CONTRIBUCION A LA ECOLOGIA DE *MONTRICHARDIA ARBORESCENS* (L.) SCHOTT (ARACEAE). I. DEMOGRAFIA.

CONTRIBUTION TO THE ECOLOGY OF *MONTRICHARDIA ARBORESCENS* (L.) SCHOTT (ARACEAE). I. DEMOGRAPHY.

*Elizabeth Gordon, Lenys Polanco y Carolina Peña*

1Instituto de Zoología Tropical, Facultad de Ciencias, Universidad Central de Venezuela, A. P. 47058, Caracas 1041-A, Venezuela. Fax: 58-2-6051204; Correo electrónico: egordon@strix.ciens.ucv.ve

RESUMEN

*Montrichardia arborescens*, helogeófito arborescente de 4 a 10m de alto, se propaga por rizomas y semillas, está ampliamente distribuida en Venezuela, y domina los pantanos herbáceos litorales de Laguna Grande (Edo. Monagas). El peso de una semilla fue de $1.66\pm0.46$ g seco, y el número de semillas por infrutescencia fue $114.0\pm64.0$. El porcentaje de germinación de las semillas varió entre 40 y 90%. Las dimensiones y el peso de las plántulas disminuyeron con la profundidad. La mayor densidad de semillas se determinó en la temporada de sequía (152 semillas/m²) y la menor durante la inundación, con un patrón de producción de semillas independiente de la zona de muestreo. La mayor densidad de plántulas se registró durante la transición lluvias-sequía (14±7 plántulas/m²), la cual varía con el lugar. Dependiendo del sitio, la densidad de individuos adultos varió entre 4 y 10 individuos/m². De cada 5 individuos, 4 se interconectan por rizomas. A pesar de los relativos altos porcentajes de germinación de las semillas, gran parte de ellas no alcanzan el estado de plántulas. El análisis de los datos sugieren que las plántulas y semillas tienen poca importancia en el mantenimiento de las poblaciones de individuos adultos.

ABSTRACT

*Montrichardia arborescens*, is an arborescent helogeophyte, 4 to 10m of height; it spreads by rhizomes and seeds; it is widely distributed in Venezuela and dominates the herbaceous wetlands of Laguna Grande (Monagas State). Seed weight was of $1.66\pm0.46$ g dry, and seed number by infrutescence $114.0\pm64.0$. Seed germination percentages varied between 40 to 90%. Dimensions and dry weight of the seedlings decreased with the water depth. The highest seed density was determined during the dry season (152 seeds/m²) and lowest during the flood period, with a pattern of seed production independently of sampling site. The highest seedling densities was during the rain-dry transition (14±7 seedlings/m²), being dependent of the site characteristics. Depending on the site, the density of adult individuals varied between 4 and 10 individuals/m². From each 5 individuals, 4 was connected by rhizomes. In spite of the relatives high percentages of seed germination, great part of them did not reach the seedling phase. Data analysis suggests that the seedlings and seeds have little importance in the maintenance of the adult populations.

Palabras claves: *Montrichardia arborescens*, semillas, germinación, plántulas, demografía, humedales, Venezuela.

Key words: *Montrichardia arborescens*, seeds, germination, seedlings, demography, wetlands, Venezuela

INTRODUCCION

*Montrichardia arborescens* (L.) Schott (Araceae), popularmente denominada Boroboro o Rábano, crece en ambientes estacionalmente inundados, principalmente bordeando lagunas, ríos, caños y morichales, en los cuales puede formar poblaciones muy densas, ya sea en sitios sombreados o soleados (Velásquez, 1994; Gordon, 1996). En zonas estuarinas, poblaciones de esta especie están limitadas en su distribución por la salinidad (Colonello y Medina, 1998). Esta especie podría emplearse en planes de control de la erosión y estabilización de los sedimentos en humedales lacustros y ribereños.

*Montrichardia arborescens* es importante en la dinámica del proceso sucesional de la vegetación en humedales lacustros o ribereños, ya que una
vez que se establece puede influir en el establecimiento de otras especies en la comunidad a través del sombreado o por acumulación de hojarasca (Gordon, 1996). Constituye fuente de energía y materiales para otros niveles tróficos del ecosistema, mediante el proceso de descomposición, el cual a través de la liberación de nutrientes (Peña y Col., 2000) estima la producción, y suministra materiales orgánicos a la cadena de detritos; así mismo, sus frutos constituyen fuente de alimento para algunas especies de peces y sus semillas asadas son consumidas por indígenas (Cook, 1990).

En *Monrichardia arborescens*, la propagación sexual ocurre vía producción y germinación de semillas. El proceso de colonización de las plantas hacia nuevos hábitats, generalmente depende del movimiento de un gran número de semillas, bien sea por el viento, animales o por el agua (Lonsdale, 1993). Al mismo tiempo, la producción de semillas es fundamental para el establecimiento de las plantas, y consecuentemente para el mantenimiento de la especie dentro de hábitat (Barrat-Segretain, 1996).

