
Revista Venezolana de Computación
ISSN: 2244-7040

http://www.svc.net.ve/revecom

Vol. 4, No. 1, pp. 10-21, Junio 2017

Fecha recepción: 29/04/2017, Fecha aceptación: 30/07/2017

de Computación

Experience on Software Product Line Domain Engineering for

Mobile Computing
Francisca Losavio

1
, Oscar Ordaz

1,2

francislosavio@gmail.com, oscarordaz55@gmail.com

1
 Escuela de Computación, Laboratorio MoST, Universidad Central de Venezuela, Caracas, Venezuela
2
 Escuela de Matemática, Laboratorio MoST, Universidad Central de Venezuela, Caracas, Venezuela

Abstract: Domain Engineering (DE) is crucial to determine limits and feasibility of a Software Product Line (SPL), or
family of similar products or systems sharing common and reusable elements or core assets in a domain or market sector.
The main goal of this work is to present an industrial experience centered on the PLScope phase of DE, considering a
Quality-driven Domain Engineering Process (Q-DEP), using a bottom-up strategy based on the study of the enterprise
existing products, to reduce the effort in the subsequent DE phases. This approach is more low cost and light weighted than
the proactive (top-down) approach; however, both are recommended for SPL development by the ISO/IEC 26550 and
Software Engineering Institute frameworks. Q-DEP has been applied successfully on a small-medium size Mobile
Computing (MC) consortium that wanted to migrate to SPL. However, SPL development requires a huge engineering effort
to build its main reusable artifact, the Reference Architecture (RA), or instantiable schema to derive concrete SPL products.
RA is a highly abstract software architecture defined by components and connectors, holding placeholders to perform
instantiation to derive new products. MC is facing increasing software demand, being a development based on information
technology, fast multimedia transmission via computer or any wireless connected mobile device. MC does not deal with
complex systems, but it must withstand very fast development/delivery issues and priority quality requirements such as
efficiency, portability, usability and availability. Developers’ teams work independently and loose effort in programming
resources. The MC consortium wanted to build a first asset repository, to start migrating to SPL; construction of RA was
not planned at the project start. However, the domain and existing products study was crucial to build the first asset
repository, and our bottom-up process reduced the effort of the subsequent phases, hence RA was relatively easy to build.

Keywords: Domain Engineering; Software Product Line (SPL); Mobile Computing; Reference Architecture; Asset
Repository; Q-DEP; bottom-up strategy

I. INTRODUCTION

Software Product Lines (SPL) for a particular domain or
market sector, is an approach to industrial software
development that provides massive personalization of
individual solutions, sharing elements from a repository of
reusable software assets, organized into a Reference
Architecture (RA) with an instantiable schema, to derive
concrete products of the SPL family [1][2][3][4][5]. A domain
is defined in [6] as the minimal set of properties describing
precisely a family of problems in which a computational
application or system is involved for their solution. SPL
Engineering (SPLE) is a huge and costly process since it
involves the construction of an evolutionary RA. Two main
lifecycles drive this “heavy” SPLE process: Domain
Engineering (DE), where the RA and the Asset Repository are
constructed, and Application Engineering (AE), where the RA
schema or variability model is instantiated to derive new
products [5] and the Asset Repository is also updated. In this
work, DE and its first phase, the Product Line Scoping
(PLScop) as recommended in the new standard ISO/IEC 26550

[5] will be considered. It takes into account the study of
existing products built by the enterprise or available on the
market, which is the base of our RA extractive bottom-up
development strategy, derived from architectural-centric
approaches. The Software Engineering Institute (SEI) [31]
mentions that the reactive/extractive approach has the
advantage of a much lower cost to start an SPL migration
because the core asset base is not built up-front, and an existing
product can be extended with new features to incrementally get
the RA; it is much used in industrial practice and it contributes
to reduce the huge effort required by the subsequent DE phases
as it has been observed in [17]. The reactive approach
considers one existing product that is extended to conform a
SPL; the extractive approach instead considers a refactoring of
several similar existing products to identify common and
variant components to achieve the RA. The PLScop phase [5]
deals with a broad capture of domain knowledge, to delimit the
SPL application ambit, including risk analysis, economical
feasibility and identification of the SPL family of products to
be constructed. PLScop becomes necessary, since the
knowledge on the SPL domain should be captured early, to

10

reduce the major effort concentrated on the subsequent phases
of Domain Requirements Engineering (DRE) and Domain
Design (DD), where RA is actually built. Quality assurance
should also be taken into account early, because quality related
to domain functional (FR) and non-functional requirements
(NFR) is responsible in a major degree of the SPL variability;
however most of the approaches leave it to the DD phase. Our
basic idea is to consider software components, often-common
components that respond to precise quality goals, provided by
others, often-variant components. Traceability of functional
(FR) and non- functional (NFR) is achieved by construction,
thus guaranteeing the RA evolution.

The main goal of this paper is two-folded; on one hand an
industrial experience in the Mobile Computing (MC) domain,
applying successfully a quality driven “semi-agile” light
weighted DE process is related. On the other hand, the
complete process that has been defined, applied and illustrated
with the industrial case study is presented.

The fast world-wide network connection responsible of the so
called “globalization”, gave origin to MC software
development [7][8], an approach highly based on Information
Technology (IT), allowing fast multimedia (data, voice, video)
transmission via a computer or any wireless connected mobile
device. Mobile software development involves widespread use
of IT tools, often free and open-source support platforms,
toolkits, etc., that can change rapidly over time. The new
Mobile Software Engineering (MSE) discipline emerges [8],
with the main trends of mobile communication, mobile
software and hardware. In particular, mobile software is
characterized by: - Web Applications (Web Apps) displayed on
the user’s device through a browser and executed on a remote
server, - Native Applications (Apps) designed and developed
for a particular device, but downloaded and installed by the
user on his device, and – Hybrid applications, exposing Web
Apps contents in Apps formats. Mobile software is not
intensive software and does not involve thousands of lines of
code, but it must be developed very fast to satisfy a huge
market demand and its dynamic nature. Moreover, it must have
a certain quality level, expressed by quality requirements such
as usability, efficiency and availability, being this crucial for
the immediate acceptance or rejection of the product; the wide
spread use of rapidly implemented and evolutionary IT
characterizes this kind of development, being client satisfaction
one of the main goals. However, the success of a software
application, mobile or not, depends not only on its functional
suitability representing adequate FR, but also on the
satisfaction of the quality properties representing NFR,
required by these functionalities to have a suitable behavior
[8][9][10].

