](image)

f) El valor de las tensiones se indica en la tabla 2.

<table>
<thead>
<tr>
<th>Barra</th>
<th>Vbases</th>
<th>Contingencia</th>
<th>Índices</th>
<th>Índice Promedio: 0.02036377</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0600</td>
<td>1.0600</td>
<td>0.000000000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.0450</td>
<td>1.0450</td>
<td>0.000000000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.0427</td>
<td>1.0182</td>
<td>0.00060189</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.0282</td>
<td>0.9669</td>
<td>0.00171139</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.0337</td>
<td>1.0056</td>
<td>0.00078956</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.0700</td>
<td>0.8139</td>
<td>0.06859056</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.0193</td>
<td>0.8140</td>
<td>0.01108880</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.0209</td>
<td>0.8103</td>
<td>0.01223104</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.0147</td>
<td>0.8834</td>
<td>0.01726231</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.0168</td>
<td>0.8626</td>
<td>0.02379542</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.0394</td>
<td>0.8350</td>
<td>0.04177602</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.0528</td>
<td>0.8020</td>
<td>0.06287036</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.0458</td>
<td>0.8061</td>
<td>0.05743103</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.0154</td>
<td>0.8437</td>
<td>0.02946515</td>
<td></td>
</tr>
<tr>
<td>301</td>
<td>1.0417</td>
<td>1.0172</td>
<td>0.00060341</td>
<td></td>
</tr>
<tr>
<td>302</td>
<td>1.0417</td>
<td>1.0172</td>
<td>0.00060341</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>1.0000</td>
<td>1.0600</td>
<td>0.000000000</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2. Comparación de tensiones del caso base, con las obtenidas luego de la contingencia mas barra 6 como PQ
Metodología para la inclusión del modelo del UPFC en el SEP:

1. Para efectos de simulación, surge una nueva barra en el sistema, la barra n. Esta barra de acople será considerada en el flujo como barra PQ, ya que en ella se desconocen los valores de magnitud y ángulo de la tensión y se conoce el flujo neto de potencia activa y reactiva.

2. El dispositivo UPFC se colocará entre las barras 6 y 11, como una forma de compensar la pérdida del control de la tensión en la barra 6 que se implementó en la contingencia que deprimió el perfil de tensiones del Sistema de Prueba.

3. La unión entre las barras 6 y 11 desaparece, y aparece la unión entre la barra de acople y la de destino. La barra 6 pasa a denominarse “barra de origen”; la barra nueva o de “acople” es la barra “n” y la “barra de destino” es la barra 11.

4. La barra de origen (barra 6) se considera como una barra PV. Su inyección de potencia activa está definida por la potencia que se quiere fijar al incluir el UPFC. La tensión de esta barra la define el valor de la tensión que se quiere fijar por el efecto de la inclusión del UPFC (para este caso se fijará la tensión que se tenía para el caso base: 1,07p.u.). La barra de acople (n) se define como una barra PQ.

5. Para simplificar el modelo, se asume que las impedancias de los transformadores no tienen parte real, y solo se representan por su componente reactiva. Se tomó como para la admittance de excitación Ye=j10 y para la de acoplamiento Yb=j10. Estos parámetros son los utilizados en el artículo de la referencia [1].

6. Se define una nueva matriz de admittance para el SEP al considerar el UPFC. Dicha matriz se encuentra en el documento en Maple que se anexa.

7. Una vez definida la nueva arquitectura del SEP para efectos de simulación, se ejecuta un nuevo flujo de carga en la que se incluye el impacto del UPFC.

8. Como paso previo, y para tener una idea del valor de la potencia activa y reactiva que se desea inyectar en la barra de acople, se corrió un flujo de carga donde no se fijaron dichos valores, estableciendo como celda objetivo, la diferencia entre la potencia calculada en dicho punto y la especificada por el sistema de potencia.
9. Se fijan los valores de potencia activa y reactiva que se quieren inyectar en la barra de acople, de acuerdo a punto anterior y la tensión que se quiere imponer en la barra de origen. En la barra de origen se simula el efecto del UPFC como un generador cuya potencia activa es el valor que se quiere absorber (lo que da el signo a la potencia), desde la red hacia el UPFC, y cuya tensión es el valor que se quiere fijar en la barra (1,07p.u.). En la barra de acople se fijan como carga los valores de potencia que se quieren imponer (lo que da el signo a las potencias), en la línea entre las barras de acople y destino. Una vez realizado el flujo de carga normal a esta arquitectura especial de red, se obtienen valores para las tensiones y sus respectivos ángulos y los flujos de potencia activa y reactiva en todas las barras del sistema, incluídas las de origen y de acople.

10. El perfil de tensiones obtenido se muestra en la figura 8

![Perfil de tensiones](image)

Figura 8. Perfil de Tensiones después de incluir el controlador UPFC

11. El valor de las tensiones, respecto al caso base se indica en la tabla 3.
<table>
<thead>
<tr>
<th>Barra</th>
<th>Vbases</th>
<th>c/UPFC</th>
<th>Índices</th>
<th>Índice Promedio: 0,000478</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,0600</td>
<td>1,060000000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,0450</td>
<td>1,045000000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,0427</td>
<td>1,02489159</td>
<td>0,0003189</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1,0282</td>
<td>0,99762616</td>
<td>0,00093655</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1,0337</td>
<td>1,01111460</td>
<td>0,00051138</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1,0700</td>
<td>1,07000000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1,0193</td>
<td>1,00619570</td>
<td>0,00017143</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1,0209</td>
<td>1,00719071</td>
<td>0,00018816</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1,0147</td>
<td>1,02616980</td>
<td>0,00013045</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1,0168</td>
<td>1,03976028</td>
<td>0,00052612</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1,0394</td>
<td>1,10000000</td>
<td>0,00367014</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1,0528</td>
<td>1,05155941</td>
<td>1,5091E-06</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1,0458</td>
<td>1,05145369</td>
<td>3,2363E-05</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1,0154</td>
<td>1,04122224</td>
<td>0,00066696</td>
<td></td>
</tr>
<tr>
<td>301</td>
<td>1,0417</td>
<td>1,02384267</td>
<td>0,0003197</td>
<td></td>
</tr>
<tr>
<td>302</td>
<td>1,0417</td>
<td>1,02384267</td>
<td>0,0003197</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>1,0000</td>
<td>0,98175962</td>
<td>0,00033271</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3. Comparación de tensiones del caso base, con las obtenidas luego de incluir el controlador UPFC en el SEP de 14 barras.

El índice se determinó como:

$$i = \frac{1}{17} \sum_{i} (V_{ibase} - V_{i})^2$$

Conclusiones:

- Se logra implementar la aplicación de un Controlador de Flujo de Potencia Unificada (UPFC) para recrear parte del estudio realizado en el artículo: *(Real and Reactive Power Coordination for a Unified Power Flow Controller. (Coordinación de Potencia activa y reactiva para un Controlador Unificado de Flujo de Potencia UPFC)), sobre el Sistema de transmisión de prueba de 14 barras* del artículo “Test Systems for Harmonics Modeling and Simulation”.

- Se comprueba la efectividad del controlador UPFC en el SEP, al verificar la recuperación de las tensiones de las barras 6, 7, 8, 9, 10, 11, 12, 13 y 14, que habían sido afectadas durante la implementación de las contingencias.

- El UPFC incorporado al sistema de 14 barras, suple la inyección de potencia activa de la barra 6 y controla además su tensión