*Monrichardia arborescens*, también se propaga vegetativamente por rizomas gruesos y subterráneos, los cuales pueden tener diversas funciones ecológicas importantes como aireación, almacenamiento de asimilados, y expansión en la comunidad (Kudo e Ito, 1988). El sistema de rizomas de *M. arborescens*, puede producir masas densas y altas de vástagos, los cuales posiblemente se auto-perpetúan por largos periodos. El reclutamiento regular por germinación y el establecimiento de los individuos por propagación vegetativa permite la persistencia o permanencia de una población de plantas (Brock, 1991).

Si *M. arborescens* se propaga por semillas, y crece en ambientes inundados, entonces ¿qué tan importante es la producción y germinación de semillas en la permanencia de las poblaciones adultas?, ¿cómo influye la inundación en el crecimiento de las plántulas?, ¿hay variaciones estacionales en la densidad de plántulas e individuos adultos?. De allí que en esta primera parte sobre la ecología de esta especie, y a los fines de responder estas y otras preguntas, en este trabajo se estudiaron aspectos tales como: 1) estimación del tamaño, número y germinación de semillas, 2) crecimiento de las plántulas respecto a la profundidad del agua, 3) variaciones temporales en la densidad de semillas, plántulas e individuos a lo largo del ciclo de inundación en Laguna Grande, Estado Monagas, 4. analizar las relaciones entre la densidad de semillas, plántulas e individuos adultos.

**MATERIALES Y MÉTODOS**

**Descripción del Área de Estudio.**

**Ubicación.** Laguna Grande está situada en las cercanías del pueblo de La Pica y aproximadamente a 18 km de la ciudad de Maturín (Edo. Monagas), y a 9° 45’ N y 63° 2’ 30” O; es un embalse natural originado por la interconexión fluvial de dos canales naturales, situados al este de la ciudad de Maturín: Morichales Juanico y Manteco.

![Figura 1. Diagrama de Laguna Grande, Estado Monagas](image-url)
Estos después de su unión, conforman lo que se ha denominado el Plato de la laguna, proporcionándole forma alargada según un eje noreste. Además presenta un canal natural de descarga conocido como Boca de la Laguna (Fig. 1). El área de estudio tiene una precipitación total anual de 1456 mm, y una temperatura media anual de 26°C. El clima es fuertemente estacional; donde el período de lluvia va desde mediados de abril hasta enero, con máxima precipitación durante los meses de junio, julio y agosto. La estación seca empieza desde finales de enero hasta mediados de abril (Gordon, 1998).

**Vegetación.** La vegetación del área fue descrita por Gordon (1996). Los pantanos herbáceos situados en Laguna Grande se pueden diferenciar en dos tipos, uno dominado por especies de las familias Cyperaceae y Poaceae y otro por M. arborescens. En estos humedales, la composición de la vegetación, ha cambiado en respuesta a diversos factores ambientales, incluyendo la hidrología, entrada de nutrientes a través de las aguas domésticas de la ciudad de Maturín, y escorrentía superficial de las tierras agrícolas, lo cual ha traído como consecuencia que en los últimos 15 años M. arborescens haya cubierto casi el 80% de los pantanos herbáceos de esta laguna (Gordon, 1996).

Otras especies importantes, principalmente trepadoras, que coexisten en las comunidades dominadas por M. arborescens están: Hamelia patens, Mikania cordifolia, Sarcostemma clausum, Vitis caribaea; también se encuentran especies arbóreas como, Hectostemma guazumae folius y la palma Mauritia flexuosa (Gordon, 1998).

En los humedales de M. arborescens a lo largo del brazo sur y del Plato la profundidad máxima de la lámina de agua se registró en agosto, con valores de 80 y 92 cm, luego descende en octubre a 25 y 30 cm, respectivamente. En el brazo norte la profundidad en agosto fue de 25 cm, con máximo de 46 cm en octubre. En febrero (1992), la lámina del agua en los brazos norte y sur cae a un mínimo (0 cm). En abril-mayo de 1992, la profundidad empieza otra vez aumentar (Fig. 2). Durante la sequía, el suelo se encontraba saturado o con una tabla de agua situada a unos pocos centímetros por debajo de la superficie del suelo.

En los pantanos dominados por M. arborescens los valores medios del pH del suelo varían entre 4.6-5.2. La conductividad del suelo fue de 189 μmhos/cm en el brazo sur, 211 μmhos/cm en el brazo norte y 325 μmhos/cm en Plato. La fracción orgánica total del suelo (porcentaje de materia orgánica con respecto al peso total de la muestra) mostró un gradiente en el orden Plato (69%) >brazo norte (58%) >brazo sur (48%) (Gordon 1998).

