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ndothelial mesenchymal transition (EndoMT), 
a newly recognized type of cellular transdiffe-
rentiation, is an essential process that occurs 

during embryonic development and participates in a num-
ber of adult pathologies. Also, the adhesion of cells to the 
extracellular matrix (ECM) is known as a critical requisite 
to generate various cellular changes related to EndoMT. 

We will review recent findings describing novel signaling 
mechanisms implicated in the progression of EndoMT that 
involves changes in distribution and organization of tyrosi-
ne kinases receptors (RTKs) that include EGFR and ErbB2/
Neu and non-RTKs such as c-Src as well as ECM arterial 
wall proteoglycans such as endocan, which is associated 
to soluble growth factors (EGF, TGF-α) or inflammatory 
cytokines (TNF-α, IL-1β). The potential role of endocan is 
also discussed. Exploration of the signaling mechanisms 
of EndoMT may provide novel therapeutic strategies for 
treating pathologies.
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a transición endotelio mesénquima (En-
doMT), recientemente reconocida como un 
tipo de transdiferenciación celular, es un 

proceso esencial que ocurre durante el desarrollo embrio-
nario y participa en un número importante de patologías 
del adulto. También, la adhesión de las células a la matrix 
extracelular (ECM) es conocida como un requisito crítico 
para generar cambios celulares relacionados a la EndoMT.

En este artículo revisaremos recientes hallazgos descri-
biendo mecanismos de señalización novedosos implica-
dos en la progresión de la EndoMT, los cuales involucran 
cambios en la distribución y organización de receptores 
tirosinas quinasas (RTKs) que incluyen a EGFR y ErbB2/Neu 
y no-RTKs tales como c-Src; así como también proteogli-
canos de la pared arterial tales como endocan, este último 
asociado a factores de crecimiento solubles (EGF, TGF-α) o 
citoquinas inflamatorias (TNF-α, IL-1β). La exploración de 
los mecanismos de señalización en la EndoMT puede pro-
veer nuevas estrategias terapéuticas para el tratamiento 
de algunas patologías.
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La adhesión endotelial mediadas por integrinas, el reclutamiento y la activación de c-Src, EGFR, ErbB2 así como 
la presencia de endocan, influyen en las etapas cruciales de la transición endotelio-mesénquima
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ndothelial-mesenchymal transition (EndoMT) 
in the vascular endothelium appears to be a 
complex process by which endothelial cells 

lose their endothelial characteristics and gain a spindle 
shape mesenchymal-like phenotype1,2. Recently, several 
studies have shown that EndoMT occurs not only during 
embryonic development1 but also in adult life in the an-
giogenesis3 and a variety of pathologies that include pul-
monary hypertension2,4,5, atherosclerosis and restenosis6,7, 
portal hypertension8, intestinal9 and kidney fibrosis10, 
diabetic nephropathy11, hypertrophic scarring12, inflam-
mation13, and during cancer progression14. As occur in the 
epithelial-mesenchymal transition (EMT), the endothelial 
transition progress through a series of important steps 
such as cross reactivity of a variety of growth factors and 
inflammatory cytokines, activation of receptor tyrosine 
kinases (RTKs) and non-RTKs, loss of endothelial cell-cell 
contacts and endothelial cell shape and polarity involving 
reorganization of some cytoskeleton proteins, caused by 
frictional forces, proteases secretion, extracellular matrix 
(ECM) remodeling, cell separation, detachment and mi-
gration , and differentiation1,15. However, how these fac-
tors and signals can cause endothelial transformation is 
still debated2. Interestingly, a functional cooperation bet-
ween integrins and RTKs is currently regarded as crucial 
not only during normal vascular development and vascu-
lar diseases16, but also in various pathologies1,2,15. 

In this context, in vitro studies in epithelial cells have revea-
led multiple signaling pathways that are involved in direc-
ting EMT17. Also, they have shown that during cell-ECM 
adhesion, members of the epidermal growth factor (EGF) 
receptor family such as EGFR/ErbB1 and ErbB2/Neu, can 
be partially activated by association with some integrins 
thereby regulating important processes such as adhesion, 
cell proliferation, differentiation, migration, apoptosis and 
survival in the absence of their ligands18,19. However, the 
implications of the interaction between integrins and the-
se RTKs in particular, require a deeper investigation.

In the cell-ECM adhesion some non-tyrosine kinases such 
as c-Src can act facilitating the expansion, migration, di-
fferentiation and transcription20,21. Importantly, in the ab-
sence of growth factors, activation of c-Src occurs due 
to its direct interaction with some integrins and once is 
activated, it phosphorylates EGFR and Erb219,22-26. Never-
theless, the mechanism involved in the interaction of c-
Src, EGFR and ErbB2, and its implications have not been 
fully clarified. 

Respect to the growth factors, recent reports indicate that 
in EMT cellular changes  can be facilitated as a result of the 

influence of growth factors such as EGF that may affect 
the function of integrins through alteration of cell-cell in-
teraction and modulation of cell-ECM contacts27. Howe-
ver, molecular and cellular aspects by which EGF and its 
receptors exert these actions remain to be elucidated. 