Good practices of software engineering, as recommended in
[11] are not widespread in MSE [8]. Important aspects to be
considered relative to the quality properties already mentioned,
are: - the integration of hardware and software, - limited
resources such as data storage and display for the User
Interface (UI) on reduced size screens with different
resolutions and devices, - frequent changes in IT, - use of
interoperability standards, and traditional quality requirements,
such as – portability to different platforms, - reliability w.r.t.
availability of Internet connection, - security to guarantee
access control, and finally - efficiency in the UI display and

process services to execute functionality. In view of the
growing demand of mobile applications from 2007

1
 with the

iPhone success, a survey in [8] on main practices used in
mobile software development, reported the following important
aspects:

1. Applications are “small”, few thousands of lines of code in

average, involving only one or two developers.

2. There is quite a difference between Apps and Web Apps.

3. No development methods are used in this domain.

4. Developments are not documented and very few metrics are

registered.

Notice that points 3 and 4 are against software engineering best
practices

2
. Nevertheless, lots of commercial platforms are

available to develop mobile applications, and as it will be
shown later on, they allow guaranteeing to a certain extent the
accomplishment of priority quality properties required by the
functionalities. With respect to point 3, the so called “agile”
methods, practices and techniques [12][13][14], usually driven
towards a rapid UI development to achieve client satisfaction,
are recommended for MSE [8][15].

We faced the problem of a small-medium sized (more than 20
employees) mobile software enterprise that wanted to identify
reusable software assets to build a first repository of reusable
software components (modules, toolkits, APIs, mechanisms,
etc.). They were working on three different sub-domains of
MC (financial transactions, healthcare systems and
entertainment contents), and the programming effort was
triplicated, since it was not known which semantically similar
components were actually used in which sub-domain. Our
proposed solution was a “slow” migration towards a MC
product line, starting with the constructions of a high-level
Core Asset Repository, holding reusable and variant
components used within the different products developed by
each sub-domain of the enterprise. The project at first did not
pretend to construct a RA for the enterprise SPL and only the
PLScop phase was to de developed. However, in order to
construct a first draft of the repository, a complete DE process
had to be done, but they had no time and no human resources,
dedicated mostly to development, to employ into such a huge
task. In consequence, a “light” or “semi-agile” DE phase of
SPLE was proposed, including PLScop, Domain Requirements
Engineering (DRE) and Domain Design (DD) phases [5].
However, for the product line migration to be successful, the
architecture and other core assets must be robust, extensible,
and appropriate to future product line needs [31], and a RA
could be constructed in this way for each sub-domain, profiting
from the extractive bottom-up design. The process should start
by reengineering the available information to construct the
architecture of each product/system within the sub-domain,
studying similarities and differences among components on the
basis of interviews and meetings (architecture documentation
was absent, as usual in industrial practice). Based on the
extractive strategy, the bottom-up approach was applied,
meaning that more than one product built by the enterprise had
been considered, to construct automatically an initial
Candidate Architecture (CA) represented by a connected graph
[10], by the graph union of the existing products’ architectures,

1 https://wikipedia.org/wiki/History_of_iPhone
2 http://technav.ieee.org/tag/4655/best-practices

11

Revista Venezolana de Computación - ReVeCom (ISSN: 2244-7040) - SVC
Vol. 4, No. 1, Junio 2017

designed at a high abstraction level, also represented by graphs.
To achieve this, the process Q-DEP: Quality-oriented Domain
Engineering Process was defined, adapted from [24], and
applied during a period of six months.

Q-DEP concerns the main phases of the DE lifecycle including
a first assessment for an Asset Repository; it does not involve
source code reengineering; the information on the products
developed by the enterprise was captured via an “agile”
practice, from a quiz and several interviews with the developer
teams’ leaders, until a consensus on the configuration of the
existing products’ architectures, in terms of high-level
description of components and connectors [16], is achieved.
Notice that similarities among the products developed are
assumed to exist because they belong to the same domain/sub-
domain. We recall that in general industrial practice the logic
view of the software architecture is not developed, and often
the only documentation available are deployment diagrams
representing physical nodes where components are running
[32]; however, it is required to construct the RA in the SPLE
approach, to identify common components and variant
components (they do not appear in all products) involved. Fine
grained goals of this work are: a) design an RA for each sub-
domain, according to a bottom-up approach based on the
refactoring of existing products’ available documentation, built
and used by the enterprise, b) conform a first draft of the assets,
a list of common and variant components that are used within
the enterprise products, and c) Illustrate the stepwise
application of the process considering only one of the sub-
domain for this presentation.

In addition to this introduction, this work is structured as
follows: Section II discusses some related works; Section III
describes the Q-DEP process (phases, activities); Section IV
shows Q-DEP applied to the Healthcare Information Systems
(HIS) case study of the sub-domain of the XX-MC enterprise.
Finally the conclusion and perspectives are presented.

II. RELATED WORKS

Very few scientific research works were found discussing MC
and even less about SPL for mobile computing. Few use a
bottom-up strategy, which we consider a much more
pragmatic, fast and practical approach to SPL development,
since the fact of having one or more existing products available
on the market or developed within the enterprise, is a more
common situation than to build the SPL from scratch (top-
down approach) [10][31]. The new standard SPL Reference
Model [5], even favoring a global proactive top-down
approach, introduces explicitly an initial scoping phase to
handle this problem, including a product portfolio that can be
built from products on the marketplace and/or from the
enterprise own products, using bottom-up techniques. In this
work, we have adopted this strategy, also to reduce the effort in
the subsequent DE phases, including however quality issues,
even in this first phase, differing from [5], which delegates
these activities to the late DD phase [17]. The following works
will be discussed:

 A method is proposed in [18] for UI development in the
MC domain, called GeMMINi; Model Driven Design
(MDD) is used to model transformations, combined with
feature modeling [19]. The method is very informally
specified; it describes at a high abstraction level UI

requirements and the device variants, applying model
transformations and generating code to obtain Apps for UI
on different devices. A catalogue of patterns is defined to
translate UI abstract concepts into concrete device
specifications; it is used to configure the transformations;
the user interaction is specified into “units” with UML
class diagrams, containing the data structure descriptions.
The specification of properties and variants of the devices
are provided by an ontology-based feature model [19][20],
to specify some aspects of the interaction. As it is usual in
feature models approaches, no RA is considered.