**Características generales de Montrichardia arborescens.** Montrichardia arborescens es una especie con tallos lisos o espinosos. Hojas dispuestas en su parte terminal; pecíolo de 20-42 cm de largo, alado; las alas terminan en un ápice libre de hasta 5 cm de largo; lamina foliar simple de 15 a 26 cm de largo, ancho ovada, de 30-43 cm de ancho, triangular, sagitada; lóbulos laterales variables. Esp ata oblonga ovada, cuspidad de 10-15 cm de largo. Espádice grueso, densamente cubierto de flores; las inferiores femeninas y las superiores masculinas; flores femeninas con un estaminódio. Estambres sésiles. Ovario con 1 a 2 óvulos (Velásquez, 1994). Infrutescencia grande. Flores entomófilas (Cook, 1990). Fruto baya, esponjosa y con una semilla.

Montrichardia arborescens, especie del Neotrópico (Cook, 1990), ampliamente distribuida, desde Guatemala, Panamá, Puerto Rico, Surinam, Guyana (van Roosmalen, 1985). En Venezuela presenta una gran distribución, siendo más frecuente en la región nor-oriental (Velásquez, 1994) (Fig. 3).

**Tamaño y número de semillas.** A 15 infrutescencias maduras se les midió el largo y diámetro, y se les contó el número de flores, semillas maduras e inmaduras. A las infrutescencias se les determinó peso fresco, y se les separó la fracción de semillas, la cual se pesó.

Para las dimensiones de las semillas, se escogieron al azar 100 semillas a las cuales se les midió el largo y el ancho; así mismo, se determinó el peso fresco de cada semilla, para lo cual se pesaron individualmente 350 semillas.

**Germinación de semillas y crecimiento de plántulas.** Los experimentos de germinación y crecimiento de plántulas se llevaron a cabo bajo las siguientes condiciones ambientales: temperatura máxima 28.1±3.9 °C; temperatura mínima de 19.5 ± 2.1 °C; humedad relativa máxima 90.7 ± 6.7 %; humedad relativa mínima 50 ± 9.8 %; radiación global 219.7 ± 20 cal/cm²/día.
Figura 2. Variaciones estacionales de la profundidad del agua para cada sitio en los humedales herbáceos dominados por *Monrichardia arborescens*.

Figura 3. Mapa de distribución de *Monrichardia arborescens* en Venezuela (Tomado de Veltzquez, 1994 (O), y ampliado por los autores (●)).
Los ensayos de germinación se realizaron por quintuplicado, cada uno con 50 semillas, en envases plásticos que contenían sustrato colectado en el campo, el cual se mantenía húmedo. La germinación se observó cada dos días, durante un mes. Los resultados se expresan en porcentaje total de germinación.

Para los ensayos de crecimiento de plántulas se colocaron semillas germinadas en potes de un litro que contenían arena de río y sustrato de la laguna en una relación 1:1. Posteriormente los potes se ubicaron en envases plásticos de 25 litros. Los envases se llenaban hasta alcanzar la profundidad deseada, tomando como referencia la superficie del sustrato. En cada envase se colocaron 10 potes. Las profundidades de la lámina de agua fueron: 0, 5, 10, 13, 17 cm.

Al mes de iniciado el experimento, se cosecharon las plántulas y se les determinó el número de vástagos y de hojas, altura del vástag, área foliar; luego se separaron en las fracciones vástag, hojas y raíces, las cuales se secaron a 60°C hasta peso constante.

Variaciones espaciales y temporales del número de semillas, plántulas e individuos adultos. Para cubrir los períodos de lluvia y sequía, se hicieron cinco muestreos según el siguiente esquema: tres en 1991 durante el periodo de inundación (agosto y octubre) y en lluvia-sequia (diciembre); dos en 1992 correspondientes a sequía (febrero), y sequía-lluvia (abril-mayo). Los muestreos se llevaron a cabo en tres zonas de la laguna: brazo norte, brazo sur y el Plato (Fig. 1). A lo largo de los sitios antes señalados, se ubicaron al azar cuadratas de 10mx10m, para un total de tres cuadratas por muestreo y por sitio. En cada cuadrata se ubicaron al azar cinco parcelas de 1-m², en las cuales se contaban los individuos con frutos, el total de plántulas y el total de individuos adultos; simultáneamente se midió la altura, y el perímetro de los troncos a 1.5 m de alto de los individuos adultos. El número de semillas/m² se estimó sobre la base del número de individuos en fruto/m² x el número de semillas por fruto.

Para las determinaciones del tamaño y profundidad a las cuales llegan los rizomas se hicieron excavaciones hasta 50 cm de profundidad, siguiendo la dirección de los individuos.

