Diacylglycerol regulates the plasma membrane calcium pump from human erythrocytes by direct interaction

Maria C. Pérez-Gordones a, Miguel R. Lugo a, Moraima Winkler a, Vincenza Cervino a, Gustavo Benaim a,b,*

a Instituto de Biología Experimental (IBE), Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
b Centro de Biociencias y Medicina Molecular, Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela

ARTICLE INFO

Article history:
Received 29 May 2009
and in revised form 14 July 2009
Available online 23 July 2009

Keywords:
Ca2+
PMCA
Diacylglycerol
Calmodulin
Protein-kinase C

Abstract

The plasma membrane Ca2+-ATPase (PMCA) plays a key role in the regulation of the intracellular Ca2+
concentration. Ethanol stimulates this Ca2+ pump in an isoform-specific manner. On search for a physi-
ological molecule that could mimic the effect of ethanol, we have previously demonstrated that some
sphingolipids containing free “hydroxyl” groups, like ceramide, are able to stimulate the PMCA. Since
diacylglycerol (DAG) structurally shares some characteristics with ceramide, we evaluate its effect on
the PMCA. We demonstrated that DAG is a potent stimulator of this enzyme. The activation induced is
additive to that produced by calmodulin, protein-kinase C and ethanol, which implies that DAG interacts
with the PMCA through a different mechanism. Additionally, by different fluorescent approaches, we
demonstrated a direct binding between PMCA and DAG. The results obtained in this work strongly sug-
gest that DAG is a novel effector of the PMCA, acting by a direct interaction.

© 2009 Published by Elsevier Inc.

Ca2+ has been widely recognized as an intracellular signal, responsible for the control of a large number of cellular functions. The intracellular Ca2+ concentration ([Ca2+]i) in resting cells is around 100 nM, a concentration far below equilibrium with that of the extracellular Ca2+ [1]. The plasma membrane calcium pump (PMCA)1 [2], a member of the P-type ion-motive ATPase family [3] is one of the most important mechanisms for Ca2+ export present in all eukaryotic cells so far studied. This enzyme is responsible for regulat-
ing the resting levels of [Ca2+]i and thus for ultimately controlling the activity of the numerous Ca2+-sensitive enzymes [4]. The activity of this enzyme is highly regulated, being stimulated by calmodulin (CaM), acidic phospholipids and polyunsaturated fatty acids [7], phosphorylation by cAMP-dependent protein-kinase [8] and by protein-kinase C (PKC) [9]. Beside, the PMCA can also be stimulated by controlled proteolysis, organic solvents and auto-aggregation of the enzyme [10–12]. We have shown that ethanol is able to stimulate this pump to a higher level than all the effectors previously mentioned [13,14]. Ethanol effect on the PMCA, besides being iso-
form-specific [14] is additive to that of CaM, which indicates that these two effectors stimulate the enzyme by different mechanisms. Because ethanol is not a physiological effector, we sought for an endogenous compound capable to induce similar effects on the calcium pump. In the search of such compounds we have studied the effect of amphiphilic lipids that, similar to ethanol, possesses free “hydroxyl” groups that evokes ethanol structure. This is the case of the some sphingolipids (ceramide and sphingosine), which act in many systems in combination with Ca2+ and even regulating the [Ca2+]i [15,16]. Ceramide, which is a signal sphingolipid that induces apoptosis in many cancer cell lines [17] and regulates other enzyme processes [18], stimulates the PMCA from human erythrocytes [19] and from renal cells [20]. Ceramide affects positively both the affinity for Ca2+ and the Vmax of the ATPase activity of PMCA. On the other hand, sphingosine, which has been reported to act in many systems antagonistically with ceramide, showed an inhibitory effect on Ca2+-ATPase activity [19].

