
Revista de la Facultad de Ingeniería de la U.C.V., Vol. 22, N° 1, pp. 45–59, 2007

45

MODELING QUALITY OF ADAPTIVE MOBILE USER INTERFACES

Recibido: agosto de 2006 Recibido en forma final revisado: febrero de 2007

RODOLFO CANELON1, FRANCISCA LOSAVIO2, ALFREDO MATTEO3

1 Dpto. Sistemas, Decanato de Ciencias y Tecnología,
Universidad «Lisandro Alvarado», Barquisimeto, Venezuela.

2 Laboratorio LaTecS, Centro ISYS, Universidad Central de Venezuela.
3 Laboratorio TOOLS, Centro ISYS, Universidad Central de Venezuela.

ABSTRACT

The use of mobile devices is now worldwide. Mobile and pervasive computing deals with the development of software
applications for these devices in wireless environments. The development cost is high since there are no market standards
for these devices and the application is often designed ad hoc. The user interface in particular is constrained by limited
resources such as memory, display size and resolution, and it varies for each type of commercial display. The goal of this
work is to characterize the adaptive user interface component of a mobile application using a quality model for evaluating
the quality provided by its architectural solutions. Quality properties are given for each architectural solution; as a
consequence, the reliability of the application is improved, and the development costs are lowered. The identification of
functional and non-functional requirements for the adaptive user interface plays an important role in our approach, since
they are directly related with the quality properties which drive the architectural choices. Our approach is applied to a case
study in the e-banking domain.

Keywords: mobile computing, adaptive user interfaces, mobile agents, mediator, quality model, software architecture.

CARACTERIZACIÓN DE LA ADAPTABILIDAD DE LA COMPONENTE DE INTERFAZ
DE USUARIO PARA UNA APLICACIÓN MÓVIL USANDO UN MODELO DE CALIDAD

RESUMEN

El empleo de dispositivos móviles esta siendo extendido por todo el mundo. La computación móvil estudia el desarrollo de
aplicaciones de software para estos dispositivos en ambientes inalámbricos. Los costos de desarrollo son altos y no
existen estándares de mercado para estos dispositivos y frecuentemente las aplicaciones son diseñadas ad hoc. La interfaz
de usuario en particular, esta restringida por la limitación de recursos como memoria, el tamaño y resolución de la pantalla,
y esto varía para cada tipo de dispositivo comercial. El objetivo de este trabajo es caracterizar la adaptabilidad de la
componente de interfaz de usuario para una aplicación móvil usando un modelo de calidad que permita evaluar la calidad
de las soluciones arquitectónicas propuestas. Se incorporan las propiedades de calidad para cada solución arquitectural
de manera de garantizar la confiabilidad de la aplicación y la disminución en los costos de desarrollo. La identificación de
los requisitos funcionales y no funcionales para la interfaz de usuario adaptable juega un rol importante en nuestro estudio,
siendo directamente relacionadas con las propiedades de calidad las cuales guían la escogencia arquitectónica. Nuestra
solución arquitectural es aplicada a un caso estudio, en el dominio de banca móvil.

Palabras clave: computación móvil, interfaces de usuarios adaptables, agentes móviles, mediadores, modelos de calidad,
arquitectura de software.

INTRODUCTION

Mobile computing differs from the standard «desktop»
computing since it imposes several challenges for the
development of low cost, efficient and reliable software
applications, which must run on heterogeneous mobile
devices, such as Personal Digital Assistant (PDA) and
mobile phones, with limited resources and transient
connections. Handheld mobile devices are used in complex

scenarios such as visual exploration, environmental
monitoring, freeway-traffic management, fire fighting and
natural disaster damage assessment, which require that a
number of new challenges that are affecting the whole
software engineering lifecycle be addressed. This new set
of challenges is characterized as Prism (programming in the
small and many), which refers to software development for
highly distributed, dynamic, mobile, heterogeneous
computations on large numbers of small resource

46

constrained platforms (Medvidovic, 2003). In general, these
«mobile applications» are built by recoding existing desktop
versions. In particular, user interfaces must deal with
miniaturization issues (display size and resolution) and
device heterogeneity, increasing the development costs to
assure their portability. The absence of traditional input/
output devices increases the difficulty of the design, limiting
the amount of information that can be handled. Application
mobility (Eisenstein, 2000], is defined as the ability of an
application to adapt itself to different mobile devices. The
context of use (Eisenstein, 2000), is the environment
associated with the mobile device. It is defined by a set of
parameters (platform, network, QoS, etc.) for each
environment. It affects the user interface usability. An
adaptable or adaptive application reconfigures itself
dynamically according to the context of use. In particular,
the problem of adaptive user interface design has been
addressed by several frameworks, an innovative method
for component-based software engineering, backed up by a
formalism for modeling components and by a generic
component architecture, all tailored to the needs of
embedded systems. Two other fields of application
development are integrated in the component oriented-
approach: the building of user interfaces for embedded
systems and the debugging of embedded systems. In the
MUSA (Menkhaus, 2005) framework the user interface is
modeled as an event graph using the EG-XML descriptive
language to describe dialogs and events (Musa, 2002). A
study of (Sousa, 2002) indicated that a promising approach
is to apply software architecture principles to the
development of software systems within the Prism context.