Análisis estadístico. Se calculó la prueba de concordancia de Kendall (W) con observaciones ligadas (Siegel, 1991) para determinar si la distribución de la densidad de semillas, plántulas, individuos adultos, mostraban un mismo patrón en los tres sitios de estudio. Para determinar si existe una relación entre la densidad de semillas, la de plántulas e individuos adultos se hizo un análisis de correlación por rangos de Spearman para un nivel de confianza del 95%. Los datos se procesaron con el paquete estadístico Statistica 6.0

RESULTADOS Y DISCUSION

Montrichardia arborescens es una hierba arborescente del grupo de los helioéfotos, con tallos gruesos y erectos, frecuentemente de 4 m de alto, a veces hasta 7 a 10 m, y soportados por talos adventicios (Gordon 1998). Produce rizomas gruesos de 40 a 105 cm de largo, con perímetro de 12 a 30 cm, ubicados entre los 25 a 45 cm por debajo de la superficie del suelo. Estos rizomas pueden interconectar a 2 a 4 individuos. En la Fig. 4, se muestra los rizomas de esta especie.

Tamaño y germinación de semillas. La infrutescencia de M. arborescens es elipsoido ovoide, grande (Tabla 1), amarilla-anaranjada por dentro cuando madura, las cuales al caer en el agua se mantienen flotando sobre la superficie (Gordon, 1996), pudiendo ocurrir redispersión de semillas dentro de las poblaciones; también, al flotar se facilita la dispersión (hidrocoria) por corrientes de agua fuera de la población, colonizando así nuevos ambientes. En la temporada de sequía, las infrutescencias caen por gravedad al suelo (autochoria), lo que posiblemente permite la permanencia de individuos de origen sexual dentro de la las poblaciones de esta especie.

Las semillas son marrones a verdosas de superficie lisa, cuya distribución de clases de peso tiende a una normal (Fig. 5). En general, la mayoría de las semillas se encuentran entre las clases 2 y 4, y la media general del peso fresco de las semillas fue de 1.95 ± 0.71g. Las semillas germinan en oscuridad, y los porcentajes de germinación variaron entre 40% y 60%, con una media de 72% (Tabla 1). En condiciones naturales, cuando las
Crecimiento de las plántulas respecto a la profundidad de la lámina de agua. Al aumentar la inundación se reduce la concentración de oxígeno, para lo cual las plantas de humedales muestran diversas adaptaciones, entre ellas: formación de raíces adventicias, cambios en la relación raíz/vástago, y en el crecimiento y reproducción (Crawford, 1982; Fenster, 1997).

La supervivencia de las especies emergentes a la inundación depende del grado de aireación del agua, de su capacidad para airear el sistema radical a través de las pérdidas radiales de oxígeno, y de la habilidad de las plantas para cambiar su forma de crecimiento o morfología (modificaciones plásticas o respuestas de acomodación) (van der Sman y Col. 1993; Clevering y Col. 1996; Coops y Col. 1996; Volder y Col. 1997).

En el caso de las plántulas de *M. arborescens*, a medida que aumenta la profundidad del agua, el número de vástagos y hojas disminuyó. Respuesta similar se presentó con la altura y área foliar de las plántulas, con un decrecimiento significativo a 13 y 17 cm de profundidad (Figs. 6 y 7). Estos resultados son contrarios a lo encontrado por auto-

**Tabla 1.** Media y desviación estándar de las dimensiones y peso de la infrutescencia, número de flores y semillas por infrutescencia, y dimensiones, peso y germinación (%) de las semillas de *Montrichardia arborescens*.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Media (±DS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largo de la infrutescencia (cm)</td>
<td>17.00 ±2.77</td>
</tr>
<tr>
<td>Diámetro de la infrutescencia (cm)</td>
<td>12.30 ±0.84</td>
</tr>
<tr>
<td>Peso fresco total de la infrutescencia (g)</td>
<td>715.72 ±111.86</td>
</tr>
<tr>
<td>Peso seco total de la infrutescencia (g)</td>
<td>184.14 ±58.25</td>
</tr>
<tr>
<td>Peso fresco total semillas (g)</td>
<td>324.20 ±161.58</td>
</tr>
<tr>
<td>Peso seco total semillas (g)</td>
<td>136.88 ±78.36</td>
</tr>
<tr>
<td>Número total de flores</td>
<td>136.00 ±65.00</td>
</tr>
<tr>
<td>Número total de semillas</td>
<td>114.00 ±64.00</td>
</tr>
<tr>
<td>Número total de semillas maduras</td>
<td>100.00 ±58.00</td>
</tr>
<tr>
<td>Peso fresco de una semilla</td>
<td>1.95 ±0.71</td>
</tr>
<tr>
<td>Peso seco de una semilla</td>
<td>1.66 ±0.42</td>
</tr>
<tr>
<td>Largo semilla (cm)</td>
<td>2.28 ±0.42</td>
</tr>
<tr>
<td>Ancho semilla (cm)</td>
<td>1.45 ±0.33</td>
</tr>
<tr>
<td>Germinación (%)</td>
<td>72 ±14</td>
</tr>
</tbody>
</table>

El peso seco total de la plántula, del vástago y de la raíz disminuyó con la profundidad (Fig. 8), lo cual coincide con lo encontrado para varias especies de plantas de humedales (van der Sman y Col. 1993; Coops y Col. 1996; Fenster 1997; Volder y Col. 1997). En condiciones de inundación, el carbono ganado por fotosíntesis puede ser reducido significativamente, trayendo como consecuencia decrecimiento en la producción de materia seca en la medida en que disminuye la habilidad de las plantas para mantener su sistema radical (Tesekey y Hinckley 1977). Al no haber elongación y crecimiento de las raíces se produce una reducción en la capacidad de adsorción de agua y de nutrientes, lo que potencialmente cambia la distribución de asimilados (McKevin y Col. 1998).