It is well known that the second messenger diacylglycerol (DAG), regulates PMCA by an indirect way. DAG is produced from phosphatidyl inositol 4,5 bis-phosphate hydrolysis by phospholi-
pase C (PLC). One product, inositol trisphosphate (InsP3), diffuses into the cytosol and stimulates the release of Ca2+ from the endo-
plasmic reticulum, associated with the plasma membrane and activ-
ates PKC [21], which in turn phosphorylates the PMCA [9]. It is well known that the action of this kinase and CaM on the PMCA are not additive but instead mutually exclusive [22,23]. In this work we studied the effect of DAG on the PMCA regulation, taking in consideration that this messenger lipid also possesses a free “hy-
Purification of the erythrocytes Ca²⁺-ATPase et al. [24] with the modifications introduced in [25]. was purified from bovine brain according to the method of Guerini of DMSO in the reaction mixture was always below 1%. Calmodulin dissolved in dimethylsulfoxide (DMSO). The final concentration chased from CALBIOCHEM. Stocks of concentrated lipids were dissolved in dimethylsulfoxide (DMSO). The final concentration chases from CALBIOCHEM. Stocks of concentrated lipids were dissolved in dimethylsulfoxide (DMSO). The final concentration chases from CALBIOCHEM. Stocks of concentrated lipids were dissolved in dimethylsulfoxide (DMSO). The final concentration was determined by the Biuret assay [32] in the presence of deoxycholate, using bovine serum albumin as standard. The method of Lowry et al. [33] was used for the purified protein. To avoid interference from detergents and phospholipids, the protein was precipitated with trichloroacetic acid in the presence of deoxycholate [34].

Fluorescence methods

Steady-state fluorescence spectra were recorded on a HITACHI F-2000 spectrofluorimeter in a 0.5 cm path length cuvette, with a 10 nm excitation and emission band-pass, in a stirred cell holder thermostatted at 22 °C. Titration experiments were performed by adding 5 μL aliquots of a working solution to 500 μL of the protein solution. Excitation and emission wavelengths are indicated for each experiment. The measured fluorescence intensity was corrected for light scattering by background subtraction. The inner filter was corrected at both, excitation and emission wavelengths, as described elsewhere [35]. In the case of the quenching of intrinsic fluorescence, the effect of the dilution of the protein on the fluorescence was considered.

Data analysis

All calculation, manipulation and correction of experimental data were performed in Windows Excel 2000 (Microsoft Corp.). The values of Kₐ and Vₘₐₓ were determined using Eadie–Hofstee plots and the computer program Enzfitter 1.03 (Elsevier Biosoft). The symbols in the plots represent the average from n (indicated in the figure) independent determination ± SD. Statistical significance was determined by Student’s t test. Significance was considered for P<0.05. Plotting were performed using Origin 6.0 (Microcal Software Inc.).

Results

To investigate the effect of diacylglycerol on the Ca²⁺-ATPase activity, aliquots of the purified enzyme from human erythrocytes were incubated with different concentrations of DAG. As shown in Fig. 1, DAG stimulates Ca²⁺-ATPase activity in a dose-dependent manner. The maximal stimulation was observed at a concentration of 30 μM, in the same range as reported for the stimulation of the PKC [23] (Fig. 1). We also studied the effect of DAG in the presence of an optimal concentration of CaM and of ethanol, taking into consideration that this alcohol produces a marked increase on the PMCA activity [13,36]. The results showed an additive effect of

<table>
<thead>
<tr>
<th>Condition</th>
<th>V_max (μmol Pi mg⁻¹ min⁻¹)</th>
<th>K_act (Ca²⁺) (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.00 ± 0.05</td>
<td>1.05 ± 0.08</td>
</tr>
<tr>
<td>DAG</td>
<td>2.42 ± 0.18</td>
<td>0.25 ± 0.08</td>
</tr>
<tr>
<td>CaM</td>
<td>2.36 ± 0.20</td>
<td>0.56 ± 0.06</td>
</tr>
<tr>
<td>EOH</td>
<td>2.01 ± 0.09</td>
<td>0.43 ± 0.07</td>
</tr>
<tr>
<td>CaM + DAG</td>
<td>3.60 ± 0.31</td>
<td>0.13 ± 0.07</td>
</tr>
<tr>
<td>EOH + DAG</td>
<td>4.05 ± 0.38</td>
<td>0.15 ± 0.03</td>
</tr>
</tbody>
</table>

Values of the parameters V_max and K_act for the ATPase activity of PMCA. Experimental conditions presented in Figs. 2 and 3.