The main goal of this work is to characterize architectural
solutions for the adaptive user interface problem. The
problem is described by its functional and non-functional
requirements. The quality properties related with the
requirements are specified by a standard quality model (Iso/
Iec, 2001) and they are used to justify the architectural
choices. Only the logic view of the architecture, in the sense
of Krutchen, is considered (Krutchen, 1999). We consider
this view because it focuses on the main functionality of
the system, to provide a first broad structure of the system.
This is also a view that is very much used in practice to
establish a common understanding among the stakeholders.
An implementation of one of the solutions, the mobile agent-
based architecture is also presented, where Java and XML
are the constraints for the technological platform.

The structure of this paper, besides this introduction and
the conclusion is the following: section 2 characterizes the
modeling elements of the user interface component in a
mobile context and the architecture used. Section 3
discusses in details the Mediator architectural solution for

adaptive interfaces. The UML model of this architecture is
presented with some implementation considerations and
examples. Finally, section 4 presents the characterization of
the problem and its architectural solution by functional and
non functional requirements and their quality properties.
These are expressed by a quality model and are used to
justify the architectural choices.

CHARACTERIZATION OF THE USER INTERFACE
COMPONENT FOR MOBILE DEVICES

Contexts of use

The graphical user interface (GUI) used in desktop
computing provide interaction based on the WYSIWYG
(What You See Is What You Get) and WIMP (Eisenstein,
2001) (Windows, Icons, Menus and Pointing devices)
principles. However these issues do not always apply to
the user interface for mobile devices, faced with limited
resources and different input/output systems. For example,
most mobile devices do not have pointing devices and menus
are used instead. Moreover, resource limitation imposes
reduced functionality for the application and the user
interface, which is not necessarily graphic. In consequence,
the term user interface (UI) will be used for the mobile
context, instead of GUI. Mobile devices are very different.
In this work we will refer mainly to PDAs and mobile phones.
The main standard functionalities of PDA are agenda, office
document, music and video playback. Mobile phones are
more oriented towards voice communication and text
messages. However, nowadays most of these functionalities
are common to both devices. UI must be adaptive to these
devices, where the human hand determines the size of the
display. There is also a limit on the optimal size of a text that
can be displayed in order to be captured by the human eye.
A multiple window system is impractical and applications
run always on full display mode. Hence, new input devices
are adopted, such as specific function buttons, touch pads
or touch displays. UI is in general designed ad hoc for each
specific device. Heterogeneity increases the development
costs of applications, in particular of the interface
component.

Main modeling elements

The classical user interface development models are (Coutaz,
1991):

- The platform model, describes the computer system
(platform) where the interface is running.

- The presentation model, describes the interface structure
(windows system and graphical components).

47

- The tasks model presents the tasks that the user must
perform to execute the software functionality. It is a
hierarchical structure made up of goals and pre-post
conditions on the tasks.

User interface modeling languages must be declarative and
independent from the implementation. The most used
modeling platform independent languages for mobile devices
are MIMIC, UIML, IML, and XIML model, the elementary
interface unit is an interaction object (IO), which is an element
that allows the user of an application to visualize or
manipulate information or execute an interactive task. An
abstract interaction object (AIO) represents a platform
independent interaction object. A concrete interaction object
(CIO) is an AIO implementation. An AIO is associated with
several CIOs, inheriting behavior from the AIO. The
presentation model is a tree-like structure of interaction
objects. When the model is interpreted, the appropriate CIO
is built automatically, according to the platform (Eisenstein,
2000). Each context of use imposes constraints on the input/
output capacity (Luyten, 2001 and Menkhaus, 2002). The
display resolution expressed in pixels must not be
confounded with the display surface. Two displays can have
different surfaces and the same resolution. An optimal
distribution of the interface presentation can work for a
device and not for another. The interface adaptability
depends on the number of the context of use. Three
parameters determine the space required for display:
individual IO, location of the IO within the window,
distribution of the IO. A Logical Window (LW) is a
constituted by composition of AIO. LWs are limited by the
display constraints of the device (Eisenstein, 2001;
Menkhaus, 2002; Eisenstein, 2000). A Presentation Unit (PU)
is the complete presentation environment required for the
interaction. Each PU can be decomposed into LWs; it is
composed by at least a main window from which other
windows may be accessed. Notice that this configuration is
supported by the PAC (Presentation, Abstraction, and

Control) pattern, which is a mediator-based architectural
pattern (Coutaz, 1991 and Losavio, 1994).

Architectures for user interface in mobile context

Several architectures have been proposed to handle the
constraints imposed by the mobile devices. Two of them are
presented in what follows.

Architecture 1: determine the convenient size of IOs

Two solutions are proposed:

- The size of the IO is reduced to reach a level so that its
usability is preserved.

- The IO is substituted by another IO with the same
functionality but requiring less space.

A decision tree: is used to select the size and properties of
an IO as a function of the device context (Eisenstein, 2000).
The decision tree does not solve the problem of the efficient
location and distribution of IOs within one or multiple
windows. The following architecture gives an automatic
solution to this problem.

