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ABSTRACT

This paper presents the design of a robust multivariable PID controller, which guarantees the stability of the closed loop
linear systems subjected to polytopic uncertainty. The algorithm is based on an Iterative Linear Matrix Inequality (ILMI)
approach. The obtained results may also be used to compute a static output feedback stabilizing controller. The design
technique is illustrated with numerical examples.
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DISEÑO DE PID MULTIVARIABLE ROBUSTO USANDO LMI ITERATIVAS

RESUMEN

Este trabajo presenta el diseño de un controlador PID multivariable robusto, el cual garantiza la estabilidad a lazo cerrado
de sistemas lineales sujetos a incertidumbre poliédrica. El algoritmo se basa en una Metodología Iterativa de Desigualdades
Lineales Matriciales (ILMI). Los resultados obtenidos también pueden ser usados para calcular un controlador estático
estabilizante de realimentación de la salida. La técnica de diseño es ilustrada mediante ejemplos numéricos.

Palabras clave: Control PID, Control Robusto, Incertidumbre, Controlador Estabilizante, Desigualdades Lineales Matriciales
(LMI).

INTRODUCTION

The PID is the most widespread used industrial controller.
In a typical set up, most of the SISO loops are PIDs. It is
very popular because of its functional simplicity. Its robust
condition has enable the operators to use it, in simple direct
ways, obtaining great performances in most of the cases.
There exists several tuning methods developed for PIDs,
see for instance (Aström & Hägglund, 1995; Corripio, 1996)
and the references there in. Most of the strategies are based
on an approximate model of the plant (FOPDT or SOPDT).
Also, some advance control techniques such as H∞, MPC
and LQG (Grimble, 1991; Katebi & Moradi, 2001; Ge et al.
2002; Rusnak, 2000), have been used (in most cases as
reduction to the three parameter structure of PIDs).

In this work we present a strategy for calculation robust
PID (or PI) multivariable controller for continuous (discrete)
linear systems. Much as in (Zheng et al. 2002), the approach
computes a static output feedback control, applied to an

augmented system. The problem is formulated as a Bilinear
Matrix Inequality (BMI) and hence an Iterative scheme based
on LMIs (ILMI) is proposed to solve the Static Output
Feedback (SOF) problem.

Different from (Zheng et al. 2000) no additional variables
are included, except for a scalar (α ) and an extension to the
discrete and to the robust case (continuous and discrete) is
presented. Also, as formulated, the problem (ILMI) always
has a solution determine by the parameter α , that will be
depicted later. Convergence is measured by this parameter ,
which decrease from iteration to iteration.

No constraints are imposed to the order of the model (such
as Zheng et al. 2000), nor a particular structure. There is no
difference, in our approach, to handle SISO or MIMO
systems. Other advance robust methods impose bounds to
the order of the model.

The approach is based on a LMI formulation (Boyd et al.
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PROBLEM STATEMENT

Consider the continuous or discrete uncertain linear time
system described by:

(1)

the following PID controller for continuous systems:

    (2)

and the following position PI controller for discrete systems:
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ntx ℜ∈)( , ltu ℜ∈)(  and mty ℜ∈)(  are respectively, the
state, input and output system, ∂  is the derivation operator
in continuous time case (  ) and the delay
operator for the discrete time one ( [ ] )1()( +=∂ txtx ).

nxn
IA ℜ∈ , nxlB ℜ∈  and mxnC ℜ∈ are the system, input

and output matrices respectively, and lxmFFF ℜ∈321 ,,
are matrices to be determined and represent the proportional,
integral and derivative gain of the controller. Also, matrix IA
is not known precisely. IA belongs to a polytopic region,
defined by:

{ }LI AAACoA L,, 21=Ω∈ (4)

where L is the number of vertices.  may be any matrix
obtained by the convex combination of the vertices, i.e.:
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Following the procedure in (Cao et al. 1998 and Zheng et al.
2002), the closed loop system (1) and (2) [or (3)], may be
equivalently represented by an augmented system with static

output feedback of the form:
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for continuous systems, and
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for discrete systems.

The gains are:
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for continuous systems, and

][ 21 FFF =        (10)

for discrete systems.

IA  and IC  are the corresponding uncertainty matrices (in

the discrete case, IC  is indeed certain).

The design objective reduces to finding a matrix F , such
that when the loop is closed in (6):

    (11)

be asymptotically stable.
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1994), and there are available powerful tools ready to solve
the problem. In addition, other robust control performance
requirements such as: H2, H∞ and constraints may be easily
included as will be featured later.
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For continuous systems, once the composite matrix

][ 321 FFFF =  is found, the original PID gains can

be recovered from:
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The invertibility of matrix 3FCBI +  will be discussed later.

