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RESUMEN

We developed and applied a gravimetric inversion methodology that combines well-log and gravity information in a
geostatistical framework. This technique looks for the optimal model that explains the geophysical data and satisfies the
prior information on the model parameters, by solving iteratively a system of linear equations to update the 3-dimensional
mass density field and the interface geometry between model layers. The optimal model jointly explains the gravity
observations, complies with the prior statistical distribution of the mass density and honors well constraints on the
interface between layers. We apply the technique to a set of data in eastern \enezuela to analyze the prediction errors on
the sedimentary basin basement depth, and particularly the effect of progressively including more well constraints into the
geostatistical inversion. The inversion process combining gravity and well data always produced a better prediction of the
basement depth than the gravity inversion with no well control on the basement. We compared the basement depth
estimates of the geostatistical inversion with the results obtained from plain interpolation of the well data (e.g. Kriging) and
found that the geostatistical inversion of gravity data with well constraints improved the basement estimation when the
spatial distribution of the wells is scarce, and both methods are equivalent when the spatial distribution of the wells is
dense.

Keywords: Inversion, Gravity data, Orinoco belt, Well-long data, Geostatistics.

INVERSION GEOESTADISTICA DE DATOS DE GRAVEDAD
Y REGISTROS DE POZO

ABSTRACT

En este trabajo se desarroll6 y aplicé una metodologia de inversion que combiné datos de registros de pozo y de gravedad
bajo una formulacion geoestadistica. En esta técnica se realizé una busqueda de la configuracion optima del modelo que
explica los datos geofisicos y satisface la informacién previa sobre los pardmetros del modelo, mediante la solucién
iterativa de un sistema lineal de ecuaciones para actualizar el modelo tridimensional de densidades de masa y la geometria
de las superficies entre las capas del modelo. La configuracion 6ptima explica las observaciones de gravedad, es consistente
con la informacion estadistica previa y ajusta a los datos de pozos sobre la localizacion de las capas del modelo y los
valores de densidad. Aplicando la técnica a un conjunto de datos en la region oriental de Venezuela para analizar los errores
de prediccion de la profundidad del basamento cristalino y el efecto de incluir progresivamente mas informacién de pozos
como restriccién en la inversion geoestadistica. EI proceso de inversion que combina datos de gravedad y de pozos
produce una mejor prediccion de la profundidad del basamento que la inversion de gravedad sin control de pozos. Se
compar6 la estimacion de la profundidad del basamento obtenida con la inversion geoestadistica con los resultados
obtenidos de la interpolacion geoestadistica simple de los datos de pozos (método de Kriging) y se encontr6 que la
inversion geoestadistica de datos de gravedad, condicionada por la informacion de pozos, mejora los estimados de la
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profundidad del basamento cuando la distribucion espacial de los pozos es escasa, y ambos métodos proporcionan
resultados similares cuando la distribucion espacial de los pozos es densa.

Palabras clave: Inversidn, Gravimetria, Faja del Orinoco, Datos de pozo, Geoestadistica.

INTRODUCTION

The certainty on the results of the gravity data inversion is
commonly affected by the non-uniqueness of the solution,
data errors and the variability of the mass density within the
geological bodies considered in the model. Due to this
characteristic, it is useful to consider an inversion scheme
that takes into account other types of information in addition
to the gravity data, to better constraint the results to realistic
model configurations. New inversion methodologies based
on a probabilistic approach (Tarantola, 1987; Mosegaard &
Tarantola, 2000; Bosch, 1999) allow to combine a priori
geological, petrophysical and geostatistical information with
the geophysical observations. The formulation based on
this approach has been solved with different techniques,
such as Monte Carlo sampling (Bosch et al., 2001; Bosch &
McGaughey, 2001) and optimization (Jiménez et al., 2002;
Jiménez & Bosch, 2004; Jiménez, 2004; Bosch et al. 2006).