Architecture 2: determine automatic location and
distribution of AIOs within one or multiple windows

A mediator-based pattern is used to solve this problem
(Eisenstein, 2000 and 2001; Menkhaus, 2002; Luyten, 2001)
(figure 1). Mediator is an abstract class defining a
communication interface between Colleague classes and
controlling the data transmission. It enforces the interactions
among colleagues and it contains the basic methods to
manage the flow of information between independent
colleagues (Mediator, 2002). However, it does not solve the
problem of the automatic adaptation to the different contexts
of use.

Figure 1. General structure of Mediator [Mediator02].

48

Architecture 3: Adaptability with mobile agents

Architectures based on software agents have been widely
used for distributed applications (Genesereth, 1994; Gomez,
2001). Agents are software entities with the following
characteristics: facility to capture and apply knowledge and
autonomous decision processing capacity for problem
solving (intelligence). Static agents can be executed only in
the machine where they are initiated. Mobile agents, instead,
can be transported from one machine to another, allowing
direct interaction with the agents of the system where the
required object is located. The agent can:

- gather information from the architecture and the
environment;

- be triggered by the architecture and the environment in
the form of an exception generated by the application;

- make proper decisions using rule-based intelligent
mechanism;

- communicate with others agent components controlling
other relevant aspects of the architecture;

- notify other agents that one or more modification have
occurred in the configuration that it controls;

- Ensure, in collaboration together with others agents, some
quality aspects of a system by controlling systematically
components communication properties such as security,
reliability, etc; perform some action on the architecture to
manage the changes required by some modification.

Figure 2. Structure of the communicator pattern between the mobile agent and the environment.

Basically, the environment consists of a «Communication
Broker» and a «Location Broker». According to the
message’s parameters obtainTargets: void, the Location
Broker selects the agent that hears the message, while the
Communication Broker actually delivers it with message:
void; resultSet : void. Due to the collaboration between the
Location Broker and the Communication Broker, the right
set of agents will receive the message in the right period of
time (Schelfthout, 2003) (figure 2).

A mobile agent-based architecture (Mediator) based on the
mediator pattern and on the mobile agent pattern is proposed
in figure 3 to achieve adaptability. This architecture uses
the planning processes established by architectures 1 and
2, with an optimal adaptation to the contexts of use. It
provides solution to the following adaptability problems:

- Determine the convenient size of IOs.

- Determine the automatic location and distribution of AIOs
within one or multiple windows.

Agent-based (Structure and Participants)

An agent emits a certain message sentmessage (reach,
persistence), using two parameters (Schelfthout, 2003):

- Reach is the intensity of the message.

- Persistence is the time the message «hangs in the air».

The agents that should get the message are not statically
reachable. They move in the environment, and they only
«hear» the message when they are present at the right time,
and close enough to hear it.

- Determine the adaptation to the different contexts of use
at run-time (dynamic adaptability to the mobile environment).

The Mediator architecture is a mobile agent with the
following capabilities:

- Exploit the information on the resource limits of the device.

- Compute the maximal usable display resolution for each
presentation structure.

- Determine the optimal context of use, as a function of its
parameters.

- It is part of the middleware for the mobile network.

The basic structure of the Mediator mobile agent is the
following:

Mediator is an instance of ConcreteMediator (Figure 1) and
is part of a Multi Agent System (MAS) hub of 3 layers:

- Intelligent Agents (User Interface Agents)

- Managing Agent (Coordination Monitoring)

- Search Agents/Activity

Intelligent Agent/User Interface Layer

The Intelligent Agent (also called User Interface Agent) is a
static agent responsible for displaying the PU on the device.
The clients use the Intelligent Agents which are constituted
by AIOs, CIOs, or concrete LWs. They are defined as the
set of provided actions and required events. For each
intelligent agent we attach an Event/Condition/Action-rules
mechanism in order to react with the other layer (Managing

Figure 3. The MEDIATOR architecture.

agents) and the environment and they are responsible of
performing the user interface.

Managing Agents (Coordination Monitoring) Layer

The Managing Agent is a static agent responsible for the
generation and transmission of the queries through the
Search Agents.

- Search Agents Layer:

It is responsible for the environment information, the client
information, sent from the Managing Agent to the destination
device. It communicates with other Search Agents to
exchange intermediate data. It sends the result obtained to
the Managing Agent.

- Environment:

- The Metadata: The metadata dictionary in the environment
stores all data description and associated information from
several information sources that are used by Intelligent
Agents and Managing Agents (Ngamnij, 2003). It concerns
the data model for each device, the domain family and the
configuration of each information source that are required
by the Search Agents.

- Constraint functions: They are declarative approaches with
explanation capabilities, heuristic control, generation and
pruning of alternatives. The CIOs run on the client device
and are associated to events activating the triggers on the
environment database.

- Allocating: use thread allocation to PU, AIOs, CIOs agents
and the communication protocols.