In the context of endothelial cells, there are reports 
showing that disruption of endothelial cell-cell contacts or 
adherens junctions (AJs) and changes in the organization 
of microtubules (MTs) and actin cytoskeleton may occur 
in response to mechanical injury, shear stress and/or cross 
talk of a variety of growth factors including transforming 
growth factor-β (TGF-β), insulin-like growth factor II (IGF 
II), and fibroblast growth factor-2 (FGF-2) and inflamma-
tory cytokines such as tumor necrosis factor-α (TNF-α) and 
IL-1β, and that such events are necessary in the EndoMT1. 
Interestingly, it has been demonstrated that EGF secreted 
by endothelial cells induces EMT and endow carcinoma 
cells with enhanced motility and stemness28. However, 
how these factors and intracellular signals induce the en-
dothelial transformation is still matter of debate2,16,29. It is 
known that EGF or transforming growth factor-α (TGF-α) 
acts by binding to EGFR leading to the receptor homo or 
hetero-dimerization, activation of its RTK cytosolic domain 
and autophosphorylation on tyrosine residues initiating 
various important signal transduction pathways that could 
collaborate in the adhesion, proliferation, migration, di-
fferentiation and survival30. Upon binding of EGF, recep-
tors clustering and endocytosis take place followed by 
recycling back of ligand-receptor complex to the cell sur-
face or degradation. After internalization, nuclear trans-
location of the receptors may also occur to regulate gene 
expression31,32. Formation of heterodimers between EGFR 
and Erb2 in response to ligand growth factors are conside-
red essential for several biological processes30-32. Notably 
the expression of growth factors EGF, TGF-α and heparin-
binding EGF (HB-EGF) and their respective receptors EGFR 
and ErbB2 has been detected in atherosclerotic lesions, 
whereas a very low or no expression of these molecules is 
observed in cells of healthy vessels33. However, there are 
very few studies related to the specific role of the EGF as 
well as the possible signaling pathways generated in the 
process of EndoMT. 

In this respect, we have recently suggested that the di-
merization, activation and phosphorylation of EGFR and 
ErbB2, initiated by integrin β3, would be favored by the 
presence of EGF or TGF-α and that the internalization and 
nuclear translocation of these receptors could be accom-
panied by microtubules remodeling which induces the 
activation of c-Src and phosphorylation of β-catenin and 
p120-catenin to promote loss of endothelial cell polarity 
and disruption of endothelial cell-cell contacts, facilitating 
cell spreading, separation, detachment, and migration, ce-
llular events considered as essentials in the progression of 
EndoMT16 (Figure 1). Also, we proposed that stimulation 
with EGF or TGF-α provokes the formation of an activa-
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ted FAK-paxillin-c-Src signaling complex which affects not 
only the assembly and disassembly of focal adhesions, but 
also promotes cell migration and disruption of AJs16,34 (Fi-
gure 1). Additionally, we showed that EGF, TGF-α as well 
as their receptors EGFR and ErbB2 were present in stages 
of aorta embryonic development where the intimal thic-
kening are clearly evident and EndoMT is an active pro-
cess. These findings are important considering that in vivo 
expression of EGF, TGF-α and their receptors have been 
detected in the intimal thickening and medial smooth 
muscle cells of atherosclerotic lesions33, and that expres-
sion of activated ErbB2 and ErbB3 has been demonstrated 
during heart cushion development35, suggesting an im-
portant contribution for these receptors in the initiation of 
atherosclerosis and in the development of cardiac valves, 
respectively. Based in these findings, we suggested that 
integrin-mediated endothelial cell adhesion and activation 
and translocation of c-Src, EGFR and ErbB2 as well as the 
presence of their ligands are required for EndoMT16.

As mentioned, in addition to permanent interaction with 
other cells, endothelial cells also need to interact with the 
ECM. It is well established that most ECM molecules par-
ticipate in tissue remodeling by promoting cell adhesion 
provoking cytoskeletal organization, and regulating cer-
tain cellular events that include cell proliferation, migra-
tion and differentiation in response to mechanical stimuli 
and / or cross talk of a variety of growth factors and cy-
tokines36. Some of the most studied ECM components 
in the vessel wall belong to the family of proteoglycans 
(PGs), which are actually recognized by its role in several 
cellular processes either via interaction with ECM recep-
tors like integrins or via signaling through RTKs36. Endo-
can, also called endothelial cell-specific molecule-1, is a 
small dermatan sulfate PG (DSPG) that is mainly expressed 
by endothelial cells and regulated in vivo by inflamma-
tory cytokines such as tumor necrosis factor-α, FGF-2, and 
vascular endothelial growth factor (VEGF)37. Interestingly, 
overexpression of endocan has been observed in breast, 
brain, lung, liver, kidney, ovary tumors, suggesting an im-
portant role of endocan in angiogenesis and in the devel-
opment and progression of cancer37. However, the fac-
tors regulating the synthesis and secretion as well as their 
functions, have not yet fully elucidated37,38. Our laboratory 
has investigated the possible involvement of the endocan 
in EndoMT process and based on our observations we be-
lieve that endocan might be cooperating with integrins to 
promote the formation of focal adhesions thus influenc-
ing the separation of endothelial cells and their migration, 
seen as crucial steps in the process of EndoMT38.

iven that changes in cell shape, interac-
tions with the ECM, and acquisition of 
migratory capabilities has been proposed 

as critical steps during EndoMT process, we suggest that 
the experimental findings reviewed here represent an im-
portant frame of reference for a better understanding of 
the EndoMT process. Studies are necessary to gain insight 
into mechanisms that regulate the endothelial cell migra-
tion and the transition into mesenchymal cells.
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Figure 1

Adhesion of endothelial cells to fibronectin (FN) in the presence of EGF produces the di-
merization, activation, and phosphorylation of EGFR and ErbB2 in the tyrosine residues 
Tyr845 and Tyr877, respectively leading to the internalization and nuclear translocation 
of both receptors which could be accompanied by microtubules (MTs) remodeling in-
ducing the activation of c-Src and phosphorylation of β-catenin and p120 catenin to 
promote loss of endothelial cell polarity and disruption of adherens junctions (AJs), fa-
cilitating cell spreading, separation, detachment, and migration. Also, stimulation with 
EGF activates FAK-paxillin signaling complex which affect the focal adhesion, promot-
ing cell migration and disruption of AJs.
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