Moog y Janiesch (1990), encontraron en dos especies de Carex que la biomasa y densidad del sistema radical incrementa en condiciones anerobias. Fenster (1997) reportó en Chamaecristatal fasciculata var. macrostemma que las plantas producían sobre la superficie del suelo abundantes raíces laterales con alta porosidad. Si bien en el caso de M. arborescens no se determinaron parámetros morfológicos y densidad de raíces, sin embargo, hay un incremento en la relación raíz/vástago con la profundidad (Fig. 9), donde el peso de las raíces alcanzó hasta el 70% del peso total de la plántula.

El crecimiento de las plántulas depende de las reservas almacenadas en la semilla; M. arborescens tiene semillas grandes (Tabla 1), posiblemente con grandes reservas energéticas. En situaciones de inundación (estrés) quizás parte de la energía almacenada en la semilla es desviada no hacia el crecimiento de hojas y vástagos, sino más bien al recambio de las raíces, o a la formación de espacios aéreos que elevan la porosidad de las raíces, aumentando así el área de contacto en un medio sin oxígeno; los pelos radicales y raíces adventicias deberían funcionar como una capa adicio-

nal que permiten disminuir las pérdidas radiales de oxígeno (Moog y Janiesch, 1998).

Las adaptaciones de las raíces son críticas para la supervivencia de las plántulas durante la inundación, donde la evaluación del sistema radial y del crecimiento de las mismas constituyen una herramienta útil para determinar si una especie es tolerante o no a la inundación (Tesekey y Hinckley 1977). Fenster (1997) consideró que un decrecimiento en la biomasa radial durante las inundaciones puede deberse a muerte regresiva y/o una lenta iniciación de las mismas, lo cual podría indicar poca tolerancia a la inundación. En el caso de M. arborescens la disminución de la altura, área foliar, número de hojas y de la biomasa de cada fracción de las plántulas, principalmente de las raíces, con la profundidad permiten inferir que éstas son poco tolerantes a inundaciones permanentes por encima de los 10 cm.

**Variaciones estacionales y espaciales de la densidad de semillas, plántulas e individuos adultos.** La densidad de semillas (semillas/m²) resultó mayor en el brazo norte (29-152 semillas/m², media 79±56 semillas/m²), intermedia en el Plato (23-76 semillas/m², media 41±25 semillas/m²) y menor en el brazo sur (23-68 semillas/m², media 36±22 semillas/m²). La prueba de concordancia dio significativa (W= 0.77; P<0.05), lo cual indica que hay un mismo patrón en la producción de frutos y consecuentemente de semillas independientemente del sitio; esto es, que en los tres sitios la producción de semillas ocurren al mismo tiempo durante cada periodo de muestreo.

A lo largo del periodo de estudio hubo producción de semillas; sin embargo, de acuerdo al mes de muestreo y sitios, la menor producción de semillas/m² se registró durante el periodo de inundación (agosto -octubre), y la mayor en la de sequía (febrero) variando entre 23-29 semillas/m² y 68-152 semillas/m², respectivamente (Fig. 10). En pantanos herbáceos se ha reportado que los máximos de fructificación y dispersión de semillas ocurren en los periodos de sequía e inicios del lluvioso (Patton y Judd, 1988).

La densidad promedio de plántulas resultó mayor en el Plato (14 ± 7 plántulas/m²), y relativamente
Figura 5. Porcentaje de semillas (%) en cada clase de peso (g) de las semillas *M. arborescens*

Figura 6. Altura (cm) de las plántulas de *M. arborescens* respecto a la profundidad del agua. Promedio de 10 testigos.

Figura 7. Área foliar (cm²) de las plántulas de *M. arborescens* respecto a la profundidad del agua. Promedio de 10 testigos.

Figura 8. Peso seco total, raíces y vístago (g) de las plántulas de *M. arborescens* respecto a la profundidad del agua. Promedio de 10 testigos.

Figura 9. Relación raíz/vístago de las plántulas de *M. arborescens* respecto a la profundidad del agua. Promedio de 10 testigos.