This paper involves the DE and IA cycles of SPLE;
however, just the UI component is treated, and recent
mobile computing development toolkits already exist to
conform the UI for each device, such as IONIC

3
. Only

functional variability is handled, because the usual feature
model only considers this aspect, even if lots of works
have been done to include also non- functional variability
[10]. Our approach with Q-DEP is more fine-grained; we
handle the refactoring of all main components obtained
from the architectural configurations of similar products
within the enterprise. We don’t use feature modeling nor
MDD, using a scenario-based approach instead [21]; an
initial CA is automatically constructed, by the “union” of
the graphs representing the architectures of the existing
products, establishing a first variability model that can be
completed with additional information. We retrieve
traceability among FR and NFR on the bases of tables
representing scenarios [21], where each component or
service solving a quality property required by a
functionality, is specified.

Previous works [10][22][23][24] have evolved to define the
present Q-DEP process. They will be discussed in what
follows:

 The work in [22] treats the robotics domain.
Reengineering techniques are mostly used, from code or
documentation, to reconstruct the architecture of existing
products in the enterprise. RA is built manually and
directly, without considering an intermediate architecture.
The justification of the satisfaction of NFR is very
informal and standards are not used to specify quality
properties. It has inspired our present research.

 The idea of representing a software architecture [16] by a
connected graph was developed in [23], to perform the
automatic “union” of the refactored architectures of
similar existing products (belonging to the same domain),
according to a bottom-up strategy inspired in [22]; in this
way a first CA was constructed, showing common and
variant components obtained from the products
considered. Quality properties are grouped as scenarios in
the Extended Quality Model (EQM) Table, and were
specified by the standard ISO/IEC 25010 quality model
[9]; EQM contains components and their required quality
properties; however traceability among FR and NFR was
not completely justified and the variability model was
established according to an optimization process. The
process was applied to the robotics domain, as in [22].

3 https://ionicframework.com/docs

12

F. Losavio, O. Ordaz

 The process originally defined in [21] was reformulated in
[10] into a new process NF-VAR, to construct RA,
combining the extractive bottom-up strategy with goal-
oriented techniques [25], using the Softgoals
Interdependence Graph (SIG) diagram, to complete the
CA obtained automatically [23], with new components
introduced to satisfy NFR. NF-VAR was applied to the
Healthcare Information Systems (HIS) domain, using
three open-source market products, OpenEMR

4
,

PatientOS
5
 and Care 2X

6
. However, the use of the SIG

was not straightforward, even if tools such as GRL
7
 were

available; it is difficult to handle complexity with this
diagram, which does not offer a standard notation.

 The QuaDRA (Quality-oriented Design of Reference
Architecture) process was specified for SPL in [24]; the
new ISO/IEC 26550 standard defining the SPLE
Reference Model [5] was followed to include PLScop, the
first DE phase, to reduce the effort in the subsequent DRE
and DD phases of DE. The NF-VAR process defined in
[10] fitted well into PLScop, to construct the SPL product
portfolio and to produce automatically CA and the EQM
Table; the Domain Scoping phase taken from [26], was
used to complete CA with additional information captured
by different stakeholders viewpoints, including quality as
a new intrinsic facet to describe stakeholders viewpoints.
In this way, business processes specified in BPMN were
integrated to the process, attaching quality requirements to
each functional task. In this way the use of the SIG was
avoided.

Q-DEP was adapted from [24]: business processes
specification were not included to have a more “light
weighted” DE process. Requirements elicitation was done
using “agile” practices by interviewing stakeholders and
performing meetings to achieve a consensus on
components and connectors conforming the architectural
configuration [16]. Our process is highly based on the
provide/require scenarios tables for quality properties
traceability, maintaining the CA automatic construction by
a bottom-up strategy.

III. Q-DEP: QUALITY-DRIVEN DOMAIN ENGINEERING PROCESS

A PL Scoping phase including Domain Analysis activity and
some technics inspired from agile methodologies are focused
in Q-DEP to achieve a “light” DE process; it does not consider
business processes as in [24], being more oriented towards a
“naïve” but practical approach of DE, involving direct
interaction with project leaders. Three main phases of the DE
lifecycle have been considered: 1. PLScop (SCOP) with main
activities: – Build Product Portfolio (ProdPort), - Agile
Domain Analysis (ADA), - Assets Identification (AssetT), and
Build Global Assets (GLAsset); 2. Domain Requirements
Engineering (DRE) with main activities: – Build Candidate
Architecture (CA), Build the UML representation of CA, and
Build EQM, and - 3. Domain Design (DD) with main
activities: – Build Reference Architecture (RA), – Elaborate
General Assessment Document (GAD). The complete process
is specified in Figures 1 and 2; the main effort is concentrated

4 https://www.open-emr.org
5 https://sourceforge.net/projects/patientos
6 https://www.care2x.org
7 Goal-oriented Requirement Language, https://www.cs.toronto.edu/km/GRL

in Phase 1 SCOP, but this will reduce the work in the
subsequent phases. When ADA is mentioned [27], we do not
pretend to develop or use a complete “agile” methodology [12]
[13][14], but just use some basic technics such as interviews
and meetings with main project leaders. We want to achieve a
consensus on the enterprise product components, connectors
and architectural solutions. The number of meetings will
depend on the complexity observed during the first meeting to
elicitate the information on the enterprise domain/sub-
domain(s). We recall that even if agile methods are suggested
for the MC domain, we face an SPL context where a family of
similar systems is built, and agile methods seems to be better
suited for single systems’ development [28].

To achieve a variability model imbedded into the RA [5]
showing the placeholders to be intatiated, the products’
common components are identified from a semantic viewpoint,
considering the accomplishment of functionally similar tasks;
the variants components will then be glued also according to
the similarity of their tasks, into categories called variation
points [3], which are sets of variant components.