We formulate an inversion method that combines the gravity
data with well-log information about the geological interfaces
depths and density statistics within model layers, and apply
this method to estimate the top of the basement in a
sedimentary basin located in eastern Venezuela, South
America. With this method, we jointly estimate the geometry
of model interface between layers and the 3-dimensional
density field within each layer, the latter honoring prior
spatial statistics.

The estimation of the depth of the interface between model
layers and the estimation of the density field with the
inversion of gravimetric data have been aspects commonly
studied separately. For example, in the work by Bear et al.
(1995) and Li et al. (1998) a 3-dimensional density model
was estimated from the observed gravity field. On the other
hand, the work by Rama et al. (1999) and Barbosa et al.
(1997a and 1999b) have focused on estimating the depths
of the interface between two homogeneous media. Other
authors as Bhaskara et al. (1991) considered the variability
of the density as a function of the depth for the estimation
of the interface depth, and Graterol et al. (1998) described
how to produce a basement map using a variable datum and
seismic information. The work by Gallardo-Delgado et al.
(2003) jointly estimates the interface depths and the density
contrast, the latter modeled as a polynomial function
dependent with depth, inverting gravity and magnetic data.

In this work we describe a methodology developed by

Jiménez et al. (2002); Jiménez (2004) for 3D geostatistical
inversion of gravimetric data, based on an iterative
optimization of the model configuration to jointly fit the
gravity observations and the geostatistical model for layer
densities and interfaces. In this way the solution explains
the gravity data and also satisfies well constraints and
density spatial statistics. We apply this methodology to an
area of the Orinoco Belt, Venezuela, evaluate the effect of
combining gravity data and well data for the basin basement
estimation, and show the results of the progressive increase
of the number of well constraints into the inversion.

METHODOLOGY

Afirst step in our method is to describe, in three-dimensions,
the mass density field within two different lithological layers
and the geometry of the interface between them. We divide
the volume within each layer in rectangular prisms, or blocks,
of homogeneous mass density, and the interface that
separates the layers in corresponding rectangular pieces as
shown in Figure 1. The blocks are not regular as they conform
to the arbitrary position of the interface between the layers.
Our model parameters are the mass density in each one of
the prisms and the depth of each rectangular piece of the
interface. We calculate the gravitational vertical acceleration
due to each block separately, and then these contributions
are added to obtain the calculated gravity field of the model.
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Figure 1. Volume parameterized in rectangular prisms
and the surface between the upper and lower layers
parameterized in rectangular pieces.
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Following the approach of previous work (Bosch, 1999;
Jiménez et al. 2002) the different types of information
(geophysical, geological and petrophysical) are modeled
by probability density functions (pdf), which are defined
either in the data space or in the model parameter space.
The result of the combination of these types of information
is summarized in the a posteriori pdf o (m), calculated with
the product (Tarantola, 1987):

o(m) = cL(m) fi(m), (1)

where m is the array of model parameters that describes
both the mass density field and basement depths, fi(m) is
the prior pdf that describes the prior information on the
model parameters, L(m) is the likelihood function that
measures the fit between the observed and calculated data,
and c is a normalization constant.

We model the a priori information on the model parameters
with a multivariate Gaussian function, fi(m) =cexp [- ¥2 (m -
m prior)I C,{(m-m prior)], wherem orior is the mean of the a priori
statistical model and C,,, is the prior model covariance matrix.
The upper-script t indicates array transposition. The
covariance matrix contains in the diagonal the prior variances
of the density and the depth of the interface. Prior
covariances are present in the non-diagonal elements of the
matrix, describing the spatial correlation of the density as a
three-dimensional field and the spatial correlation of the
interface depths as a two-dimensional field. We assume the
spatial homogeneity of the covariance within each layer to
calculate the terms of the matrix from a covariance function
that depends on the distance and directions between cells,
as commonly done in geostatistical work (e.g. lIsaaks and
Srivastava, 1989).