Purification of the erythrocytes Ca²⁺-ATPase

Plasma membrane Ca²⁺-ATPase was purified from human erythrocyte membranes [26] by using a calmodulin affinity column as has described before [27]. A coupled-enzyme assay system was used to determine the Ca²⁺-ATPase activity during purification of the enzyme, as described in [28]. The medium contained 1 U/mL pyruvate kinase, 1 U/mL lactic dehydrogenase, 100 mM KCl, 30 mM Hepes/KOH (pH 7.4), 2.5 mM MgCl₂, 0.2 mM NADH, 0.5 mM phosphoenolpyruvate, 1 mM ATP and 50 μM CaCl₂. The reaction was monitored following the difference in absorbance between 366 and 550 nm, using a dual-wavelength spectrophotometer (AMINCO DW-2a) at 37 °C in a final volume of 1 mL. The purified enzyme was stored, after N₂ bubbling, at −70 °C at a concentration of 100–200 μg/mL in a buffer containing 130 mM KCl, 20 mM Hepes/KOH (pH 7.2), 2 mM MgCl₂, 2 mM EDTA, 2 mM dithiothreitol, 0.05% Triton X-100, 0.5 mg/mL phosphatidylcholine, 50 μM CaCl₂ and 5% glycerol (v/v).

Determination of the ATPase activity

Aliquots of purified Ca²⁺-ATPase (about 1–2 μg of protein/mL) were incubated in a medium containing 130 mM KCl, 20 mM Hepes/KOH (pH 7.4), 1 mM MgCl₂, 1 mM EDTA, 1 mM ATP and the appropriate quantity of CaCl₂, to obtain the desired free calcium concentrations. The final concentration of ionic calcium was calculated using an iterative computer program modified by Fabiato and Fabiato [29].

The reaction was incubated for 45 min at 37 °C, and stopped by the addition of cold trichloroacetic acid at 8% v/v (final concentration). The phosphate produced by ATP hydrolysis was determined by the Biuret assay [32] in the presence of deoxycholate, using bovine serum albumin as standard. The method of Lowry et al. [33] was used for the purified protein. To avoid interference from detergents and phospholipids, the protein was precipitated with trichloroacetic acid in the presence of deoxycholate [34].

Materials and methods

Chemicals

All the reagents were of the highest purity available. Diacylglycerol (1,2-dioctanoyl-sn-glycerol) and phorbol 12-myristate 13-acetate (PMA) were purchased from SIGMA and from Avanti Polar Inc. Other reagents were from Sigma. Rat brain protein-kinase C (isoforms α, β₁, β₂ and γ) and bis-indolyl-maleimide I-HCl were purchased from CALBIOCHEM. Stocks of concentrated lipids were dissolved in dimethylsulfoxide (DMSO). The final concentration of DMSO in the reaction mixture was always below 1%. Calmodulin was purified from bovine brain according to the method of Guerini et al. [24] with the modifications introduced in [25].

Purification of the erythrocytes Ca²⁺-ATPase

Plasma membrane Ca²⁺-ATPase was purified from human erythrocyte membranes [26] by using a calmodulin affinity column as has described before [27]. A coupled-enzyme assay system was used to determine the Ca²⁺-ATPase activity during purification of the enzyme, as described in [28]. The medium contained 1 U/mL pyruvate kinase, 1 U/mL lactic dehydrogenase, 100 mM KCl, 30 mM Hepes/KOH (pH 7.4), 2.5 mM MgCl₂, 0.2 mM NADH, 0.5 mM phosphoenolpyruvate, 1 mM ATP and 50 μM CaCl₂. The reaction was monitored following the difference in absorbance between 366 and 550 nm, using a dual-wavelength spectrophotometer (AMINCO DW-2a) at 37 °C in a final volume of 1 mL. The purified enzyme was stored, after N₂ bubbling, at −70 °C at a concentration of 100–200 μg/mL in a buffer containing 130 mM KCl, 20 mM Hepes/KOH (pH 7.2), 2 mM MgCl₂, 2 mM EDTA, 2 mM dithiothreitol, 0.05% Triton X-100, 0.5 mg/mL phosphatidylcholine, 50 μM CaCl₂ and 5% glycerol (v/v).

