OPTIMIZACIÓN DE BALANCE DE CARGAS EN SISTEMAS DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA

EBERT BREA

Universidad Central de Venezuela, Facultad de Ingeniería, Escuela de Ingeniería Eléctrica, Apartado Postal 47456, Caracas 1041-A, Venezuela. e-mail: ebert.brea@ucv.ve

Recibido: noviembre de 2008

Recibido en forma final revisado: julio de 2009

RESUMEN

El desbalance de fases en un sistema de distribución de energía eléctrica, constituye ser uno de los tantos problemas que suele afectar negativamente la confiabilidad y calidad de los sistemas de distribución. En este artículo se muestra un modelo matemático convexo que permite medir el balance de las fases ante una configuración de conexión dada. Las características del modelo matemático son estudiadas en el trabajo a fin de demostrar que cuando es identificada al menos una solución local, la misma constituye una solución global al problema. Este último aspecto, resulta ser lo suficientemente atractivo para emplearlo como modelo matemático debido a su simplicidad.

Palabras clave: Optimización, Balance de cargas, Optimización entera, Programación cuadrática, Programación combinatorial, Método de particiones anidadas, Método de Monte Carlo.

OPTIMIZATION OF LOAD BALANCE IN ELECTRICAL DISTRIBUTION SYSTEMS

ABSTRACT

The unbalancing of electrical loads in feeder systems is one of many possible problems that can negatively affect the reliability and quality of an electrical distribution system. This article shows a convex mathematical model, which allow us to measure the balancing of phases. A mathematical study of the objective function is presented here, in order to show that when a local minimum is identified by some algorithmic method, the solution is also global. This main characteristic of the mathematical model really makes it a useful tool to be applied to these type of problems, because of its simplicity.

Keywords: Optimization, Phase balancing, Integer optimization, Quadratic programming, Combinatorial programming, Nested Partitions Method, Monte Carlo Method.

INTRODUCCIÓN

El desbalance de las fases en los sistemas de distribución constituye uno de los tantos problemas que presentan las redes de distribución de energía eléctrica. Estos fenómenos pueden incrementar las pérdidas en los sistemas de distribución, así como la merma en la calidad del sistema eléctrico, además de afectar la confiabilidad del mismo.

Podría mencionarse dos puntos de vista en la búsqueda de soluciones ante los problemas de desbalance de cargas conectadas a los sistemas de distribución de energía eléctrica. El primero de ellos parte del principio de la reconfiguración de la alimentación. El otro, el cual será el enfoque empleado en este trabajo, es el referente a la adjudicación de carga en los distintos nudos del sistema a ser conectado en las fases del sistema, haciendo que la decisión sea tomada en relación a cuál fase será conectada la carga ubicada en cada *n*-ésimo nudo. Este último enfoque fue abordado por Zhu *et al.* (1999), no obstante, la formulación matemática del problema no corresponde al enfoque empleado en su trabajo, en virtud de que los autores presentan una formulación matemática como si la misma fuese un caso de programación entera mixta lineal. El propósito de esta investigación es mostrar un modelo matemático alterno al empleado por Zhu *et al.* (1998), para así buscar una solución al problema cuando la carga conectada en los diferentes nudos del sistema de distribución eléctrica es variable, y su magnitud puede ser caracterizada a través de la distribución probabilística de cada carga eléctrica.

Por otra parte, el autor presenta una breve revisión de algunos conceptos matemáticos, a objeto de mostrar las bases en las cuales se sustenta para afirmar que los resultados óptimos obtenidos en los ejemplos numéricos corresponden a óptimos globales.

Es importante indicar que en este estudio sólo fueron tomadas en cuenta cargas monofásicas, es decir, cargas que están conectadas únicamente entre una fase y neutro, y no entre dos o más fases.

Un aspecto que no puede dejar de mencionarse es el referente al método algorítmico de identificación de óptimos empleado en este trabajo, llamado método de particiones anidadas (MPA) (Shi & Ólafsson, 2000a), el cual ha demostrado ser lo suficientemente eficiente en la identificación de óptimas soluciones en el ampliamente conocido problema del agente viajero (Shi & Ólafsson, 2000b), así como en la identificación de la mejor condición en un problema de optimización de redes de colas estudiado por Brea & Cheng (2003). Debe señalarse que se implementó el MPA para estudiar su desempeño en la identificación de la solución del óptimo balance en sistemas de distribución de energía eléctrica, por tratarse de ser un problema de optimización combinatorial.

El resto del artículo está estructurado como sigue: en la primera sección son presentados algunos conceptos matemáticos a fin de demostrar que la solución obtenida en el modelo formulado corresponde a un óptimo global. En la segunda sección es planteado el problema en términos matemáticos estableciendo algunas consideraciones para proponer una formulación aproximada al problema, sin que ella represente una desproporción a lo que en la realidad ocurre. Una formulación matemática alterna a la propuesta por Zhu et al. (1998) es presentada en la tercera sección, y cuva características de convexidad es demostrada en el artículo. Una breve explicación del algoritmo de identificación de la óptima solución empleado en el trabajo es mostrada en la cuarta sección, y en donde el lector podrá apreciar la naturaleza aleatoria del MPA. En la quinta sección son reportados algunos ejemplos numéricos, los cuales comprueban la utilidad del modelo matemático propuesto y la eficiencia del método algorítmico implementado. Finalmente, en la sexta sección son enumeradas las principales conclusiones de la investigación reportada aquí.