This architecture is dynamically adaptive to the changes of

49

the device display and to the platform changes. The end-
user has only to precise the available display size in terms
of resolution measures. The automatic generation of the
presentation structure is performed on a set of alternative
presentation structures and on a set of constraints on the
AIOs groups. The alternative presentation models will be
adapted to a specific mobile platform by decomposing
recursively the tree structure with the composite and simple
AIOs. The relation between the presentation model and the
tasks model is described in (Eisenstein, 2001; Menkhaus,
2002; Eisenstein, 2000). It is assumed that the same set of
tasks is performed for each device. The profile of each device
contains the elements of the execution platform, for example
the display size, the colors supported etc., are mapped on
the high level elements of the task model. The tasks are
mapped on the elements of the presentation model to be
executed.

The Mediator mobile agent, based on the architectures
described previously, determines an optimal user interface
(best fitted to the runtime platform constraints). In Section
4, this assumption will be justified (Gamma, 1995; Mediator,
2002) on the basis of the quality properties accomplished.
This pattern promotes loose coupling by keeping the objects
from directly referring or even contact each other. If all signals
or messages are first sent through a mediator, to change the
behavior of the entire system would basically consist of
changing the methods within the mediator class. The
mediator is a class whose objects at runtime are responsible
for controlling and coordinating the interactions of a group
of other objects (Raj, 2002). The level of reuse for highly
communicative objects will increase with the localization
and changing of common tasks into Mediator subclasses
rather than Colleague classes (Raj, 2002).

Benefits of Mediator

1. Provide optimal interfaces to the different mobile platforms
at runtime.

2. Promote a high level of reusability. Code reuse for the
migration of mobile applications to mobile platforms device,
specifically when domain applications are huge.

3. Exploit the information on the resource limits of the device,
due to the centralized flow of information following
established constraints on the mobile platform in use.

4. Reduce the application load introducing mediation,
translation and interaction services (Gamma, 1959). the
mediation between the platforms and the application is agent
function and translation to the mobile platforms the optimal
interfaces.

5. Improve the system structure. Splitting up the system in
this way creates a better understanding of the objects in the
system: how they interact and how they are structured, since
all objects are bundled into one class (Raj, 2002). Different
optimal views of presentations for each platform are
obtained.

Mediator vs. Related patterns

Similar to the observer pattern, where related objects need
to communicate; in the observer a change in one object (the
subject) will sometimes require other objects (observers) to
be updated and the update is explicitly coded in the subject;
this relation requires knowledge about how the observers
should be updated. In Mediator, a change in one object
generates changes only in the inferior subclasses, minimizing
the knowledge shared between the colleague objects. The
observer is applicable with good results when the updates
are not independent. Encapsulating these aspects in
separate objects will increase the chance of reusing them
independently. Mediator or does not need to consider PU
dependencies among the colleague objects. Mediator
exhibits properties of both bridges and wrappers. The major
distinction from bridges and wrappers, however is that
Mediator incorporates a planning function that in effect
results in runtime determination of the translation (recall
that bridges establish this translation when the bridge is
constructed) (Bass, 1998). The translation process needs to
exploit the information on the device resource limits and
compute the maximal usable display resolution for the
presentation structure of the platform in use. The planning
function (located into Intelligent Agent) with its parameters
makes the choice of optimal user interfaces.

IMPLEMENTATION CONSIDERATIONS

ConcreteMediator is a subclass of Mediator. Mediator is an
instance of ConcreteMediator as shown in figure 4, where
an example with two concrete presentations UPConcrete1
and UPConcrete2 is presented. The ConcreteColleague
number of classes will depend on the number of presentation
models for each specific platform.

Mediator basic behavior

Communication between Mediator and the mobile device:
XML and Java are well suited interface modeling languages
because they are declarative and independent from the
platforms (Eisenstein, 2000) as shown in figure 5: XML will
be used as follows in the communication process:

50

Figure 4. Mediator pattern showing two concrete presentations.

Figure 5. UML Sequence Diagram of Communication between Mediator and device.
51

JUSTIFYING ARCHITECTURAL SOLUTIONS FOR
THE ADAPTIVE USER INTERFACE

In the previous section we have discussed the basic
elements involved in the UI component and some of the
architectural solutions. The architecture based on the
mediator pattern has been proposed in the literature as an
acceptable solution adopted by practitioners on a previous
experience (Vanderdonckt, 2001). In what follows, this choice
will be justified studying the quality properties enhanced
by this solution. In our approach, the architecture is
considered as a problem-solution pair (Lévy, 2004), hence
we have to identify the problem part by defining it in terms
of its functional and non functional requirements, define
the quality model (Iso/Iec, 2001) related with the problem
domain and study the choices that have been made to select
the architectural configuration as a solution. These choices
are driven by the quality properties related with the problem’s
requirements. Our approach is now also considered by the
Aspect Oriented Software Design (AOSD) paradigm where
the crosscutting concerns which are in general quality
properties derived from software requirements (Brito, 2003),
must be taken into account very early in order to improve
the overall system structure. The architecture is a software
artifact where these issues must be taken into account.