Preliminaries

Now suppose system (6) is autonomous (i.e. u = 0), the
condition for quadratic stability is given by:

Lemma 1. (Bernussou, et al. 1989). Autonomous continuous
system (6) is quadratically stable if and only if there exist
symmetric matrix  such that:

   LjSASA T
jj ,,2,1   ,0 Λ=∀<+     (13)

and (Garcia & Bernussou, 1995)

  LjSSAA T
jj ,,2,1   ,0 Λ=∀<−     (14)

for discrete systems.

Finally, let us formulate the condition for quadratic
stabilizability for the static output feedback case:

Theorem 1. System (11) is quadratically stable (i.e., there

exists a matrix F , static output gain, that stabilizes all system

represented in (6) ) if there exist a matrix 

S

 and

a gain F  such that:
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In this work we follow a similar strategy to that proposed by
(Cao, et al., 1998) and introduce an extra term α in the
condition (15) [or (16)].

Instead of (15) [or (16)], we will work with:
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and
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where α is a scalar variable added to the problem to assure
always a solution to the inequalities.

If  0>S  is fixed then (17) [or (18)] is convex in α and F ,
similarly, if   and α are fixed then it is convex in S, in both
cases it is easy to compute 

αα min* =

. If in one of those
two problems 0* ≤α , then F is a static quadratic
stabilizing output gain.

Remark 1. The continuous system (17) guarantees that the
continuous system is 

2/
 stabilizable via static output fee-

dback and  place the closed loop poles to the left of a
vertical line 

2/)Re( =s

 in the complex plane, when 0* ≤α .
Also solution to (18) guarantees the closed loop discrete
system locates all its poles within a circle centered in zero

with radius α+1 .

The following iterative linear matrix inequality (ILMI)
algorithm is proposed to solve the problem:

Algorithm

For the triplet LjCBA jj ,,2,1  ),,,( Λ=∀ , the algorithm is
the following:

Step 1: to initiate the algorithm, we find matrix 0>S  and
matrix R solutions to the full state feedback quadratic
stabilizability ( )()( tKztu =  ):

      

F
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for discrete systems, where KSR = .

Step 2: with  obtained from step 1, compute *α
( αα min* = ) and F subject to:
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for continuous systems, and
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for discrete systems.

If 0* ≤α  stop, F  is a quadratic stabilizing static output
feedback gain; else go to step 3.

Step 3: fix   (obtained from step 2), look for , by starting
a search process in a scalar variable (α), computing 0>S
that solve (21) [or (22)] then go to step 2.

The algorithm continues until an 0* ≤α  is found (an hence a
solution controller obtained) or until *α  converges to some
positive value ( 0*

1
* ≈− −ii αα ), in which case there may be a

solution but the algorithm fails to find it.

Remark 2. It has to be remarked that LMI (19) [or (20)] is a
necessary condition for the existence of a static stabilizing
gain, that is, if the algorithm fails to start because there is no
solution to LMI (19) [or (20)], then there is no static stabilizing
gain, and then, the original system (1) can't be stabilized by
a PID controller.

Remark 3. The  *α  obtained in one iteration (step 2 or step 3)
is an upper bound to the one computed in the following
(step 3 or step 2), since what we are really looking for is an

*α   zero or negative, the search in step 3 may start in a value
smaller than the previous *α .

Remark 4. Once 0* ≤α   is reached, the associated solutions
( F ) is not necessarily a good one (poor margins, etc) and
hence the quest process (between steps 2 and 3) may
continue until a satisfactory solution is obtained. Recall that
in our case  is a measure of performance and it decreases
from iteration to iteration. Let us go back to the computation
of the PID parameters.

Proposition 1. (Zheng et al. 2002). Matrix CBFI 3−  is
invertible if and only if matrix 3FCBI +   is invertible, where

3F and 3F  are related to each other by:

1
3333

1
33 )(or    )( −− +=−= FCBIFFFCBFIF (23)

Proof. in (Zheng et al. 2002).

There are two approaches to deal with Proposition 1 in the
design of the feedback matrices (Zheng et al. 2002). The first
approach is to do nothing but post-check whether 3FCBI +
and hence CBFI 3−  are invertible. This is based on the
observation that the probability of finding 3F , which makes

3FCBI +  singular is zero in the whole possible parameter
space consisting of 3F . The second approach is to add the
following conservative LMI:

0)( 33 >++ FCBFCBI T     (24)

In our case, we always used the first approach.