IV. APPLICATION OF Q-DEP TO THE HEALTHCARE

INFORMATION SYSTEMS SUB-DOMAIN

Q-DEP was applied successively to three sub-domains
(financial transactions, healthcare information systems and
entertainment contents) of the XX-MC enterprise. Recall that
the enterprise problem was to determine the main components,
modules, support platforms and/or toolkits that had been used
in product developments, to avoid repeated programming
efforts. The application of the process was done for the three
sub-domains during 6 months; about a hundred components
were identified as assets for the three sub-domains.

Q-DEP will be applied here to the Healthcare Information
Systems (HIS) sub-domain.

The general HIS architecture is a hybrid event-based style,
SOA8/Layers, following a client-server model for
distribution and communication. HIS must facilitate
transparent sharing of different kinds of medical
information such as EHR and laboratory and imaging
results, offering also telemedicine services that can be
performed on-line at remote locations, with wide support of
information technology. The use of standards such as HL79,
HL7 CDA, LOINC10, and DICOM11 are mandatory for
interoperability of HER, and laboratory and imaging
results. Nevertheless, in actual medical practice, SPL for HIS
have not yet been completely defined, developed and
adopted; the lack of agreement on medical standards and
psychosocial issues makes difficult the interoperability of
EHR, and HIS general adoption is still difficult, even if
specific laws and regulations towards these goals have
been promulgated worldwide.

8 Service-Oriented Architecture
9 https://www.hl7.org
10 Logical Observation Identifiers Names and Codes
11 Digital Communication in Medicine

13

Revista Venezolana de Computación - ReVeCom (ISSN: 2244-7040) - SVC
Vol. 4, No. 1, Junio 2017

Figure 1: Q-DEP – Phase 1 SCOP – UML12 [29] Activity Diagram

We will be limited here to basic HIS functionalities, handled
by most open-source HIS, and with the physical doctor-patient
encounter episode.

A. Phase 1. SCOP Applied to the HIS Sub-domain

SCOP input:

 One quiz and two meetings: the following general
information was elicitated:

 Business goals:

 Facilitate information management to doctors and provide
aggregate value to patients with on-line IT via Web, on
stand-alone or mobile devices.

 General requirements for Patients:

- Personal data can be modified by authorized doctors or

by patient.

- A Patient can be registered into the system by a doctor:

he cannot enter the system without receiving and

answering the invitation generated by the doctor.

- Images are registered by image laboratories, or other

image centers (to be developed): - Data persistency: a

package is offered for the period that a patient data has

to be kept; - patient is notified for payment.

- Doctor associates data to patient during the first

appointment, allowing him to consult/modify his

personal data.

12 Unified Modeling Language

 General requirements for Doctors:

- He can register to the system personally or have been

invited by a patient when he associates him to his data.

If he will not answer, he will not be registered by a

patient invitation.

- If no Internet connection is available, manual data

transcription (24x7x365) should be managed

 Business Rules (BR): use of the proprietary AWS
(Amazon Web Services) provider to have Infrastructure
as a Service (IaaS) cloud configuration, use of
PostgreSQL Database Management System (DBMS), use
of Java

13
 language & related platforms

Figure 2: Q-DEP – Phase 2 DRE & Phase 3 DD – UML Activity

Diagram

1. Build Product Portfolio (ProdPort) - Activity 1.1:

 Products identified were: Web Application (WebApp) – for
patient attention services, general medical practice,
administration; displayed via a browser and executed
through AWS; Native Application (NatApp) free
download from Apple Store (iOS) and/or Paly Store
(Android) and displayed on the client device, offering the
same services as WebApp, also through AWS. The UI of

13 un Microsystems

14

F. Losavio, O. Ordaz

both products interacts with the AWS cloud services for
data process, retrieval and storage; two main components
are distinguished: FrontEnd (Presentation Layer) and
BackEnd (Process and Data Layers); Table I shows main
NFR and main support IT mechanisms used, for each
product in each layer; a similar product available on the
market was Viewmed online

14
.

 Future products or extensions that could be developed: -
assure EHR interoperability with standard formats, like
HL7; - Graphical imaging management; - assure EHR
availability, since it depends on the cloud; - on-line help to
diagnosis; - use of digital electronic payment media.

 Products Portfolio (ProdPort): WebApp, NatApp.

Table I: NFR - FrontEnd – Presentation Layer

FrontEnd NFR WebApp – IT tools

satisfying NFR

NatApp – IT tools

satisfying NFR

usability CSS315 for page styles; it

depends on the page design

Java and Swift16

languages for secure

messages services

portability AngularJS17-JavaScript18,

HTML519

Swift for iOS and Java

for Android SDK 20

maintainability

(modifiability)

AngularJS, with MVC21 to

separate Presentation and
Process layers

BackEnd - Ruby-on-

Rails22 provides the
RESTful Web service

with MVC to send data

to NatApp, to separate
Presentation and Process

Layers

Resources
utilization (time

efficiency)

Bootstrap23 FrontEnd
framework

Java and Swift languages

Security

(authenticity,
confidentiality,

integrity)

Module developed by the

enterprise for access control
and role policy

Module developed by

the enterprise for access
control and role policy

Table II: NFR - BackEnd – Process Layer

BackEnd NFR WebApp – IT

mechanisms satisfying

NFR

NatApp – IT

mechanisms

satisfying NFR

security (authenticity,
confidentiality,

integrity)

HTTP/HTTPS24; system
access control, roles

policies to access EHR

are in a separate module
developed by the

enterprise

same

portability Ruby-on-Rails: open

source platform and
Ruby language; it can

work without a specific

dada base

same

reliability

(robustness)

Ruby-on-Rails same

14 https://www.viewmedonline.com
15 https://developer.mozilla.org/es/docs/Web/CSS/CSS3
16 https://www.swift.com
17 https://angularjs.org
18 https://www.javascript.com
19 http://www.w3.org/TR/2014/REC-html5-20141028
20 https://stuff.mit.edu/afs/sipb/project/android/docs/sdk/index.html
21 Model, View Controller (GOF pattern), https://wikipedia.org/wiki/Model–

view–controller
22 https://rubyonrails.org
23 https://getbootstrap.com
24 Internet Communication Protocols

reliability

(availability-
persistency)

PostgreSQL DBMS for

data persistency via
AWS; the system

availability depends on

the AWS connection

same

modifiability Ruby-on-Rails same

interoperability AWS cloud services same

2. Agile Domain Analysis (ADA) – Activity 1.2:

 The architectural style(s) used were: event-based/layers,
with a client-server model for distribution and
communication.