Architectures are the baseline on which a software system
is articulated. They are solutions to particular problems
described in detail, without ambiguity, and organized so
that they can be understood and reused (Gamma, 1995).
The transition from one abstraction level to another is not
straightforward. The Model Driven Architecture (MDA)
approach (Mda, 2001) is an attempt to fill this gap. Methods
have been developed for architectural design (Bosch, 2000;
Clements, 2002) and this step is now included in general
software development frameworks (Clements, 2002). On the
other hand, all these methods consider that non functional
requirements are crucial for architectural design, especially
when the application must respond to critical issues and to
a changing environment. However, their specification is very
often only superficially considered.

In what follows, the problem is expressed in terms of its
functional and non functional requirements.

Problem: build context adaptive user interface

The considered problem consists in building user interfaces
that reconfigure dynamically to the context of use of a mobile
device in a wireless network environment.

From the previous section, the main concerns faced by user
interface designers in wireless application development
(MOTI, 2004; IBM, 1999) are:

- Limited bandwidth: A wireless device typically has much
less bandwidth available for transmitting and receiving data
than a wired device.
Intermittent connection: The connection to a wireless device
is typically unreliable. A persistent point-to-point connection
is difficult, if not impossible.

- Limited battery life: A wireless device is typically (also) a
mobile device. Since mobility dictates compactness in size,
and since there is no wired power connection, batteries are
the only means of power supply. Even the longest lasting
batteries offer a very limited amount of power.

- Limited memory on client device: Once again, because of
the mobile nature of wireless devices and their requirements
to remain a small size, room for memory is limited. Memory is
also limited by the available power source (batteries) on the
device.

- Limited CPU: Because of the size of the devices and the
battery life, processing information on the device is very
expensive. Very few operations should be performed on the
device and they should be only performed where there is
strong justification for them.

- Limited user interface devices: A keyboard and/or a mouse
are normally not available for a wireless or a mobile device.
Also, the display is almost always very small. This makes
viewing and data entry more difficult.

These concerns indicate that minimization of resource
consumption is a mandatory concern that can be measured
using the efficiency quality property.

In consequence, from the analysis of the above concerns
we are able to state the following non functional
requirements for the software system.

Non functional requirements

- Resource use minimization (battery life, data storage,
display size, etc.).

- Data must be transmitted completely, consistently and
correctly, with transient connections (in spite of network
failures).

52

- Limited data transmission time. Convenient range of
response time.

- Handle changes in communications among dynamic or
static components.

- Notice that the above non functional requirements are
constrained related to the problem domain environment,
where the software system will be executing. They indirectly
affect the system architecture.

- Centralized solution, due to the presence of the middleware.
- Handle reconfiguration of interfaces.

These two non functional requirements are directly related
with the system architecture.

Business rules

They identify requirements such as company policy or rules
that must be considered by the software system.

- Established network communication protocols and
bandwidth.

Requirements may be seen in general as main «goals» that
the system must accomplish. In fact, due to a changing
environment, the context may change in such a way that the
putting into operation of the goal is no longer valid. In this
sense requirements may be seen as trade-offs between the
goals and the actual reality. For example, a goal for a service
may be to provide for a highly interactive user experience. If
the context is favorable (high bandwidth, large color display,
Java Virtual Machine available, etc.), the goal is translated
into the service «use a Java applet to represent the shopping
basket» (Finkestein, 2004).

Functional requirements

- Users install/uninstall applications (services) on the mobile
device. A service may be installed or uninstalled over a
device by a user because he explicitly requests it. The data
displayed by the required service must be attractive to the
user. Services must be related to the user rather than to a
specific device, or specific location. (User Oriented Services)

- Code and data are downloaded/uploaded from/to the server
and stored locally on the mobile device. Data must be
completely and correctly transmitted. Messages and data

from the server are downloaded and stored locally. In a
pervasive computing environment, there are various ways
of accessing different types of data according to different
users needs. A combination of code and data mobility should
enable to construct a flexible data model. (Data
Management).

When the service is running, the adaptive user interface is
automatically and contextually reconfigured for this
environment. Failure can be caused by the user resource
scarcity (battery, memory, etc.) or by disconnection
(connection fails). Client-dependent adaptability such as a
changing environment requires the dynamicity of the user
interface component in applications, i.e. to dynamically
change according to the user’s device configuration.
Automatic contextual reconfiguration is a process of adding
new components, removing existing components, or altering
the connections between components due to context
changes.

Quality model and architectural solutions

According to the domain of context adaptive user interface
in a mobile environment (Lévy, 2004) and the requirements
stated above, the following internal and external quality
properties, specified according to (Iso/Iec, 2001), characterize
this domain and constitute its quality model: Reliability
(availability, consistency), Functionality (security for data
access control), Efficiency (performance with respect to
resources utilization, response time), Maintainability
(changeability with respect to the execution environment,
scalability to adopt the device resources), Portability
(adaptability, replaceability), Usability (attractiveness,
operability).

Table 1 shows the direct relation between the adaptive user
interface quality properties, expressed in the quality model
and the non functional requirements, that is to say the
quality that each requirement should accomplish. Notice
that the metrics for each quality property are given at
architectural design level, i.e. at a high abstraction level.
They must be provided very early in the development
process and are meant as broad guidelines to document
decisions that can be shared by all stakeholders for a
common understanding on the software project.