We model the likelihood function assuming Gaussian data
errors, L(m) = cexp [- % (d®°—d)' C* (d*'°—d°™)], where
de js the gravity data calculated from the model, d° is the
observed data, and C, is the data covariance matrix. We
assumed independence of data errors and hence used a
diagonal data covariance matrix. The likelihood function is
based in deviations between observed and calculated data,
the latter obtained from the model parameters after solving
the forward problem, d*¥° = g(m), which is not linear because
the data depend on the interface depth in a non linear way.
Thus, from equation (1) and the correspondent expressions
for the likelihood function and the prior pdf, our posterior
pdf is given by:

o (m) =C exp [_ 1/2 ( dcalc _ dobs)t CD-l (dcalc _ dobs) _ 1/2 (mn _
mprior)t CM-l(mn - mprior)] : (2)

The problem of finding the model configuration
corresponding to the maximum of the posterior density is
equivalent to the problem of finding the minimum of the
«objective» function:

S(m) = (dobs_ dcalc)tCD-l (dobs_ dcalc)+ (mn_ m )tCM-l (mn_ m

priori) !

3)

priori:

which is the twice and opposite of the exponential argument
of the posterior density. In this function, the first term
measures the distance between calculated and observed
data, and the second term measures the distance between
the a priori model and the resulting model from the inversion.
Minimizing the function S(m) means to look for an optimal
model that reduces the residual of the data and at the same
time satisfies the a priori information. The minimum is
obtained here following the Newton’s method and solving
iteratively the system of equations:

(C,G'Cy2G +1)Am=C,, G!C,H(d™ ~d) - (m*-m ) (4)

where m" are the current model parameters, and Am is the
solution vector that is used to update the values of the
model parameters considered, m™! = m"+ Am. The matrix G
is the Jacobian matrix of the calculated gravity data function
g(m), containing the partial derivatives of the calculated
data to the model parameters.

APPLICATION TOHAMACAREGION DATA

The Hamaca region is part of the southern flank of the Eastern
Basin of Venezuela and it presents a sedimentary sequence
that includes sediments from the Paleozoic to the Recent.
Sediments rest on pre-cambric rocks represented by the
Igneous-Metamorphic Complex of Guayana (Feo-Codecido
et al. 1984; Russo and Speed, 1994). Gravity data, well
information on mass densities and basement depths are
available on this area, which let us implement this
methodology and compare results on basement estimation.

Figure 2 shows the area used for the inversion that has an
extension of 120 km in X direction (EW direction) and 100 km
in Y direction (NS direction), and the corresponding
observed Bouguer anomaly. Notice the significant variations
of the gravity field, which can be due to either heterogeneities
of the density or the configuration of the sediments-
basement interface. Also the anomaly shows the major
structural features of the basement, indicating that it
increases its depth northwards, towards the Eastern Basin
depocenter. The total range of the anomaly in the area is
approximately 70 mGal, and we used for the inversion a data
error of standard deviation of 5% of this range (3.5 mGal) to
encompass the errors associated with instrument
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Figure 2. (top) Map of northern Venezuela showing

the location of the area under study in this work, = ] =i

the coast line, the Orinoco river and the Orinoco oil belt
area. (bottom) Bouguer gravity anomaly in the area.

measurements, calculation of the Bouguer anomaly, and g ™
simulation of the gravity data. T
£
We consider information on values of the mass density o
reported in a group of 21 wells that are located in the area. -1000
Figure 3 shows their locations and the estimated basement BASEMENT TOP

map interpolated with a conventional Kriging method from

the basement depths reported on the well locations. Figure

4 presents an example of a density-log corresponding to -1050
one of the wells and shows that the contrast of mass density

between sedimentary rocks and crystalline basement is

important in this area.