 Priority of FR and NFR: - Priority NFR: security (1),
interoperability (1), availability (1), efficiency (time and
resources) (2), usability (for the FrontEnd design) (2),
maintainability (modifiability) (3), correctness-precision

(3), where 1≤priority≤3; - Priority FR: Appointments

and turns control, HER Management (1), Support for
Doctoral Practice, for access roles management.

 Quality Model (DQM) by [ISO 11], considering FR&NFR
(Tables I and II) BR&IT, quality properties from
architectural styles: security, portability, maintainability
(modifiability, reuse), usability, efficiency (time,
resources, scalability), reliability (availability, maturity-
robustness), functional suitability (correctness-precision).

 Similarity Analysis between products’ components: It is
shown in Table III, for each product; “R” represent the
relation or connector between two components; common
components are outlined in grey; the name of the
components are taken from Tables I and II; components
are labeled sequentially according to the layer and the sub-
domain:

Table III: CCT Table showing Components and Connectors

FrontEnd - Presentation Layer BackEnd - Process and Data

Layers
WebApp NatApp

a1. FrontEnd

a2. WebPortal
-

a4. In

Browser
a5.In

AngularJS

a6. In
HTML5

a7. In CSS3

a8. In
Bootstrap

-

-

a1

 -
 a13. UI

-

-

-

-

-

- a14. Java-Android

- a15. Swift-iOS

 Connectors

a1Ra2

-

-
-

a2Ra4

-

a1Ra13

a13Ra14
a13Ra15

-

 WebApp & NatApp

b1. AWS – BackEnd

 b34. Ruby-on-Rails

 b35. Patient

 b36. Register Patient

 b37. Appointments and
 turns

 b38. EHR Management

 b39. Medical Practice

 b40. Register Doctor

 b41. Examinations

 b42. Recipes and
 Medicines

 b43. Medical Reports

 b44. Administration

 b45. Billing

 b46. Laboratory

 b47. Insurance

 b48. Security

 b49. Lab Info

 c1. DBMS
 c2. PostgreSQL

 Connectors

b1Rb34

b34Rb35, b35Rb38, b34Rb39,

b34Rb44, b34Rb48, b34Rc1
b35Rb36, b35Rb37, b35Rb38,

b35Rb39, b35Rb44, b35Rb48

15

Revista Venezolana de Computación - ReVeCom (ISSN: 2244-7040) - SVC
Vol. 4, No. 1, Junio 2017

a2Ra5

a2Ra6
a2Ra7

a2Ra8

a2Rb1
-

-

-
-

-

-
a13Rb34

b38Rb39, b38Rb48

b39Rb40, b39Rb41, b39Rb42,
b39Rb43, b39Rb44, b39Rb48,

b39Rc1,

b44Rb45, b44Rb46, b44Rb47,
b44Rb48, b46Rb49

c1Rc2

 Architecture of the main products developed: it is built
using the identified components and connectors for each
product from CCT Table (see Table III, Figures 3 and 4).

 Notice that in the FrontEnd, excepting the main
component a1. FrontEnd, there are no common
components; user-interfaces are different because one is a
Web page for WebApp and the other is a classic stand-

alone UI for NatApp; all components in the BackEnd are
common.

 For each product developed by the enterprise, the
traceability between the components of the architecture is
established in the TraT Table (see Table IV).

 Notice also that a separate table should have been built for
each product, but in this case only the FrontEnd was
different and both tables were integrated to abridge the
presentation.

3. Assets Identification - Activity 1.3:

Main common and variant assets for the sub-domain are
determined building the AssetT, see Table V;

Figure 3: Architecture of WebApp Product Expressed in UML 2.0 Figure 4: Architecture of NatApp Product Expressed in UML

2.0

16

F. Losavio, O. Ordaz

Table IV: TraT Table showing Required Quality Properties and IT Components Providing them

WebApp and NatApp

Components

Required Quality

Property

Provided IT Tool

to satisfy Quality

Property

Description/Comments

a1. FrontEnd

 - a2, Web Portal

 - a13. UI

- availability
- usability

- modifiability

- efficiency
- portability

- portability

- usability

- modifiability

- availability

- efficiency

- security

- a4. In Browser
- a6. In CSS3

- a5. In AngularJS

- a7. In Bootstrap
- a8. In HTML5

- a14. In Java-
Android

- a15. In Swift-iOS

- b34. Ruby-on-

Rails

- 100% on device

- b34. Ruby-on-

Rails
- b34. Ruby-on-

Rails

- depending on the browser availability
- cascade style for HTML documents

- open framework, JavaScript-MVC

- open framework for development
- markup language version 5

- display on different OS with Java and Swift

- UI is developed in Java and Swift languages; usability
depends on the design, it will not be assured by the

architecture

- Web service RESTful of Ruby-on-Rails is provided by the
BackEnd

- it is a stand-alone UI; downloaded form App Store (iOS) or

Paly Store (Android); the execution of functionalities
depend on the availability of the cloud services

- open-source developing platform

- module developed by the enterprise for access control and

role policy, in the BackEnd

b1. AWS - BackEnd

- b34. Ruby-on-Rails

 - b35. Patient

 - b36. Register Patient

 - b37. Appointments

 and turns

 - b38.HER Management

- b39. Medical Practice

 - b40. Register Doctor

 - b41. Examination

 - b42. Recipes and
 medicines

 - b43. Medical Reports

- portability

- interoperability
- modifiability

- security

- reliability
(availability-

persistency,

robustness)

- reliability

(availability-
persistency,

robustness)

- portability-
modifiability

- security

(authenticity,
confidentiality,

integrity)

- availability-
persistency

- same as b34

- same as b34 +

correction-
precision

- security

(authenticity,
confidentiality,

integrity)

- availability-
persistency

- efficiency

(resources-
scalability)