Table 2 shows possible architectural solutions or design
patterns used to solve each functionality responding to a
precise quality property.

53

NON FUNCTIONAL
REQUIREMENTS

QUALITY PROPERTY ARCHITECTURAL
SOLUTION

Resource use
minimization (battery
life, data storage,
display size, etc.).

Efficiency (performance with respect to resource
utilization); quantitative property
Attribute: resource consumption for each device
Metric: percentage

Network Communication
Protocol, bandwidth , direct
measure during execution

Data must be
transmitted completely,
consistently and
correctly, with transient
connections

Reliability (consistency: provide a mechanism, e.g. the
management of replicated data update on each device);
qualitative property
Attribute: presence of a mechanism
Metric: Boolean [0..1]

Mechanism: Middleware
including Mediator

Limited data
transmission time.
Convenient range of
response time.

Efficiency (performance with respect to response time
due to battery scarcity and transient connections);
quantitative property
Attribute: latency
Metric: percentage

Network Communication
Protocol, bandwidth, direct
measure during execution

Handle changes in
communications among
dynamic or static
components and in
components

Maintainability (changeability: extensibility of the
execution environment); quantitative property
Attribute: size
Metric: Measure of complexity, e.g. number of dynamic
components in a period of time
Portability (replaceability)
quantitative property
Attribute: size
Metric: Measure of complexity

Reflection pattern (Schmidt,
2000)
to observe the state of a
component, to allow dynamic
changes in structure and
behavior, direct measure,
during execution

Centralized solution
with respect to data,
due to presence of the
middleware

Reliability (availability); qualitative property
Attribute: presence of a mechanism
Metric: Boolean [0..1]

Mechanism: Middleware
including Mediator

Dynamic
reconfiguration of
interfaces

Maintainability (changeability); quantitative property
Attribute: size
Metric: Measure of complexity
Portability (adaptability)
qualitative property
Attribute: presence of a mechanism
Metric: Boolean [0..1]
Reliability (consistency); qualitative property
Attribute: presence of a mechanism
Metric: Boolean [0..1]

Reflection pattern (Schmidt,
2000) to observe the state of a
component, to allow dynamic
changes in structure and
behavior, direct measure,
during execution

Mechanism Middleware
including MEDIATOR

Table 1. Non functional requirements, quality properties and proposed architectural solutions for each requirement

CASE STUDY

Device-based mobile applications are developed using
technologies such as Java 2 Platform Micro Edition (J2ME)
of Sun Microsystems, which support a range of PDA
(Personal Digital Assistant), smart phones and other mobile
devices. In terms of advantages, device-based mobile
applications provide sophisticated interaction styles beyond
the simple navigation model of web based applications. They
also offer a more immediate experience since they are not so
heavily bound by request/response cycles inherent in web-
based design. Furthermore, such applications can be used
offline, with information synchronized with the server upon
connection and disconnection. Disadvantages include the
need for more sophisticated devices, more costly

development and deployment (since existing web-based
applications cannot be readily ported to device based ones),
additional user configuration, and problems with client-side
incompatibilities. Note that device-based mobile
applications can be used in conjunction with web-based
mobile applications. The case study selected to illustrate
our approach is taken from a real application in the e-banking
domain. We only present here the case of an account
summary services problem. In particular, let us consider that
a bank client has a few accounts and want an account
summary, according to his location and preferences. The
user wants interaction with the services from different
devices viewing the account summary in a quickly, easy
and secure way. The use case model for the
AccountSummary functionality is shown in figure 6.

54

Table 2. Quality properties and proposed architectural solution for each functionality

FUNCTIONALITY

QUALITY PROPERTY (INTERNAL/EXTERNAL) ARCHITECTURAL
SOLUTION

Data Management, on a
flexible data model

Reliability (availability, consistency)
Attribute: presence of a mechanism
Metric: Boolean [0..1]
Efficiency (performance with respect to limited resource
space, performance with respect to limited response
time)
Attribute: resource consumption for each device
Metric: percentage
Maintainability (changeability), quantitative property
Attribute: size
Metric: Measure of complexity

LocalProxy (Roth, 2001)
A local instance provides an
interface to a local or remote
service. Example : Locally
running web proxy
PushObject (Roth, 2001)
PushObject A device sends a
specific object without
request. Examples : SMS,
OBEX
RequestObject (Roth, 2001)
A device requests a specific
object (e.g. a web page) from
another device. Example :
WAP
CannedCode (Roth, 2001)
CannedCode A device sends
code, which is executed on
another device. The code
must not be executable on the
sender’s device. Example:
WMLscript, web filters

User-Oriented Services Maintainability (scalability) quantitative property
Attribute: size
Metric: Measure of complexity
Usability (attractiveness, operability)
Attribute: presence of a mechanism
Metric: Boolean [0..1]
Reliability (fault-tolerance)
Attribute: presence of a mechanism
Metric: Boolean [0..1]

Reflection (Schmidt, 2000)]
WrapperFaçade (Schmidt,
2000)
Encapsulate functions and
data of non object-oriented
APIs into concise, portable,
maintainable and robust
interface classes.
ComponentConfigurator[
(Schmidt, 2000)
Allow the component
reconfiguration in run time,
avoiding modifying,
 recompiling or relinking the
application statically.
Interceptor (Schmidt, 2000)
Allow to transparently add
services when certain events
occur. Variants: Chain-of-
responsibility,
Publisher/subscriber and
Subject/observer.
Extension Interface (Schmidt,
2000)
Allow to export multiple
interfaces by a component to
prevent the increase of the
number of interfaces and the
breaking of the client code.
The component functionality
is extended and modified.
Mediator

55

Figure 6. Use case Model for Account Summary.