Figura 10. Densidad de semillas (m⁻²) en cada uno de los sitios durante los meses de muestreo. A. Agosto (91); O. Octubre (91); D. Diciembre (91); F. Febrero (92); AM. Abril-Mayo (92); Promedio de 3 testigos.
similar en el brazo norte (7 ± 3 plantulas/m²) y brazo sur (5 ± 6 plantulas/m²). El Plato por su forma y posición dentro del cuerpo de agua constituye el sitio donde se favorecen los procesos de acumulación de sedimentos, semillas y fragmentos vegetativos provenientes del recorrido de las aguas a lo largo del brazo norte y del sur (Gordon, 1998). De allí que es altamente probable que en el periodo de inundación sean transportadas hacia el Plato plantulas desde otros lugares, lo cual aunado a las existentes en el sitio, incrementa la densidad de éstas respecto al brazo norte y brazo sur.

La prueba de concordancia dio W= 0.47, no significativa, sugiriendo que la densidad de plantulas varía con las características propias del lugar, lo cual viene determinado entre otras variables por microtopografía, disponibilidad de nutrientes; es decir de la abundancia de las plantulas depende de las posibilidades de supervivencia que le ofrece cada sitio. Así, en el brazo norte la mayor abundancia de plantulas se registró en octubre y la menor en febrero; en el Plato, el número de plantulas fue más alto en diciembre, y menor durante el lapso abril - mayo; mientras que en brazo sur, la mayor abundancia de plantulas se determinó febrero, no registrándose plantulas en agosto (Fig. 11).

De los resultados de crecimiento de plantulas (Figs. 6, 7 y 9), debería esperarse mayor densidad de plantulas en la temporada de sequía, y menor en la de inundación, lo cual coincide con los datos correspondientes al brazo sur (Fig. 11). Sin embargo, en el brazo norte y en el Plato la mayor densidad de plantulas se estimó en octubre (máxima inundación), y en diciembre cuando la lámina de agua ha empezado a disminuir (Fig. 2).

La mayor densidad de plantulas en el brazo norte (octubre, inundación) y en el Plato (diciembre, lluvia-sequia) sugiere que la turbidez del agua y sombreo ocasionado por los individuos adultos, probablemente no son limitantes para la supervivencia de las plantulas. Sin embargo, es importante destacar que la mayoría de las plantulas durante el lapso de aguas altas se encontraban flotando sobre la superficie del agua, con pocas arraigadas al suelo, por lo cual no están sometidas al estrés ocasionado por un sustrato deficiente en oxígeno. Al mismo tiempo, las plantulas al flotar presentan una alta probabilidad de dispersión fuera de la comunidad, aumentando posibilidad de la especie de colonizar nuevos ambientes. Por otro lado, sería importante seguir el destino de las plantulas que provienen de semillas germinadas en el periodo de inundación.

La Fig. 12, muestra la distribución de clases de tamaño de los individuos adultos expresados en función del área del tronco a 1.50 m de alto, de la cual se desprende que la mayor proporción de los individuos tienen áreas que varían entre 20-268cm² y 269-517cm². Esta figura muestra una clásica curva J invertida, que corresponde a poblaciones más o menos estables, las cuales en el caso de una perturbación natural o causada por el hombre, tiene individuos que potencialmente pueden auto mantenerlo. Sin embargo, está curva puede representar a individuos de origen sexual o asexual. A través de excavaciones se pudo observar que de cada 5 individuos, solamente uno de ellos no estaba conectado a los otros a través de rizomas.

La densidad de individuos adultos/m² respecto a los sitios, resultó que en promedio fue más o menos parecido, ya que en brazo norte y en el Plato fue de 7 individuos adultos/m², y en el brazo sur de 5 individuos/ m², con pocas variaciones dentro de cada sitio (brazo norte: 6-10 individuos/ m², Plato 6-9 individuos/m² y brazo sur 4-6 individuos/ m²) (Fig. 13). Sin embargo, la prueba de concordancia W= 0.21, no fue significativa, lo cual sugiere que la densidad de individuos adultos varía con el sitio.

Monrichardia arborescens es una hierba perenne, que al producir comunidades cerradas y de alturas de hasta 10m, podría considerarse que se comporta como árbol, y está adaptada a crecer en ambientes estacional o permanentemente saturados; de allí que es factible suponer que en vez de variaciones estacionales en la densidad de individuos adultos, más bien se esperaría encontrar diferencias entre sitios, como resultado de las posibilidades de colonización, establecimiento y expansión dentro de cada sitio, lo cual está determinado por las variaciones en las características del lugar, tales como microtopografía, composición y humedad del suelo, y cambios en la profundidad del agua.
Figura 11. Densidad de plántulas (m²) en cada uno de los sitios durante los meses de muestreo. A. Agosto (91); O. Octubre (91); D. Diciembre (91); F. Febrero (92); AM. Abril-Mayo (92); Promedio de 3 testigos.

Figura 12. Porcentaje de individuos en cada clase de tamaño en función del área del tallo de los individuos adultos.

Figura 13. Densidad de individuos adultos (m²) en cada uno de los sitios durante los meses de muestreo. A. Agosto (91); O. Octubre (91); D. Diciembre (91); F. Febrero (92); AM. Abril-Mayo (92); Promedio de 3 testigos.