Determination of the ATPase activity

Aliquots of purified Ca²⁺-ATPase (about 1–2 μg of protein/mL) were incubated in a medium containing 130 mM KCl, 20 mM Hepes/KOH (pH 7.4), 1 mM MgCl₂, 1 mM EDTA, 1 mM ATP and the appropriate quantity of CaCl₂, to obtain the desired free calcium concentrations. The final concentration of ionic calcium was calculated using an iterative computer program modified by Fabiato and Fabiato [29].

The reaction was incubated for 45 min at 37 °C, and stopped by the addition of cold trichloroacetic acid at 8% v/v (final concentration). The phosphate produced by ATP hydrolysis was determined according to the method of Fiske and SubbaRow [30], but using FeSO₄ as the reducing agent. Appropriate blanks were included to correct any interference with the colorimetric method.

Ca²⁺ transport by inside-out plasma membrane vesicles from human erythrocytes

Inside-out plasma membrane vesicles (IOV’s) from erythrocytes were prepared as described by Sarkadi et al. [31]. Ca²⁺ transport was determined by the use of arsenazo III as calcium indicator using the wavelength pair 675–685 nm, following the methodology previously described [19]. Briefly, aliquots of IOV’s was diluted in a final volume of 1 mL of a buffer containing 160 mM KCl, 50 μM arsenazo III, 0.5 mM MgCl₂, 25 μM CaCl₂ and 10 mM Tris–HCl (pH 7.4) at 37 °C. The Ca²⁺-transport was initiated by the addition of 0.5 mM ATP. The system was calibrated by successive additions of known concentrations of CaCl₂.

Protein determination

The protein concentration of the plasma membrane fraction was determined by the Biuret assay [32] in the presence of deoxycholate, using bovine serum albumin as standard. The method of Lowry et al. [33] was used for the purified protein. To avoid interference from detergents and phospholipids, the protein was precipitated with trichloroacetic acid in the presence of deoxycholate [34].
Effect of DAG and calmodulin on Ca2+-dependence of the ATPase activity of PMCA. An additive effect of DAG and calmodulin on the ATPase activity can be observed when both effector were added simultaneously. Experimental conditions were: (C) Control, (■) 5 μg/ml CaM, (C) 30 μM DAG, and (■) 30 μM DAG and 5 μg/ml CaM, in a reaction medium indicated in Materials and methods. Values represent the means ± SD. from at least five independent experiments.

Fig. 1. Stimulation of plasma membrane Ca2+-ATPase activity by DAG. The final Ca2+ concentration of was 10 μM. The determination of Ca2+-ATPase activity was carried out by following the phosphate produced by ATP hydrolysis. The reaction was started by the addition of 1 μg/ml purified Ca2+-ATPase in a final volume of 0.5 ml at 37 °C under continuous stirring. (●) Control, (■) 5 μg/ml CaM, and (▲) 5% ethanol. The reaction was incubated for 45 min and arrested by the addition of cold trichloroacetic acid (8%, final concentration). Other details under Materials and methods. Values represent the means ± SD. from at least five independent experiments.

Fig. 2. Effect of DAG and calmodulin on Ca2+-dependence of the ATPase activity of PMCA. An additive effect of DAG and calmodulin on the ATPase activity can be observed when both effector were added simultaneously. Experimental conditions were: (C) Control, (■) 5 μg/ml CaM, (C) 30 μM DAG, and (■) 30 μM DAG and 5 μg/ml CaM, in a reaction medium indicated in Materials and methods. Values represent the means ± SD. from at least five independent experiments.