Functional requirements for AccountSummary

1. Users install/uninstall AccountSummary Services on the
mobile device. A service may be installed or uninstalled over
a device by a user because he explicitly requests it. (User-
Oriented Services)

2. The data must be attractively displayed by the required
AccountSummary Service (User-Oriented Services)

3. Code and data are downloaded/uploaded from/to the
server and stored locally on the mobile device. (Data
Management)

4. Data must be completely and correctly transmitted. (Data
Management)

Non functional requirements for AccountSummary

1. Resource use minimization (battery life, data storage,
display size, etc.).

2. Data must be transmitted completely, consistently and
correctly, with transient connections (in spite of network
failures).

Figure 7. Summary Account in Mobile Device.

3. Limited data transmission time. Convenient range of
response time.

4. Handle changes in communications among dynamic or
static components.

5. Centralized solution, due to the presence of the middleware.

6. Dynamic reconfiguration of interfaces.

7. The AccountSummary Service must be secure from the
user requirement in the problem definition.

The quality properties related to the global configuration
shown in figure 7 are due to the user requirements stated
above: Efficiency, Portability Security and Usability. To
provide an architectural solution to the problem of the
AccountSummary, several components are introduced to
respond to specific quality properties: the component User-
Oriented Services must respond to Usability (attractiveness,
operability), Maintainability (scalability), Reliability (fault-
tolerance) and Security; Data management must respond to
Reliability (consistency) and Efficiency (response time).

56

When the User-Oriented Services is running, the adaptive
user interface and the Security Server have the environment
parameters (figure 8). The GUI/Client-Side component is
introduced in response to Usability (attractiveness) and the
Security Server component is introduced in response to
Security and Reliability (fault-tolerance). The Middleware
component is then introduced to guarantee Efficiency and
Reliability (availability) in the communication, due to the
Centralized solution model. Moreover it fulfills the
Maintainability (Scalability, Changeability) property. The
Data Bank Server component is a solution introduced for
data management for reliability (consistency); however, it

involves also security, which is a crosscutting concern since
it is also required by the GUI-Client Side, as shown in figure
8.

The mediator mobile agent is dynamically adaptive to the
changes of the device display and the platform. According
to Table 1, Dynamic Reconfiguration of Interfaces must
accomplish Portability (Adaptability, Replaceability),
Maintainability (Scalability, Changeability). Since the Data
Bank Server requires Security, a new Security component is
introduced, as shown in figure 9.

Figure 8. Balance account view.

Figure 9. Balance account view with GUI.
57

To obtain the final architectural configuration for the
AccountSummary Services problem, we have to justify the
quality properties specified in the global configuration tag
and the properties on the communication between Mediator
and Bank Data Server (figure 9). On the one hand, with
regard to the efficiency and reliability of the communication,
the respective protocol will be responsible. On the other
hand, in the end, architectural portability is guaranteed by
the Mediator middleware, efficiency by the communication
protocol, security by the client-side Security Server and the
Bank Security Server and finally usability by the GUI client-
side component. Notice that, according to an AOSD
approach (Brito, 2003) we can think of having only one
Security component concentrating the security concerns
of the Client Side and Bank Data Server, to optimize the final
architectural configuration.

CONCLUSION

An architectural solution for adaptive user interfaces based
on the mediator design pattern has been proposed,
characterized and justified on the basis of the quality
properties issued from the system requirements. These
properties are specified by a standard quality model (Iso/
Iec, 2001), where high level metrics for architectural design
have been defined; they can be used to justify the
architectural choices on more solid bases than the usual
experience bases. The components and connections of the
different architectural configurations incrementally
obtained, have been selected and justified on these bases.
This documentation favors a common understanding for
the stakeholders involved in the software project. A future
research trend is to generalize our approach to context aware
applications including explicitly AOSD issues.

REFERENCES

BASS L., (1998): Clements P., Kazman R. Software Architecture
in Practice. pp. 337-344.

BOND G., (2002): «Research Methods Lecture». http://
w w w . p s y n t . i u p u i . e d u / g b o n d / g b o n d /
I643%20Design%20241/index.htm.

BOSCH J., (2000): «Design and Use of Software Architecture»,
Addison Wesley, Harlow, England.

BRITO I, MOREIRA A., (2003): Towards a Composition Process
for Aspect-Oriented Requirements, Early Aspects
Workshop (AOSD Conference), Boston, USA.

CLEMENTS P., KAZMAN R., KLEIN M., (2002): «Evaluating
Software Architecture Methods and Case Studies». SEI
Series in Software Engineering. Addison-Wesley.