-1100

This information, the density data in the 21 wells used in the
study, was statistically characterized to obtain the mean
value and the standard deviation of the mass density for
the two layers in the model. Figure 5 shows the density -1150
histograms with the mean and standard deviation values ‘ Density (10°kg/m?)
obtained for each layer, and the significant mass density
contrast of approximately 600 kg/m? between the upper layer
(sediments) and the lower one (basement) in the considered
area.

Figure 4. A representative density log
of a well in the area under study, which shows the
presence of two major layers (sediments and basement).
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Figure 5. Histograms of the mass density
corresponding to sediments and basement,
obtained from the well-logs in the area.

The a priori model is built from two kinds of available
information having effect one of them on mass density
parameters and the other one on interface depth parameters.
As previously mentioned, the statistical prior model is
multivariate Gaussian and depends on the prior mean and
covariances of the parameters that describe the information
available from the well data. The prior surface corresponding
to the mean basement depth is obtained making a
conventional interpolation (using Kriging) of the
corresponding depth reported in the wells. The prior variance
associated to the surface depth is not uniform, as it is small
in the interface pieces intercepting a well and larger in the
interface pieces not intercepted by a well. For the latter, the
depth of the basement will be controlled by a compromise
between the gravity data fit and the depth on near by wells
according to the covariance function used. For the inversion
we used a standard deviation of the interface depth of Imin
the interface pieces intercepted by a well and 500 m for the
interface pieces not intercepted by the wells.

In the same way we prepare the prior model for the density,
assigning to the cells intercepted by the wells the average
well-log density in the interception, and interpolating with
Kriging densities in cells that are not intercepted by the
wells. We used standard deviations for the density
according to the variability in the histograms for blocks not
intercepted by the wells and much smaller for cells
intercepted by the wells.

We did not obtain a covariance function for the density or
basement depth from the well data because of the scarcity
of well data in horizontal direction. We used a Gaussian
covariance function model and the corresponding ranges
(correlation distances) as a method to regularize in space
our density fields and the basement surface. For the density
field we used a covariance horizontal range (both X and Y
directions) of 15 km and a vertical range of 1 km., in sediments
and crystalline basement. For the basement surface we used
arange of 60 km (both in X and Y directions). Also for scarcity
of lateral sampling, particularly for the basement layer, we
preferred to use the mass density deviation obtained at the
scale of well sampling as prior standard deviation instead of
reducing it by smoothing density values to the size of model
blocks.

RESULTS

With this method we built six prior statistical models,
differing in the quantity of wells that enter in the definition
of the a priori model for the basement interface and the
property fields. The number of wells taken into account
(group A) was consecutively: 1, 3,6, 9, 12 and 15 for a total
of 6 inversion exercises. In figure 6 we show the maps of the
a priori mean basement for each case. In each of the cases
the wells not taken into account for the model (group B)
were used as blind group to evaluate the basement
prediction of the inversion. For the cases of 1 well and 3
wells a plane model of the interface was built, while for the
remaining ones the method of Kriging was used, always
satisfying the information of the wells of the group A.
Additionally, we performed an inversion using no well data
constraint on the basement depths.

Figure 7 shows the series of estimated basement maps
obtained from the geostatistical inversion of gravity data
for each of the 6 cases. It is important to remember that the
technique modifies the basement depths and the density
field to explain the gravimetric anomaly, at the same time it
honors the depth of basement reported in the subset of
wells used as a priori constraint and the spatial statistical
model for the density field and basement surface. The maps
shown in figure 7 represent the result of the estimate of the
basement depth combining gravimetric information and well
data, progressively increasing the content of well data
information into de inversion.
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Figure 6. Maps of the a priori mean basement depth, built with the information
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Figure 7. Basement depth maps obtained with the geostatistical inversion of gravity data
from each of the prior models shown in figure 6, corresponding to constraints
of (a) 1 well, (b) 3 wells, (c) 6 wells, (d) 9 wells, (and) 12 wells, (f) 15 wells.
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Figure 8 shows the gravimetric fields calculated from the
resulting models obtained in each of the inversion cases
shown in Figure 7. The calculated gravity anomalies are
similar between them and similar to the observed field (Fi-
gure 2). They reproduce also the spatial resolution of the
observed field, i.e. the apparent wave-number composition
in the data, the gravimetric anomaly extremes northward,
southward at the center and even in the borders of the area.
Therefore, all the models obtained in the 6 inversion cases
explain the observed gravity data satisfactorily, within the
data errors considered.