Fig. 3. Effect of DAG and ethanol on Ca2+-dependence of the ATPase activity of PMCA. An additive effect of DAG and ethanol on the ATPase activity can be observed when both effector were added simultaneously. Experimental conditions were: (C) Control, (●) 5% ethanol (■) 30 μM DAG, (■) 30 μM DAG and 5% ethanol, in a reaction medium indicated in Materials and methods. Values represent the means ± SD. from at least five independent experiments.
solvubilized enzyme previously obtained (data not shown), and point out to a possible direct role of DAG in the native plasma membrane Ca2+-ATPase. To further support this notion we studied the effect of DAG on the Ca2+ transport in human erythrocytes inside-out vesicles (IOVs). Fig. 5 shows that when ATP is added to this preparation, an immediate Ca2+ transport is initiated (observed by the decrease of extravesicular Ca2+, as the cation is accumulated inside the vesicles). It can be observed that addition of DAG stimulated the velocity of the Ca2+ transport. Moreover, the additive effect of DAG and CaM can be readily observed on this figure, since upon addition of CaM a further increase in the Ca2+ transport velocity was obtained. The effect of the addition of the Ca2+ ionophore A23187 indicated that Ca2+ was indeed accumulated inside the vesicles.

In order to further support a possible direct interaction of DAG with the PMCA, we carried out studies on the intrinsic fluorescence of the purified Ca2+-ATPase. This result indicated that DAG binds to the calcium pump with high affinity, and induces conformational changes on the enzyme. For these experiments, we first estimated the quenching of the PMCA fluorescence by DAG. PMCA exhibits an emission band at 340 nm under excitation at 295 nm (Fig. 6, inset). The enzyme contains 7 Trps, 26 Tyrs and 49 Phe residues, but at this excitation wavelength, the unique absorbing aromatic residues are the Trps. Thus, the observed spectral bandwidth that was similar to that reported previously [11,12], effectively corresponding to the Trp emission.

DAG quenched the intrinsic fluorescence of the solubilized PMCA affecting the spectral properties of the emission, as could be evaluated by the spectral center of mass cm, defined by the equation

\[cm = \frac{\int v F(v)dv}{\int F(v)dv} \]

being v the wavelength number (in cm-1) and F the fluorescence intensity. In this regard, saturating concentration of DAG decreased the spectral center of mass from 28360 to 28220 cm-1; i.e., a red-shifted distortion of 140 cm-1, equivalent to a shift of 1.75 nm toward the right. Putting together all these data, the quenching of the intrinsic fluorescence and the spectral changes of the purified PMCA upon binding of DAG, as evidenced by the red-shifting, a direct interaction between DAG and PMCA is conceivable. This interaction would affect the conformational (local and/or global) structure of the protein, and consequently, expose the Trp emitters toward the aqueous media and/or inner polar micro-environments. Accordingly, we have reported variations of cm for the intrinsic PMCA fluorescence induced by effectors such as CaM, Ca2+ and vanadate [11].

The quenching of the intrinsic fluorescence of the PMCA was used to estimate the enzyme affinity for DAG. Under titration with DAG, the corrected fractional fluorescence (F/F\textsubscript{0}) at 340 nm, showed a concentration-dependent saturable curve characteristic...
of a binding isotherm, as shown in Fig. 6. An analysis of the binding system requires a model; thus, considering that PMCA has a unique site for DAG binding,

$$E + DAG \rightleftharpoons E\cdot DAG$$

The expression that would relate the spectroscopy variable and the thermodynamic parameter of the binding would be represented by the equation

$$F = \frac{1 + K_{DAG}^DAG[DAG]}{1 + K_{DAG}^DAG[DAG]}$$ (2)

being F, the corrected fluorescence; F_0, the corrected fluorescence in absence of DAG; K_{DAG}^DAG, the dissociation constant; χ_{DAG}, the quenching factor; and $[DAG] \geq [DAG]_t$, the ligand total concentration, since $[DAG]_t$ is much larger than the total enzyme concentration, $[E]$. A nonlinear fitting of the experimental values for the equation [21], constrained to $\chi_{DAG} < 1$ (since it is a quenching phenomenon), minimized the quadratic difference to $\chi^2 = 1 \times 10^{-5}$, and reported the following parameters as best estimated: $K_{DAG} = 118.1 \mu M (40.67 \mu g/ml)$ and $\chi_{DAG} = 0.81$.