- interoperability

- availability-

persistency

- security
(authenticity,

confidentiality,

integrity)
- same as b39

- same as b39

- same as b39

- same as b39

- Cloud services

provider

- HTTP/HTTPS

- Development

Platform

- b48. Security

- c2. PostgreSQL

- b34

- b34

- b48. Security

- PostgreSQL

--- absent --

- same as b38

- b48. Security

- same as b39

- same as b39

- same as b39

- same as b39

- IaaS; AWS is compliant with the quality of cloud services

- network communication protocols

- open-source development platform, includes components

and sub-components

- Module developed by the enterprise for access control and

role policies

- Microsoft relational DBMS; on-line availability depends on
Internet connection since it runs on the cloud; b16. Ruby-

on-Rails holds mechanisms for portability to Java objects

- handled by b34. It was not specified as a specific component
or module

- Module developed by the enterprise for access control and

role policies

- Microsoft relational DBMS; on-line availability depends on
Internet connection since it runs on the cloud; b16. Ruby-

on-Rails holds mechanisms for portability to Java objects

- to be developed – integration of IT tools for HL7

- Module developed in Java by the enterprise for access
control and role policies

- b40, b41, b42, b43 are sub-components of b39

17

Revista Venezolana de Computación - ReVeCom (ISSN: 2244-7040) - SVC
Vol. 4, No. 1, Junio 2017

- b44. Administration

 - b45. Billing

 - b46. Laboratory

 - b47. Insurance

- b48. Security

- b49. Info Lab

c1. DBMS

 - c2. PostgreSQL

- security

(authenticity,
confidentiality,

integrity)

- correctness-
precision

- efficiency

(response time)
- interoperability

- the same as b44

- the same as b44
- the same as b44

- security
(authenticity,

confidentiality,

integrity)

- availability-

persistency

- all DBMS

quality properties
hold

- the same as c1

- b48. Security

- b34

- b34

- Adobe Acrobat

- the same as b44

- the same as b44
- the same as b44

- Module

- external module to

AWS

- Database

Management
System

- same as c1

- Module developed in Java by the enterprise for access

control and role policies
- handled by b34. It was not specified as a specific component

or module

- handled by b34. It was not specified as a specific component
or module

- handled by b34. It was not specified as a specific component

or module
- pdf files

- b45, b46, b47 are sub-components of b44

- developed in Java by the enterprise for access control and
role politicies

- it contains laboratory information; used by b46

- Microsoft relational DBMS; b16. Ruby-on-Rails holds

mechanism for portability to Java objects; quality properties
are provided by DB mechanisms.

Table V: AssetT Table showing main Assets used by Products WebApp and NatApp
Layer WebApp and NatApp Components Comments

FrontEnd - Presentation Layer - a1. FrontEnd

- a2. Web Portal
- a4. In Browser

- a6. In CSS3

- a5. In AngularJS
- a7. In Bootstrap

- a8. In HTML5

- a13. UI
- a14. In Java-Android

- a15. In Swift-iOS

- No common assets

BackEnd- Process Layer - b1. AWS – cloud services

- b34. Ruby-on-Rails
- b35. Patient

- b36. Register Patient
- b37. Appointments and turns

- b38. HER Management

- b39. Medical Practice
- b40. Register Doctor

- b41. Examination

- b42. Recipes and medicines
- b43. Medical Reports

- b44. Administration

- b45. Billing
- b46. Laboratory

- b47. Insurance

- b48. Security
- b49. Info Lab

- b80. InteropEngine

- b81. Imaging

- All assets are common to WebApp and

NatApp
- b35, …, b48 are common components

developed by the enterprise

- New component

- New component

- Internet communication protocols, variants for

WebApp and NatApp

Communication Protocols - HTTP/HTTPS - Common for layers’ interface

BackEnd - Data Layer - c1. DBMS
- c2. PostgreSQL

- Common to WebApp and NatApp; portability
to Java objects is responsibility of b16. Ruby-

on-Rails

SCOP output:

ProdPort (WebApp, NatAPP), FR (Table I), NFR (Table I),

CCT Table (Table III), TraT Table (Table IV), AssetT Table

(Table V), WebApp architecture (Figure 3), NatApp

architecture (Figure 4).

B. Phase 2. Domain Requirements Engineering (DRE)

Applied to the HIS Sub-domain

1. Build Candidate Architecture (CA) – Activity 2.1:

Automatic construction of CA by the union of the

graphs representing the products’ architectures, using

18

F. Losavio, O. Ordaz

the information provided by SCOP artifacts: ProdPort,

CCT and TraT tables.

2. Build UML representation of CA –Activity 2.2:

It is shown in Figure 5. variants are a2 and a13 on the

FrontEnd and the connectors to the BackEnd; all other

components are common.

3. Build table EQM – Activity 2.3:

Integrate the TraT tables for each product with

provided/required quality properties and possible

constraints, see Table VI. EQM shows a different CA

view, documenting possible scenarios of IT

components satisfying quality requirements. In this

case the BackEnd is similar for both products and the

EQM table is very similar to the TraT table; only the

FrontEnd will be shown in Figure 6, as an example of

the EQM Table.

4. Update CA with new components – Activity 2.4:

it was not necessary in this case because there were no

new components.

5. Update AssetT – Activity 2.5:

with respect to CA which has been automatically built;

the new components for interoperability and imaging

will be added, they are placed directly in Table V

(AssetT Table) to abridge the presentation.

6. Update GLAssetT Table – Activity 2.6:

GLAsset = AssetT in this case, since only one sub-

domain is considered.

Table VI: EQM Table

CA Components Quality Property

required by

Component

IT Components

satisfying Quality

Properties

Description/Comments/Constraints

a1. FrontEnd

- a2. Web Portal (variant)

- a13. UI (variant)

- availability

- usability
- modifiability

- efficiency

- portability
- security

- portability

- usability

- modifiability

- availability

- efficiency

- security

- a4. In Browser

- a6. In CSS3
- a5. In AngularJS

- a7. In Bootstrap

- a8. In HTML5
- b34. Ruby-on-Rails

- a14. In Java-Android

- a15. In Swift-iOS

- b34. Ruby-on-Rails

- 100% on device

- b34. Ruby-on-Rails

- b34. Ruby-on-Rails

Process and Data Layers

- depending on the browser availability

- cascade style for HTML documents
- open framework, JavaScript-MVC

- open framework for development

- markup language version 5
- accessed at logging the system

- display on different OS with Java or Swift

depending on the device OS

- UI is developed in Java and Swift

languages; usability depends on the design,
it will not be assured by the architecture