Models obtained with the inversion include also the three-
dimesional density fields in the sediment and basement
layers. Figure 9 shows two vertical sections of the density
field for the solution of the inversion case corresponding to
15 wells constraining the model. The variability of the density
in the inverted models complies with the prior statistics used
in the inversion. Figure 10 shows the mass density histogram
obtained from the estimated model in the inversion case of
15 wells (basement shown in figure 7f and calculated gravity
in Figure 8f). The mean values of the density for the
sediments and the basement rocks reproduce very well the
mean values as obtained from the well data shown in Figure
5. Deviations are also comparable, although smaller in the
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inverted model, as expected due to the change of scale
between large cells used in the inversion and the well
sampling scale used for the histograms of Figure 5.

Additionally, we carried out an inversion of gravity data
with no well depths constraints in the basement. Statistics
for the mass density fields were the same as the statistics
used in the cases already shown, centered in the
corresponding mean value for the density in the sediment
and basement layers. The prior model for the basement depth
was a flat surface in the mean value of well depths. Figure 11
shows the basement depth map estimated with the inversion,
which basically reproduces all features of the observed
gravity data (Figure 2) into the predicted basement structure.

This includes the positive-negative gravimetric anomaly
couple at the center of the area that does not correspond to
a basement feature as shown by the well data. Inversions
combining well and gravity data explain this gravity
observation with the lateral density changes within the
crystalline basement rocks (Figure 9).

From the optimal models obtained in each inversion case
(basement shown in Figure 7) we compare the basement
depth prediction with the well-known value of the basement
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Figure 8. Gravity anomaly maps calculated from the models obtained in the geostatistical inversion,
corresponding to basement depths shown in figure 7. The inversion was restricted in each case
by (a) 1 well, (b) 3 wells, (c) 6 wells, (d) 9 wells, (and) 12 wells, (f) 15 wells.
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Figure 9. Location of the trace of two vertical sections
intercepting the well P-12, superposed to the observed
gravity field, and corresponding vertical section
of the mass density estimated by the inversion
for the case of 15 well constraints (a) in direction N-S
and (b) in direction E-W.

reported in the well-logs of the blind group (group B) and
calculate the corresponding rms prediction error for the
depth of the basement. Also, we calculate the basement
depth rms prediction error corresponding to the prior mean
basement (shown in Figure 6). We recall that the latter is an
estimation based only in the geostatistical interpolation of
well data with no use of the gravity information. Figure 12
shows the plots of the rms basement depth prediction errors
for the geostatistical inversion of gravity data and the plain
geostatiscal interpolation of well data. Additionally, the
inversion of gravity data without well constraints produced
an rms basement depth prediction error of 270 m that is also
indicated in Figure 12. Results show that in the range
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Figure 10. Histograms of mass density of sediments and
basement, obtained from the estimated mass density
model in the geostatistical inversion of gravimetric data
for the 15 well constraints case.

between 1 and 6 wells, the geostatistical inversion of gravity
data with well constraints performs better in predicting the
depth of the basement than the gravity inversion with no
well control or the Kriged basement estimated from the well
data alone. For 6 or more wells the basement prediction
based on the combination of gravity and well information
produced equivalent results than the prediction based on
the well information alone.

DISCUSSION

Results on the accuracy of the prediction indicate that the
inversion of gravity data with depth controlled by well data
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Figure 11. Basement depths estimated
from the geostatistical inversion of gravity data
with no well constraints on the basement interface.
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Figure 12. Root mean of squares (rms) prediction error
for the basement depth in the wells not used
in the inversion. The dashed line corresponds
to estimates based only on well information (Kriging).
The solid line corresponds to results of the inversion
that combines gravimetric information and wells
(geostatistical inversion of gravity data). The dotted
horizontal line indicate the rms prediction error
for the geostatistical inversion with no well constraint.