Additionally, we observed the differential effect of DAG and CaM on the interaction of TNP-ATP with PMCA. The ATP analog, TNP-ATP, has been one of the fluorescence derivatives most used as reporter molecule sensitive to changes in the micro-environment of the nucleotide-binding domain of ATPases [38]. In fact, we found that TNP-ATP interacts with PMCA increasing its quantum yield by 12 times at 530 nm, and shifting the emission maximum in -15 nm with a $K_{DAG}^{TNP-ATP}$ of about 2 μM (manuscript in preparation). Taking advantage of this interaction, we evaluated the sensitized emission of TNP-ATP under excitation of the tryptophan residues. As shown in Fig. 7, the excitation of the bound TNP-ATP at 295 nm, quenched the emission band of the Trps fluorescence at 340 nm, and exhibited an emission (sensitized emission) at 535 nm, characteristic of the TNP-ATP emission. Fig. 8 shows the titration curves of the sensitized emission of bound TNP-ATP, measured as the enhancement ratio, F/F_0, at 535 nm, under excitation at 295 nm, in three conditions tested. It can be observed that the sensitized emission of TNP-ATP is significantly different for the DAG condition, in comparison with the control and CaM conditions.

![Fig. 7. Quenching of the intrinsic PMCA fluorescence on the interaction with TNP-ATP. The binding of the ATP analog TNP-ATP to the PMCA attenuates the Trp fluorescence emission. The fluorescence emission spectrum of PMCA (36 $\mu g/ml$) was registered in the absence (Control) and presence of 20 μM TNP-ATP (+TNP-ATP), previous subtraction of their respective blanks. Inset: Zoom in of the range corresponding to the emission band of the TNP-ATP. Excitation at 295 nm, $T = 22^\circ C$.](image1)

![Fig. 8. Sensitized emission of TNP-ATP molecule bound to the PMCA under excitation of the Trps. TNP-ATP emits fluorescence resonance energy transfer (FRET) from the Trp donors. Fluorescence titration of PMCA (36 $\mu g/ml$) with TNP-ATP in the conditions: in buffer (), Control, with 5 $\mu g/ml$ of CaM (), CaM and with 174 μM of DAG (). The symbols represent the average corrected fluorescence (F), in term of the fluorescence in the absence of TNP-ATP (F_0), for three repetitions ($n = 3$) ± SD. Excitation at 295 nm and emission at 535 nm. $T = 22^\circ C$.](image2)

Discussion

The work presented here points to the stimulation of the plasma membrane Ca$^{2+}$-ATPase by DAG, which produces an increment in the V_{max} of the enzyme and in the affinity of the protein for Ca$^{2+}$. The stimulation induced by DAG is additive with the effect of both CaM and ethanol. This last result was unexpected since we were looking for a natural substitute for ethanol, as a stimulator of this Ca$^{2+}$-ATPase. However, all the results indicate that this is not the case, since both CaM and ethanol stimulate the enzyme by interaction with different domains [13,14] and such domains appear to be, at least partially distinct to the DAG binding region. Thus, the stimulation of Ca$^{2+}$-ATPase by CaM is accepted to be due to the interaction of DAG with a C1 domain (9 kD) present in the carboxyl end of the ATPase [27,39] and it has also been demonstrated that ethanol interacts with the enzyme in a different site. Thus, different isoforms of the enzyme have distinct sensitivity to ethanol [14]. By the use of truncated forms of this ATPase, it has been demonstrated that a segment of 95 aa in the carboxyl terminal end of the protein endows the ATPase with ethanol sensitivity, since its removal produces the loss of the ethanol effect [14]. This domain appears to be superimposed partially with the domain of interaction with CaM, but different to it. On the other hand, the sensitivity to acidic phospholipids, has been located in two domains of the enzyme, one close to the carboxyl terminus of the protein, partially shared with the site for CaM binding, and the other, a lysine rich cytoplasmic domain located between transmembrane domains 2 and 3 [40,41].