COUTAZ J., BASS L., (1991): «Developing Software for the User
Interface» Addison Wesley Cummings Publishing
Company.

EISENSTEIN J., VANDERDONCKT J., PUERTA A. «Adapting to
Mobile Contexts with User-Interface Modeling».
Proceedings of the Third IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA’00).
http://www.ximl.org/documents/XIMLMobile.pdf

EISENSTEIN J., VANDERDONCKT J., PUERTA A., (2001): «Applying
Model-Based Techniques to the Development of Uis for
Mobile Computers». http://www.ximl.org/documents/
XIMLMultiChannel.pdf. January

FINKESTEIN A., SAVIGNI A., (2004): «A Framework for
Requirements Engineering for Context Aware Services».
http://www.cin.ufpe.br/~straw01/epapers/paper14/
paper14.html.

GAMMA E., HELM R., JOHNSON R., VLISSIDES J., (1995): «Design
patterns Elements of Reusable Object Oriented
Software». Addison Wesley, New York.

GENESERETH M., KETCHPEL R., (1994): S.P. Software agents.
Communications of the ACM 37(7) (1994) pp. 48–53.

GÓMEZ R., (2001): Agentes Móviles y CORBA. http://
www.fie.us.es/~ramon/tesis/CORBA/Seminario-MASIF/
. Barcelona.

IBM SYSTEMS JOURNAL «Pervasive Computing»,
(1999),Volume 38, Number 4, .

KRUTCHEN KRUTCHEN P., (1999): The Rational Unified Process,
Addison Wesley, Reading, Massachusetts.

ISO/IEC ISO/IEC 9126-1. Software Engineering - Product
Quality. Part 1: Quality Model, 2001.

LÉVY N., LOSAVIO F., (2004): «Architectural Choices for
Dependable Systems». WADS, 26th ICSE, May.

LOSAVIO F., MATTEO A., ORDAZ O., MEZA O., GONTIER W., (1994):
«An implementation of the PAC Architecture using
ObjectOriented Techniques», IFIP Transactions, Volume:
2 , No. 1 Elsevier Science B.H. (North Holland) pp. 149-
155.

LUYTEN K., CONINX K., (2001): «An XML-based runtime user
interface description languaje for mobile computing
devices». http://xml.coverpages.org/
LuytenDSVIS2001.pdf

58

MEDIATOR DESIGN PATTERN, (2002): http://sern.ucalgary.ca/
courses/SENG/443/W02/assignments/Mediator

MEDVIDOVIC N., MIKIC-RAKIC M., MEHTA N., MALEK R., (2003):
«Software Architectural support for handheld
computing», IEEE Computer, Special Issue on Handheld
Computing, vol. 36, no. 9, pages 66-73 (September 2003).
Acceptance rate 5 of 87.

MENKHAUS G., PREE W., (2005): «User Interface Tailoring for
Multi-Platform Service Access». IUI International
conference on intelligent user interface. San Diego
California, January.

MENKHAUS G., PREE W., (2002): «A Hibrid Approach to
Adaptative User Interface Generation». Journal of
Computing and Information Technology (CIT), 10(3).

MDA DOCUMENT number ormsc/2001-07-01, «Architecture
Board ORMSC», July 9, 2001.

MOTI N., CHOW Y., KWAN V., WANG C., LAU F., (2004). «A
Component-based Software Architecture for Pervasive
Computing», Intelligent Virtual World: Technologies and
Applications in Distributed Virtual Environments, World
Scientific Publishing Co. USA. http://
www.softwareresearch.net/site/publications/C048.pdf.
April 1, 2002.

NGAMNIJ A., (2003): «A reference architecture for integrating
heterogeneous information sources using XML and
Agent Model». Advance virtual and intelligent
Computing (AVIC) research center. University of
Thailand.

ROTH J., (2001): «Patterns of mobile interaction». Mobile
Conference Human Computer Interface.

SCHELFTHOUT K., CONINX T, HELLEBOOGH A, HOLVOET T,
STEEGMANS E, WEYNS D., (2002): «Agent Implementation
Patterns». Proceedings of the OOPSLA Workshop on
Agent-Oriented Methodologies (Debenham, J. and
Henderson-Sellers, B. and Jennings, N. and Odell, J.,
eds.), pp. 119-130.

SCHMIDT D, STAL M, ROHNERT H, BUSCHMANN F., (2000):
«Pattern-oriented software architectural». Pattern for
concurrent and networked objects.Willey.

SEESCOA., (2003): «A Concept-Based Approach to Software
Design». Proceedings of the 7th International
Conference on Software Engineering and Applications.
Marina del Rey,

SOUSA J., GARLAN A., (2002): An architectural framework for
user mobility in Ubiquitous computing Environments,
Proc. 3rd. Working IEEE/IFIP Conf. Software
Architecture, Kluwer Academic, pp.29-43.

VANDERDONCKT J., FLORINS M., OGER F., (2001): ModelBased
Design of Mobile User Interfaces. http://
www.cs.strath.ac.uk/~mdd/mobilehci01/procs/
vanderdonckt_cr.pdf

59