(at least at one point) improved the basement depth
prediction significantly compared with the inversion of
gravity data with any depth constraint. This can be
considered an expected result. Several authors have shown
(Pilkington & Crossley, 1986) that the potential field data
have more information on relative depths of basement
features than on their absolute depths, due to the joint data
dependency on interface depth and property contrast.
Hence, having one or more controlled depth points on the

basement interface should significantly improve the depth
prediction.

On the other hand, in the range between 1 and 6 wells
constraining the basement, the combination of gravity and
well data, via the geostatistical gravity inversion, performed
better than the interpolation of well data alone. This can
also be considered an expected result as the gravity data
contains information on the basement geometry. Well logs
have accurate information on the depth of the basement,
but the spatial distribution of wells could be scarce to sample
basement features satisfactorily. Hence, the estimation of
basement depths between the wells should be improved by
the gravity data. As an example, for the first case (a single
well in the group A) the estimation of basement depths in
the blind wells (group B) based on the combination of the
gravimetric information and the basement depth constraint
on that well, reduces the prediction error in a half in
comparison with the estimation based on well information
alone. We can see, comparing Figure 7a and Figure 3, that
in this case the inversion predicts the NS gradient of the
basement depths, information that is impossible to obtain
from a single well. For the determination of this tendency
the gravimetric data were fundamental. Again, for the second
case (3 wells in the group A) the prediction error of the
combined estimate (gravity + wells) is approximately 2/3 of
the prediction based only on well information. Also due to
the gravimetric information the basement model predicted
by the gravimetric inversion (Figure 7b) represents better
the basement geometry than their equivalent a priori one
based on the three well constraints alone.

More insight in the information content of the gravity data
is needed to understand why above certain number of wells,
the prediction based in gravity and well data are equivalent
to the prediction based on well data alone. We explain this
result throughout the fact that the gravimetric anomaly
contains information of different sources, and not only on
the basement depth. Therefore, the effects of the mass
density variations, above and beneath the surface between
sediments and basement, will produce deviations in the
inversion estimate of the basement from their true value.
This effect should be dependent on the area characteristics
and well control. As a clear example, the couple of minimum
and maximum of the gravity anomaly that can be seen in the
center of the area do not represent in this area a structure
related with the depth of the basement, but instead it is
related with the changes of density in the crystalline
basement (see gravity data and density sections in Figure
9). Significant changes of density and composition of the
crystalline basement are also observed in other parts of the
area, like in the Guayana Shield (Gonzalez et al. 1980) where
the crystalline basement is exposed. On the other hand, the
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regional gradient of the gravity anomaly is well related with
the basement geometry in the area, and this information
improves the basement prediction when well information is
poor in its spatial distribution.

CONCLUSIONS

In this work we describe a method to combine the gravimetric
information with well-log information for the estimation of
the major geologic layer geometry and density fields in 3-
dimensions. The resulting model jointly explains the gravity
observations, satisfies the conditions on the statistical
distribution of the mass density and honors well-known
positions of the layer interface. We applied this method to a
region in eastern Venezuela and described the effect of
gradually increasing the number of wells taken into account
in the inversion on the basement depth prediction.

Our results indicate that the combination of gravity and
well-log information for basement determination always
improves basement prediction when compared with a gravity
inversion with no well control. On the other hand, it also
improves the basement prediction compared with an
estimation purely based on well control when the spatial
distribution of wells is scarce. When the spatial distribution
of wells is dense enough both methods provide equivalent
results in basement depth prediction. Additionally, the
geostatistical gravity inversion provides information on the
structure inside the layers related with the spatial variations
of the density field.
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