Diuretic and Natriuretic Action of Rat Atrial Natriuretic Peptide (6–33) Administered Intracerebroventricularly in Rats

ANITA ISRAEL AND YARISMA BARBELLA

Faculty of Pharmacy, Department of Biological Science
Central University of Venezuela, Caracas, Venezuela

Received 31 March 1986

ISRAEL, A. AND Y. BARBELLA. Diuretic and natriuretic action of rat atrial natriuretic peptide (6–33) administered intracerebroventricularly in rats. BRAIN RES BULL 17(2) 141-144, 1986. — Intracerebroventricular (IVT) administration of rat atrial peptide (6–33) (rANP) to conscious male hydrated or salt-loaded rats, resulted in significant increase in urinary volume. The diuretic effects of rANP occurred during the 3 hr period of urine collection and were most effective during the first hour. Most remarkably, rANP given IVT produced a dose-related increase in urinary sodium excretion at 3 hr. With a high dose of rANP, kaliuresis was significant only at 3 hr. Our results strongly suggest that ANF may play a significant role in central regulation of fluid homeostasis, and that its natriuretic and diuretic effects may be, at least in part, centrally mediated.

Atrial natriuretic peptide Natriuresis Diuresis Intracerebroventricular administration Fluid homeostasis

METHOD

Adult male Sprague-Dawley rats (230–290 g) were housed at a constant temperature with light on from 06.00 hr to 18.00 hr and given free access to food and water. In the group of rats where NaCl treatment was studied, a 1% NaCl solution was substituted for the drinking water during the one week period previous to the IVT. A cannula [5] was implanted in the left lateral cerebroventricle, 1 mm caudal to the coronal suture and 1.5 mm lateral to the mid sagittal suture, with the aid of a stereotaxic instrument and under pentobarbital anesthesia (40 mg/kg, IP). Acrylic cement was used to secure the cannula to the skull. A minimum of 2 days was allowed for recovery. Single IVT injections were made with a Hamilton syringe fitted with a stop to prevent needle penetration past the cannula tip. Saline solution or rANP (rat atrial peptide, 28 amino acids, Peninsula Laboratories, Inc., Belmont, CA) was given in 5-μl volumes. Ventricular cannula place-

**Requests for reprints should be addressed to Dra. Anita Israel, Apartado Postal 50176, Sabana Grande 1050 A, Caracas, Venezuela.
FIG. 1. Effect of a single cerebroventricular injection of rat atrial natriuretic peptide (rANP) (6-38) on urine output, sodium and potassium excretion and Na/K ratios in hydrated rats. Rats received an intracerebroventricular injection of saline solution (open column), 0.25 μg/5 μl (dark shaded column) or 1.25 μg/5 μl (light shaded column) of rANP immediately after 20 ml/kg PO water. Food and water were not allowed. Urine was collected after one and three hours. Significant F ratios from one-way analysis of variance were: urine volume, 1 hr and 3 hr, F(2, 37) = 7.6, p < 0.01 and 3.28, p < 0.05 (control < dose 1 = dose 2, Newman-Keuls test); sodium excretion, 3 hr, F(2, 37) = 7.68, p < 0.01 (control < dose 1 = dose 2, Newman-Keuls test); and potassium excretion, 3 hr, F(2, 37) = 5.46, p < 0.01. Number under the bottom of the bars represent animals per group.

Protocol for rANP Experiment

Rats, with their ventricular cannula, were weighed and placed in individual metabolism cages. At 0900 hr the rats were injected IVT with freshly prepared rANP in saline solution (0.25 μg/5 μl or 1.25 μg/5 μl) or saline (5 μl), followed by 20 ml/kg PO water. Urine was collected at 1 and 3 hr; in addition the bladder was emptied at 3 hr by gentle suprapubic massage. Food and water were not available during the experiment. Urine samples were assayed for sodium transfer data.
and potassium content by flame photometry. All the data were presented as means±S.E.M. Statistical differences between groups were analyzed using the Student's t-test or by one-way analysis of variance (ANOVA) and the Newman-Keuls studentized range statistic.