- Web service RESTful (MVC) of Ruby-on-

Rails is provided by the BackEnd

- it is a stand-alone UI; downloaded form

App Store (iOS) or Paly Store (Android);
- the execution of functionalities depend on

the availability of the cloud services

- open-source developing platform

- a2 and UI, including their sub-components,

cannot be present together in a product
configuration

- Accessed at login

C. Phase 3. Domain Design (DD)

1. Build the Reference Architecture (RA) – Activity 3.1:

 Build Variation Points by grouping variant components
performing similar tasks: there are three variation points
for the FrontEnd: - <<a16. Portal>>, which includes
different portals that can be built considering also the sub-
variation point <<a40. PortDevPlatforms>> where
choices of platforms could be made according to IT
changes; - <<a17. UInterface>> that can include
different stand-alone UI designs and also different IT
choices; - <<a18. UInterfaceConnector>>, because a2
and a13 connect differently to b1. BackEnd: a2 using b4.
AngularJs who provides the separation of Presentation and
Process Layers to get modifiability; a13 uses instead b34.
Ruby-on-Rails with the RESTful service for MVC to get
also modifiability. It is clear that new IT mechanisms will
continue to appear on the market, similar to those used by

the enterprise and other cloud services providers besides
AWS, and other developing platforms besides b34. Ruby-
on-Rails could be adopted, hence two new variability
points are included in the BackEnd, <<b82. Cloud
Services>> and <<b83. BEDevPlatforms>>, because can
be also changed, providing more genericity to this HIS
RA.

 Build the RA UML diagram representing the architecture:
it can be seen in Figure 6. New components that have been
stated in Future products are included, b80. InteropEngine
for HL7 standard and b81. Imaging to handle graphic
imaging.

19

Revista Venezolana de Computación - ReVeCom (ISSN: 2244-7040) - SVC
Vol. 4, No. 1, Junio 2017

2. Elaborate the GAD Document – Activity 3.2:

The GAD document contains basically a summary of the

artifacts obtained, limitations and recommendations.

Among the limitation:

 The architecture documentation (components and
connectors) [16] was almost absent for the enterprise,
being reduced to just an incomplete deployment diagram;
however it was found that now with the UML 2.0
architectural diagrams provided, deployment diagrams
could more be easily designed, knowing explicitly all the
components that were using.

 No standards were used.

Among the recommendations:

 Maintain updated all the tables and diagrams in case of
changes, since they are the reusable assets, including the
RA diagrams or documentation.

 Incorporate as soon as possible a standard format for
EHR.

 The GLAssetT Table should be implemented as a “real”
Core Asset Repository of the artifacts produced.

Figure 5: HIS CA Expressed in UML 2.0: Union of WebApp and
NatApp Graphs’ Architectural Representations

V. CONCLUSION

The Q-DEP extractive bottom-up quality-driven domain
engineering process for SPL has been presented. Our aim was

to relate the experience in applying a “light weighted” PL
engineering approach that can be effectively used in industrial
practice. Q-DEP has been entirely developed for this
experience, adapting the QuaDRA process [24] to a real
industrial context. Both processes are centered on the first
PLScope phase of DE to reduce the efforts in the subsequent
phases, but Q-DEP does not use business processes
specifications to identify main functionalities and constraints;
using a “semi-agile” practice more adapted to the MC domain,
it profits from interviewing stakeholders and performing
meetings to arrive to an agreement on the existing products
architecture. It was applied to the MC domain, facing an
increasing market demand and where no software engineering
good practices are yet employed, due to the rapid time-to
market delivery requirement. The experience with a small-
medium sized software enterprise was satisfying, three
different sub-domains of MC were studied successively
(financial transactions, healthcare information systems and
entertainment contents), and the components of the products

Figure 6: HIS-RA Expressed in UML 2.0

developed were identified by direct interaction with project
leaders. We did not pretend to construct a complete SPL, but
just to start a migration by building a first glance of the
enterprise Core Asset Repository and the RA of the sub-

20

F. Losavio, O. Ordaz

domains considered. In this paper we applied Q-DEP to the
Healthcare Information Systems sub-domain, showing and
explaining the construction of all the artifacts produced. In Q-
DEP quality is considered from the start. Software
development in MC is based on reusing lots of IT support
tools, and this fact has been useful showing implicit
satisfaction of the quality goals required by MC applications;
developers use IT tools transparently, generally unaware of the
quality aspects involved, but in this way the quality of their
applications is assured “by construction” to a certain extent. As
IT evolves quickly, there is hope that support tools will also
improve and implicitly continue to guarantee the quality of
mobile software. Another aspect that has to be signaled is that
several design choices, such as the selection of the variation
points, are mostly based on the architect expertise and on his
vision of the domain evolution, but this is difficult avoid in
architectural design. On the other hand, a limitation of Q-DEP
is that automatic support tools are under construction and they
are necessary to face complexity of intensive systems; besides,
the integration of the different RAs of the three sub-domains
into a global RA for the enterprise is still an ongoing work, a
new sub-process has to be defined and integrated to Q-DEP.

Among the perspectives, we are working on an ontological
approach to represent the RA [30] and the Asset Repository, to
derive consistency rules for the AE cycle. A comparison of the
ISO/IEC 26550 versions of 2013 and 2015 is also planned.

ACKNOWLEDGMENT

We wish to thank María Dolores Nardi, Aquilino Pinto, Carlos
Alfonzo and Mary Gutiérrez, to make this work possible with
fruitful comments and observations.

REFERENCES

[1] J. Bosch, Design and Use of Software Architectures – Adopting and
Evolving a Product-line Approach, Addison-Wesley, 2000.

[2] P. Clements and L. Northrop, SPL: Practices and Patterns, 3rd edition.
Readings, MA, Addison Wesley, 2001.

[3] K. Pohl, G. Böckle, and F. van der Linden, SPL Engineering -
Foundations, Principles, and Techniques. Springer IXXVI, 2005.

[4] I. Reinhartz-Berger, A. Sturm, T. Clark, S. Cohen, and J. Bettin. Domain
Engineering. Product Lines, Languages and Conceptual Models,
Springer, 2013.

[5] ISO/IEC NP 26550, Software and Systems Engineering – Reference
Model for Software and Systems PL, ISO/IEC JTC1/SC7 WG4, 2013.

[6] E. Berard, Essays in OO Software Engineering, Prentice Hall, N.Y.,
1992.