Figura 14. Densidad de semillas (semillas/m²) versus densidad de plántulas (plantulas/m²).

Figura 15. Densidad de semillas (semillas/m²) versus densidad de individuos adultos (adultos/m²).

Figura 16. Densidad de plántulas (plantulas/m²) versus densidad de individuos adultos (adultos/m²).
Factores del micro hábitat varían de manera relacionada con la estructura y patrón interno de una comunidad determinada (Whittaker y Col. 1973). Factores ambientales, como luz, temperatura, humedad y nutrientes del suelo son variables que determinan la distribución de las especies, las cuales pueden mantenerse así mismas dentro de las comunidades al utilizar grupos de recursos que varían en el espacio y en el tiempo. Las variaciones estacionales y espaciales de los recursos es un carácter natural de muchos ambientes, y la explotación del mosaico ambiental por parte de las especies es un aspecto fundamental del nicho. El establecimiento de una especie es una consecuencia entre su esfuerzo por expansión, reproducción y dispersión, y la acción de factores limitantes físicos y bióticos (Kawano y Col. 1982).

**Demografía.** Analyzando la relación entre el número de semillas/m², y el número de plántulas/m², se observó que no hay una relación lineal entre ambas variables; es decir que al aumentar el número de semillas, al principio incrementa el número de plántulas, pero luego disminuye (Fig. 14), donde el coeficiente de correlación por rangos de Spearman entre estas variables fue no significativo $(r_s = 0.09; N=15, P<0.05)$. Esto sugiere que al elevarse el número de semillas se incrementa la contagiosidad de las mismas, evidenciado por la germinación en masa de las mismas tan pronto la infrutescencia cae al suelo o al agua (Foto 1), lo cual posiblemente eleva la probabilidad de mortalidad de plántulas, ya sea por factores bióticos o abióticos. Harper (1977) consideró que los efectos positivos entre la densidad de semillas y supervivencia de las plántulas sólo ocurren ocasionalmente y durante en los primeros estádios de la germinación, principalmente en condiciones de laboratorio.

El número de semillas producido por una población debe ser compensado por las pérdidas que ocurren durante la dispersión y establecimiento de plántulas (Kawano y Col. 1982). En *M. arborescens*, si bien hay una relativa gran producción de semillas/m², las cuales en promedio tienen un 72% de germinación (Tabla 1), no se traduce en similar número de plántulas; así, la media general de la densidad de semillas fue de $57±40$ semillas/m², y la de plántulas $9±6$ plántulas/m²; dependiendo del lugar, el porcentaje de plántulas respecto al número de semillas en el brazo norte fue de 9%, en el Plato el 34%, y en el brazo sur el 14%.

La menor densidad de plántulas con relación a la de semillas durante el lapso de estudio puede deberse a varias razones:

1. Pérdida de viabilidad de las semillas. Gordon (1996) reportó muy baja densidad de semillas de *M. arborescens* en el banco de semillas, las cuales de acuerdo a los experimentos de laboratorio germinan en oscuridad, con relativos altos porcentajes de germinación (Tabla 1) en un lapso menor de un mes. Esto, junto a la germinación en masa de las mismas (Foto 1) permite suponer que son transitorias (Sensu Thompson y Grime, 1979), con una esperanza de vida menor de un año, y que germinan en el mismo año que fueron producidas; como se mencionó antes, muchas semillas al caer al agua o al suelo se encontraban pregerminadas, observándose el campo plántulas dentro las infrutescencias cuando aún éstas estaban unidas a la planta. Lo antes señalado permite suponer que la pérdida de la viabilidad de las semillas no puede ser la razón de la baja densidad de plántulas.

2. El ambiente abiótico impide el establecimiento de las plántulas. Los resultados de densidad de plántulas/m², muestran presencia de éstas en todos los sitios y durante el período de inundación y de sequía, lo cual hace suponer que los cambios estacionales de la lámina de agua, sustratos altamente orgánicos, ambientos cerrados y sombreados creados por los individuos adultos no son limitantes para la germinación y supervivencia de las plántulas. Sin embargo, habría que hacer experimentos sobre el efecto de diversos factores ambientales sobre la germinación y crecimiento de las plántulas.

3. Muchas semillas pueden ser consumidas por peces u otros organismos acuáticos principalmente durante el período de inundación. Cuando éstas no son consumidas y no germinan sobre la superficie del agua, posiblemente se hunden en el sedimento debido al peso de las mismas (Tabla 1), en donde si bien puede haber germinación, las condiciones quizás no son apropiadas para el crecimiento de las plántulas. Sin embargo, no hay información disponible sobre la predación o el destino de las semillas una vez que caen al suelo.
4. La baja densidad de plántulas respecto a las semillas puede deberse a fenómenos de competencia con otros miembros asociados dentro del hábitat (competencia intra e interespecífica).