RESULTS

Effects of IVT rANP in Hydrated Rats

Urine was collected after 0–1 and 1–3 hour periods of single IVT injection of rANP. Most of the effect of rANP on urinary volume appeared to occur within the first hour. The urinary response to IVT rANP are illustrated in Fig. 1. The volume of urine/100 g b.w. increased significantly with both 0.25 μg/5 μl and 1.25 μg/5 μl doses of rANP, at 1 and 3 hr periods of collection, F(2,37)=7.6, p<0.01, and F(2,37)=3.28, p<0.05, respectively (one-way ANOVA), but the volumes for the two rANP doses did not differ from one another (control<dose-1<dose-2, Newman-Keuls test). The increased urinary volume was associated with an enhanced natriuresis and kaliuresis at 3 hr. Urinary sodium excretion (μEq/100 g b.w.) increased significantly at the 3 hr period, F(2,37)=7.68, p<0.01 (one-way ANOVA) and the increase was dose-related. (control<dose-1<dose-2, Newman-Keuls test). Although there were no significant differences in urinary sodium excretion at the 1 hr period of collection, there was a trend towards an increase. rANP-induced kaliuresis was significant only at 3 hr and with the highest dose of rANP. The urinary Na/K ratio was unaffected by either dose of rANP in both the 1 and 3 hr periods of collection (p>0.05, one-way ANOVA).
Effect of rANP in Salt-Loaded Rats

Urinary sodium excretion in salt-loaded rats increased significantly when compared with normal hydrated rats (29% and 80% at 1 and 3 hr of urine collection, respectively, p<0.01). The effects of 0.25 µg/5 µl IVT of rANP in NaCl-loaded rats are illustrated in Fig. 2. rANP induced a significant increase in urinary volume associated with an enhanced natriuresis but not with kaliuresis. The volume of urine/100 g b.w. and the sodium excretion (µEq/100 g b.w.) increased significantly at the 3 hr period of urine collection (p<0.05). Evaluation of the urinary Na/K ratio at 3 hr revealed a significant increase (p<0.05).

DISCUSSION

In the present study we demonstrate that a single IVT injection of rANP (6-33) induced a significant increase in urinary sodium excretion and kaliuresis in conscious rats. ANP (6-33) closely resembles rat ANF (8-33), containing at the N-terminus only two more amino acids (Ser-Leu) than this peptide [1,10]. The observation that central administration of rANP has a significant effect on urine volume and sodium excretion strongly suggests that ANF in the brain may serve as an endogenous defense against hypervolemia and states of sodium excess. The central mechanism could facilitate the reduction of blood volume by increasing the excretion of water and solute, and by reducing the further intake of salt [4] and water [9]. All these central effects, added to the already known peripheral natriuretic and diuretic action of the peptide [1,3,10], would form part of the complex regulatory role of ANF in fluid homeostasis.

The mechanisms of the CNS-medicated diuretics may be explained, at least in part, by a suppression of vasopressin secretion. ANF has been reported to decrease vasopressin release through a central mechanism [13]. In addition, ANF may act in opposition to the renin-angiotensin system in the brain [1].

Receptors for ANF have now been described and characterized in the rat brain [11,12]. Binding was concentrated in the subfornical organ and the choroid plexus [12]. The subfornical organ sends projection to the hypothalamus, and specifically to the anteroventral third ventricle (AV3V) region, an area critical for the development and maintenance of experimental hypertension as well as fluid and electrolyte balance [5]. This area contains the largest concentration of ANF-positive neurons [7,14], ANF-receptors [11,12] and a high density of ANG binding sites [6]. Thus, these structures may represent the anatomical link between the peripheral and central ANF system and the site for the antagonistic interaction between ANG and ANF.

In the periphery, ANF directly and selectively reduces basal and ANG-stimulated secretion of aldosterone in the adrenal cortex [11,10]. A possible mechanism for central natriuretic effects of rANF is withdrawal of mineralocorticoid activity in the kidneys, perhaps by a centrally mediated reduction of plasma aldosterone levels.

The fact that ANF seems to act both peripherally and centrally to antagonize the action of ANG suggests that this peptide could have a major and important role in long term regulation of fluid and electrolytes balance.

REFERENCES