The mechanism of action of DAG on the enzyme appears different to that produced by PKC, since its effect is also additive to the stimulation produced by the latter, ruling out that it corresponds to the phosphorylation of the enzyme mediated by this kinase. The addition of phorbol esters to the incubation media in the absence of PKC did not have any effect on the enzyme activity, ruling out any possible small contamination of the preparation with PKC.

Interestingly, the putative C1 domain, which consists of a conserved sequence of 50 amino acids bearing the $H_{11,12}^-\cdot C_{12}^-\cdot C_{12,14}^-$...
CX4CX2CX4HCX6–7C motif, found in all proteins described so far, that bind phorbol esters and/or DAG [42], is absent in the PMCA primary structure. However, this site of interaction has been reported to be relevant for the transportation of PKC (and other enzymes) from the cytosol to the plasma membrane [43–45]. Since the PMCA is already located at the plasma membrane, the presence of this region in the enzyme is not needed. There is at least another evidence where DAG interacts directly with a protein and the phorbol esters have no effect. Thus, Beck et al. [46] have recently shown a stimulation by DAG on a receptor-operated Ca2+ channel (TRPC7) in human keratinocytes. The authors demonstrated that the stimulation of the Ca2+ current induced by DAG is by a direct interaction, since addition of phorbol myristate acetate or specific PKC inhibitors showed little effect on this current. Accordingly with our argument, this Ca2+ channel is already located at the plasma membrane, and thus, similarly to the PMCA, it is not required to be recruited by interaction of DAG or PMA, by interacting to the C1 motif mentioned above.

We demonstrated in this work that DAG quenched the Trp fluorescence of PMCA. The mechanism of quenching might be due to increasing the exposure of emitters to the aqueous environment and/or a conformational change which moves emitters close to some amino acid side chain functional groups, both mechanisms acting on the Trp emitters differentially once DAG is bound to the enzyme. Whatever the mechanism, the binding of DAG must induce a conformational change in the PMCA associated with the increase in the ATPase activity. In this sense, it has been a usual practice monitoring changes in the quantum yield of fluorophores to characterize the binding of ligand to macromolecules, so, we used the intrinsic fluorescence of the PMCA as a reporter variable to estimate the DAG affinity. The kq obtained by this means is in the same order of magnitude than the apparent kq [43] (at 1 mM MgATP and 10 μM Ca2+) for the ATPase activity. The above results strongly support a direct interaction between the PMCA and DAG. The functional consequence of the stimulation of the Ca2+-ATPase activity and the related Ca2+ transport by DAG in an additive manner with CaM, strongly suggest that this second messenger could be involved in Ca2+ homeostasis.

On the other hand, the fluorescent ATP analog, TNP-ATP, binds to PMCA with high affinity, as monitored by its quantum yield enhancement, but it is not a substrate for the PMCA (data not shown). The sensitized emission at 535 nm by TNP-ATP under excitation at 295 nm, seems to have its origin in the phenomenon of energy transfer between the excited donors (Trp residues) and the absorbing acceptor (TNP-ATP) (Trp emission at 340 nm (at the Trp emission) and the spectral overlapping between the Trp emission spectrum and the TNP-ATP absorbing spectrum, fulfill the energy transfer requirement. However, this phenomenon needs also of geometrical fulfillments, so that spatial proximity between the molecules, among others, is imperative to consider in order to be feasible this kind of dipole–dipole interaction. Few works have been carried out with the pair (Trp, TNP-ATP) for FRET experiments. We can mention one by Liu et al. [47] on the P-glycoprotein, and the observed FRET in vesicles of sarcoplasmic reticulum [48]. On the other hand, it was not observed FRET between Trps and TNP-ATP on the annexin IV but on annexin VI [49].