5. Factores bióticos como herbivoria (consumo por peces u otros organismos acuáticos) o ataque de patógenos sobre las plántulas, o mortalidad natural durante los primeros estadios de las mismas, pueden ser responsable de su baja densidad respecto a las semillas.

Comparando la densidad de plántulas con la de individuos adultos, resultó que el promedio de plántulas/m² en brazo norte y en brazo sur fue similar al número de individuos adultos (7 plántulas/m² y 5 plántulas/m² respectivamente), mientras que en el Plato fue mayor (14 plántulas/m²). El hecho que en el Plato haya más plántulas implica que la población, en caso de una perturbación, tendrá plántulas que potencialmente pueden reemplazar a los adultos. Cuando el número de plántulas sea menor, como en brazo sur (Fig. 11), la perpetuación de la población dependerá de la propagación vegetativa.

Al comparar la distribución de plántulas/m² y la de individuos adultos/m² (Figs. 11 y 13) a lo largo del ciclo de inundación se puede observar que en los tres sitios, la cantidad y distribución de individuos no se corresponde con la de las plántulas; esto es, cada componente está sometido a distintos factores ambientales. Así la mayor densidad de individuos adultos se registró en febrero, mientras que la de plántulas en octubre, aunque los valores medios resultaron parecidos (7 plántulas/m² y 7 individuos adultos/m²).

Al analizar el papel de la densidad de semillas sobre la densidad de individuos adultos (Fig. 15) se observó una tendencia positiva; sin embargo, la mayoría de los puntos de la curva permiten suponer que no hay una relación entre estas variables, lo cual fue evidenciado por el coeficiente de correlación de Spearman que resultó no significativo ($r_s = 0.35; N=15; P<0.05$). De la misma forma al cotejar la abundancia de plántulas con la de los adultos se infiere que la población de adultos es más o menos independiente de las plántulas (Fig. 16); el coeficiente de correlación por rangos de Spearman entre estas variables no fue significativo ($r_s = 0.45; N=15; P<0.05$).
De los resultados se infiere que el mantenimiento de la población de adultos de *M. arborescens* no depende de la producción de semillas y densidad de plántulas, si no más bien de la propagación vegetativa. Esta especie puede producir nuevos individuos bien sea cuando uno de ellos es cortado, o cuando caen al agua por efectos del viento u otra variable (Gordon, Observaciones). Alrededor de un individuo, cortado o no, casi siempre se encuentran dos a cuatro individuos unidos por rizomas. En plantas perennes rizomatosas se ha considerado que la contribución de las semillas al mantenimiento de las poblaciones es despreciable o de poca importancia, donde muchas de las plantas son reclutadas como ramets, los cuales perpetúan a los genotipos exitosos en las poblaciones (Harper 1977; Abrahamson 1980). Los individuos reclutados a partir de propágulos vegetativos, no solamente son competitivamente superiores a los provenientes de semillas germinadas (Abrahamson 1980), sino que también son más tolerantes a la inundación (Spence 1982).

La germinación y el establecimiento de las plántulas al ser afectados por diversos factores ambientales, entre otros, disponibilidad de luz, temperatura, constituyen los estadios más críticos en determinar el establecimiento de los individuos de una población (Harper, 1977). En *M. arborescens* aparentemente la producción y germinación de semillas juega un papel importante en el proceso de colonización, más que en el mantenimiento de las poblaciones; el hecho que esta especie produzca semillas/m² (Fig. 10) a lo largo del año, las cuales tienen la relativa alta probabilidad de germinación (72%), así como dispersión de semillas y plántulas durante el período de inundación, sugiere que esta especie presenta un gran potencial para colonizar y establecerse en nuevos ambientes, para luego crecer y propagarse, tal como ha ocurrido en Laguna Grande (Gordon, 1996).

En resumen, los resultados indican que la dinámica de las poblaciones de adultos de *M. arborescens* en Laguna Grande puede deberse a la propagación vegetativa, lo cual sugiere que en caso que haya una perturbación que destruya el sistema de rizomas, las posibilidades de perpetuación son pocas, donde el potencial reemplazo de los mismos dependerá de la colonización y germinación de las semillas, y supervivencia de las plántulas.

**AGRADECIMIENTOS**

Al Consejo de Desarrollo Científico y Humanístico de la Universidad Central de Venezuela por el soporte económico al Proyecto de Laguna Grande. Al Br. Sergio Pacheco, Sr. Tomas Pino, y Br. Alexandra Dorante por su colaboración en el trabajo de campo.

---

**LITERATURA CITADA**

**ABRAHAMSON, W. G.**

**BARRAT-SEGRETAIN, M. H.**


**BROCK, M. A.**

**CRAWFORD, R. M. M.**

**COOK, C. D. K.**

**COLONNELLO, G. Y. E. MEDINA**

**COOPS, H., F. W. B. VAN DEN BRINK Y G. VAN DER VELDE**