[7] P. Abrahamsson and P. Keynote: Mobile Software Development - The
Business Opportunity of Today, in proceedings of the International
Conference on Software Development, pp. 20-23. Reykjavik, Island,
2005.

[8] A. Wasserman, Software Engineering Issues for Mobile Application
Development, Fo ER’10, FSE/SDP on Future of Software Engineering
Research, pp. 397-400, 2010.

[9] ISO/IEC 25010, Systems and Software Engineering - Systems and
Software Quality Requirements and Evaluation (SQuaRE) - System and
Software Quality Models, ISO/IEC JTC1/SC7/WG6, 2011.

[10] F. Losavio, O. Ordaz, and V. Esteller, Refactoring-Based Design of
Reference Architecture, RACCIS, vol. 5, no. 1, pp. 32-48.

[11] World Wide Web Consortium, Mobile Web Application Best Practices,
W3C Working Draft, http://www.w3.org/TR/mwabp, 2010.

[12] Agile Alliance, Agile Software Development Manifesto. Retrieved from
Manifesto for Agile Software Develop. http://agilemanifesto.org, 2001.

[13] B. Boehm and R. Turner, Balancing Agility and Discipline: A Guide for
the Perplexed. Addison-Wesley, 2003.

[14] A. Spataru, Agile Development Methods for Mobile App, MSc. These,
University of Edinburg, Edinburg, UK, 2010.

[15] B. Kaleel and S. Harishankar, Applying Agile Methodology in Mobile
Software Engineering: Android Application Development and its
Challenges, Reyrson University, Reyrson, Canada, CSTR. Paper 4,
http://digitalcommons.ryerson.ca/compsci_techrpts/4, 2013.

[16] M. Shaw and D. Garlan, Software Architecture. Perspectives of an
Emerging Discipline, Prentice-Hall, 1996.

[17] J. Herrera, F. Losavio, O. Ordaz, and J. Bøegh, Product Lines Scoping
Using ISO/IEC 26550 Reference Model Considering Software Quality,
ASSIT2016, Bangkok, Thailand, pp. 194-200, indexed by CPCI-SSH,
ISBN 9791605953885, http://www.ichss2016.com, July 2016.

[18] I. Mansanet, J. Fons, I. Torres, and V. Pelechano, GeMMINi: Prototipo
de IU Sobre Multiples Dispositivos. Una Estrategia basadas en LPS y
MDD, FAZ, 2011.

[19] K. Czarnecki, C. Hwan, P. Kim, and K. Trygve, Feature Models are
Views on Ontologies, SPIC, 2006.

[20] T. Gruber, Toward Principles for the Design of Ontologies Used for
Knowledge Sharing. Technical Report KSL 93-04, KS Laboratory,
Stanford University, CA, USA, 1993.

[21] L. Bass, M. Klein, and F. Bachmann, Quality Attribute Design
Primitives and the ADD Method, SEI White Paper, http://resources.sei.
cmu.edu/library/asset-view.cfm?assetID=29604, 2001.

[22] H. Koziolek, R. Weiss, and J. Doppelhamer, Evolving Industrial
Software Architectures into a Software Product Line: A Case Study.
LNCS 5581, pp. 177-193, 2009.

[23] F. Losavio, O. Ordaz, N. Levy, and A. Baiotto, Refactoring Process for
Software Product Lines Design, (JDLP, pp. 47-58, Lille, France,
http://jldp.org/2012/images/jldp2012-actes.pdf, Novembre 2012.

[24] J. C. Herrera, F. Losavio, and O. Ordaz, QuaDRA: Quality-oriented
Design of Reference Architecture for Software Product Lines Based on
ISO/IEC 26550, RACCIS Vol. 6, No.1, pp. 20-38, Enero-junio, ISSN
2248-7441, http://www.fundacioniai.org/raccis, 2016.

[25] L. Chung, B. Nixon, and E. Yu, Using NFR to Systematically Select
Among Alternatives in Architectural Design, 1st International Workshop
on Architectures for Software Systems, pp.31-42, Seattle, USA, 1995.

[26] D. Bjørner, Software Engineering 3: Domains, Requirements, and
Software Design, Texts in Theoretical Computer Science, Springer-
Verlag, Berlin Heidelberg, Germany, 2006.

[27] F. Losavio, O. Ordaz, and I. Santos, Proceso de Análisis del Dominio
Agil de Sistemas Integrados de Salud en un Contexto Venezolano,
ENL@CE, vol. 12, no. 1, pp. 101-134, ISSN 1690-7515, 2015, http://
www.produccioncientifica.luz.edu.ve/index.php/enlace/index.

[28] C. Salinesi, R. Mazo, O. Djebbi, and D. Dia, Constraints: The Core of

Product Line Engineering, RCI ’11, pp 1-10, Gosier, Guadalupe, 2011.

[29] Object Management (OMG), Unified Modelling Language
Superstructure, Version 2.0 (formal/05-07-04), August 2005.

[30] F. Losavio, O. Ordaz, and S. Jean, Ontological Approach to Derive

Product Configurations from a Software Product Line Reference
Architecture, Revista CyT, UP, Argentina, no. 16, pp. 91-127, ISSN

1850-0870, May 2016, http://www.palermo.edu/ingenieria/pdf2016/

CyT_16_07.pdf.
[31] L. M. Northrop and P. C. Clements with collaborators F. Bachmann, J.

Bergey, G. Chastek, S. Cohen, P. Donohoe, L. Jones, R. Krut, R. Little,

J. McGregor, and L. O’Brien, Framework for Software Product Line
Practice, Version 5.0. SEI, Carneige Mellon University, December

2012.

[32] P. Krutchen, Architectural Blueprints — The “4+1” View Model of
Software Architecture, IEEE Software, vol. 12, no. 6, pp. 42-50,

November 1999.

21

Revista Venezolana de Computación - ReVeCom (ISSN: 2244-7040) - SVC
Vol. 4, No. 1, Junio 2017

http://www.w3.org/TR/mwabp/
http://agilemanifesto.org/
http://digitalcommons.ryerson.ca/compsci_techrpts/4
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=29604
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=29604
http://jldp.org/2012/images/jldp2012-actes.pdf
http://www.palermo.edu/ingenieria/pdf2016/CyT_16_07.pdf
http://www.palermo.edu/ingenieria/pdf2016/CyT_16_07.pdf