NUMERICAL EXAMPLES

In this section, we present three examples that illustrate the
implementation of the proposed tuning controller algorithm.
For these examples, the software LMI control toolbox was
used to compute the solution.

Example 1

First, feature an application to multivariable continuous
systems. The model is a «benchmark» problem taken from
the literature and used in many works. The system is
composed of two masses and a spring like is shown in Figure
1.
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Figure 1. System

The system model is represented by (1), where:
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where 1m  and 2m  are the two masses and k (uncertain
parameter) is the constant of stiffness of the spring. The
state variables 21 , xx  represent the position of the two
masses, while 43 , xx  are speeds.

The methodology is applied by considering the followings
values 1.021 == mm . We will suppose that the range for
the uncertainty parameter is:

 

m1 m2 
k 

x2 x1 

u1 u2 

21.0 ≤≤ k

Solving the problem we obtain an 0102.0−=α  and the
following matrix of the controller parameters.

Figure 2 show the output time profile when the initial
condition is 

[ ]0,0,1,2)0( =x

 and the uncertain parameter k
ranges from 0.1 to 2.
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Figure 2. Output time profile ( 21.0 ≤≤ k ).

Example 2

In this example, we feature the algorithm for a multivariable
discrete system. The model is taken from (Maciejowski, 2002)
(slightly modified: a uncertain parameters k  is added to the
system matrix). The system is a paper-making machine and
the discrete model with sampling period of 2 min, is given
by:
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We will suppose that the ranges for the uncertainty
parameters are:

Solving the problem we obtain an 0902.0−=α  and the
following matrix of the controller parameters.

25.0 ≤≤ k
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Figure 3 show the output time profile when the initial
condition is [ ]1,0,1,0)0( =x  and the uncertain parameter k
ranges from 0.5 to 2.
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Figure 3. Output time profile ( 25.0 ≤≤ k ).

Example 3

In this example, we use the algorithm to tune a continuous
SISO PID. The approach is compared with other tuning
techniques such as: ZN (Ziegler & Nichols, 1942) and SIMC
(Skogestad, 2001). Note that 1=L , i.e., there is no
uncertainty.

The model, taken from (Skogestad, 2001), is:

( )( )( )( )1008.0104.012.01
1)(

++++
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ssss
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Figure 4 show the block diagram of the feedback control
system.

Figure 4. Block diagram of the feedback control system.
We consider an input («load») disturbance (gd=G).

Solving the problem we obtain an 2388.10−=α  and the
following PID controller parameters:

Figure 5 shows the output time profile for the different PID
tuning techniques. The values of the PID parameters are
taken from table 4 of (Skogestad, 2001) and showed in Table
1.

Figure 5. Output time profile with different PID’s;
setpoint equal to zero

and load disturbance of magnitude 3 at t=0.

Table 1. PID settings for different tuning techniques.
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OTHER PERFORMANCE SPECIFICATIONS

In this section, we included other performance requirements
for the sake of enrichment of the proposed strategy and to
illustrate the procedure. In particular, we will only feature
the case of H∞ norm for discrete systems. Applications to
H2 norm or H2, H∞ norm of continuous systems is straight
forward.

Consider the discrete system:
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where
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is an external disturbance and, it is desired
additionally that the discrete PI controller (3) assure the H∞

norm from )(tw to y(t) is less than  (a given scalar value).
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augmented system results:
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The problem is to find a stabilizing static output feedback

gain F such that the transfer function ( ) 1
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It is well known that condition (28) is satisfied if and only if
there exists a matrix 0>S  and a gain F  such that:
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Therefore, to compute a PI discrete controller with a H∞

specification, it suffices to change condition (22) for:
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And continue.

CONCLUSIONS

In this work, an effective algorithm based on LMIs that
enables the computation of the parameters of a robust PID
multivariable controller for continuous and PI for discrete
systems, was presented.

Sufficient conditions are established to guarantee the
quadratic stability of the closed loop of the uncertain
systems with polytopic uncertainty.

Neither specific requirement in the system structure, nor in
its order is imposed to apply the methodology.

The paper is an extension to robust PI and PID controller
computation for continuous and discrete systems.

The algorithm is formulated so that when completion of the
iterative process is achieved, not only a stabilizing PI (or
PID) controller will be obtained but also a measure of
performance, as determined by the parameter *α  and its
direct relation to the location of the poles. Also, as featured,
the algorithm might easily incorporate other specifications
such as H2 and H∞.

When applied to SISO loops without uncertainty, the
approach yield comparable results as those of well known
IMC-PID techniques.

The result may be used to compute a static output feedback
stabilizable controller.
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