In our experimental system, native PMCA with or without TNP-ATP non-covalently bound, it is not possible to measure the efficiency of the energy transfer because of the presence of multiple donors (in principle, all the Trps are potential donors). However, the global signal can be still a qualitative index of the effectiveness of the energy transfer among these probes. The minor sensitizing emission of the TNP-ATP in the presence of DAG might be interpreted as an induced conformational change that increases the effective distance and/or on the average relative orientation between the electronic centers of the donors and the acceptor. Changes in the efficiency of the energy transfers between Trps and TNP-ATP, associated to the interaction of Pgp with several drugs, were reported by Liu et al. [47]. Hence, conformational changes associated to the ATPase activation by DAG and CaM, seems to be reasonable. Accordingly, Corradi et al. [50] reported variation of the efficiency of energy transfer between a double-labeled PMCA (BFP-PMCA-GFP) on CaM activation, indicating changes in the relative positions of the probes because of the activation of the PMCA. Furthermore, the differential effect between both effectors in the sensitizing emission of the TNP-ATP here observed suggests that the mechanisms of action of both effectors are different. In this aspect, It has been reported that gangliosides modulate the PMCA activity and induce conformational changes, evidenced by differential accessibility to collisional quenchers to labeled PMCA, by a mechanism different from that of CaM [51].

This work reports biochemical and biophysical supports that allow to conclude that the second messenger diacylglycerol, which until now had been implicated in an indirect regulation of the plasma membrane Ca2+ pump via PKC, indeed stimulates the enzyme by direct binding, increasing the Vmax of the ATPase activity, the affinity of the enzyme for Ca2+ and the rate of Ca2+ transport, probably by a distinct mechanism to that the produced by CaM and ethanol.

One apparent functional contradiction between our results and some evidences obtained before is the fact that PI2, the precursors of DAG, is a potent stimulator of the PMCA. In fact, PI2 has been shown to increase the affinity of the enzyme for Ca2+ to a larger extent than CaM and any other acidic phospholipids so far studied [7]. However, different from DAG, the Vmax of the enzyme reached by this effector is the same to that attained by CaM or PKC, and is not additive to these effectors. Thus, the physiological meaning of this stimulation is uncertain. Even more, the concentration of PI2 at the plasma membrane is low and quite stable. Therefore, is not easy to interpret in terms of the functional Ca2+ homeostasis. In contrast, the over-stimulation of that PMCA induced by DAG in the presence of CaM and/or PKC is easier to infer in terms of the characteristic rapid peak in the intracellular Ca2+ concentration typically observed after any stimulation related to the production of IP3. Thus, upon the increase in the [Ca2+], obtained after any signal conducting to an elevation of IP3 and the concomitant peak in the cytoplasmic Ca2+ concentration, the cell is committed to rapidly reduce this high level of Ca2+ to a much lower steady-state level, which is a balance between the Ca2+ homeostatic mechanisms (PMCA, SERCA and mitochondria, functioning to reduce the [Ca2+]), and the opening of the capacitative Ca2+ entry at the plasma membrane, which induce the cell to elevate the [Ca2+]. The overall picture that emerge is a typical plateau, well below the initial peak, but significantly higher than the previous basal Ca2+ concentration (for example, see [15]). It is likely that the Ca2+ signal that the cell actually recognize is not only the initial peak, which stays only for few seconds (less than a minute), but instead the steady-state level after the peak recovery, which remains for longer time (about one hour or so). In this sense, DAG would be responsible for the fast reduction in the intracellular Ca2+ concentration to this steady-state level. Supporting this model, the stimulation of the PMCA by CaM and PKC, which would act simultaneously, are not additive among them, but indeed are additive to the stimulation by DAG. So that an additional over-stimulation would warrant the rapid Ca2+ transient typically observed after PLC stimulation, via receptor and G protein or by tyrosine phosphorylation of a PLC-associated receptor.

Acknowledgments

We thank Dr. Cecilia Castillo for critically reviewing this paper. This work was supported by FONACIT G-2001000637 and...
References