CONCEPTOS PRELIMINARES

En esta sección se revisarán algunos aspectos matemáticos que deben ser tomados en cuenta, para así poder establecer el tipo de resultado que puede ser alcanzado al aplicar algún método algorítmico de optimización.

Definición 1 (Dominio efectivo). Se denomina dominio efectivo *S* de una función $f(\mathbf{x})$: $\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$, como el conjunto no vacío de todos los puntos $\mathbf{x} \in \mathbb{R}^n$ tales que $f(\mathbf{x}) < +\infty$, (Murota, 2003).

Definición 2 (Función convexa). Una función $f(\mathbf{x})$: $\mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\}$ se dice ser convexa si para todo \mathbf{x}_1 , $\mathbf{x}_2 \in \mathbb{R}^n$ y para todo $\lambda \in \{\mathbb{R} \mid 0 \le \lambda \le 1\}$ se cumple que (Bazaraa *et al.* 1993):

$$f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) \le \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2), \tag{1}$$

Una importante consecuencia en el ámbito de las funciones definidas únicamente en el dominio discreto es el referente al punto medio, el cual se obtiene permitiendo a λ tomar el valor de 1/2 en la desigualdad (1), la cual resulta:

$$f\left(\frac{\mathbf{z}_{1}+\mathbf{z}_{2}}{2}\right) \leq \frac{f(\mathbf{z}_{1})+f(\mathbf{z}_{2})}{2}$$
(2)

donde:

$$\mathbf{z}_1, \mathbf{z}_2, \frac{\mathbf{z}_1 + \mathbf{z}_2}{2} \in \mathbb{Z}^n,$$

У

$$f(\mathbf{z}): \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$$

Teorema 1 (Dominio efectivo convexo).

Sea $f(\mathbf{x}): \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ una función convexa. Entonces, su dominio efectivo en el sentido de la definición 1 es convexo.

Demostración. (Véase Bazaraa et al. 1993).

Teorema 2.

Sea $g(\mathbf{x})$: $\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ tal que:

$$g(\mathbf{x}) = \sum_{k=1}^{K} f_k(\mathbf{x}).$$
(3)

Si cada $f(\mathbf{x})$: $\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ es una función convexa para todo k = 1, ..., K. Entonces, $g(\mathbf{x})$ es también convexa.

Demostración. De acuerdo a la ecuación (3), se tiene que para todo $\lambda \in \{\mathbb{R} | 0 \le \lambda \le 1\}$:

$$g\left(\lambda \mathbf{x}_{1}+(1-\lambda)\mathbf{x}_{2}\right)=\sum_{k=1}^{K}f_{k}\left(\lambda \mathbf{x}_{1}+(1-\lambda)\mathbf{x}_{2}\right)$$
(4)

Como para cada k = 1,..., K, $f_k(\mathbf{x})$ es convexa, se puede afirmar que para todo $\lambda \in [0,1]$,

$$\sum_{k=1}^{K} f_{k}(\lambda \mathbf{x}_{1} + (1-\lambda)\mathbf{x}_{2}) \leq \lambda \sum_{k=1}^{K} f_{k}(\mathbf{x}_{1}) + (1-\lambda) \sum_{k=1}^{K} f_{k}(\mathbf{x}_{2}), \quad (5)$$

lo cual al aplicar las ecuaciones 3 y 4 en la desigualdad 5, se concluye que la suma de funciones convexa, conforma una función convexa también.

Las definiciones presentadas pueden ser extendidas a funciones cuyo dominio es discreto. En tal sentido, serán contextualizados estos aspectos al análisis de convexidad discreto.

Lema 1 (Función convexa discreta).

Una función $f(\mathbf{Z})$: $\mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ se dice ser convexa si y sólo si para todo $\{\mathbf{z} - \mathbf{u}\}, \{\mathbf{z} + \mathbf{u}\} \in \mathbb{Z}^n$ se cumple que:

$$2f(\mathbf{z}) \le f(\mathbf{z} - \mathbf{u}) + f(\mathbf{z} + \mathbf{u})$$
(6)

donde $\mathbf{u} \in \mathbb{Z}^n$ es un vector cuyas componentes $u_i \in \mathbb{Z}$ para todo i = 1, ..., n.

Demostración. Obviamente la desigualdad 6 se obtiene al sustituir respectivamente \mathbf{z}_1 , \mathbf{z}_2 por { $\mathbf{z} - \mathbf{u}$ }, { $\mathbf{z} + \mathbf{u}$ } en la desigualdad 2.

Definición 3 (Función convexa cuadrática). Sea A una matriz simétrica, y sea $f(\mathbf{x})$: $\mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\}$ una función asociada con la forma cuadrática definida por:

$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{t} \mathbf{A} \mathbf{x}, \forall \mathbf{x} \in \mathbb{R}^{n}$$
(7)

donde \mathbf{x}^{t} representa el vector transpuesto del vector \mathbf{x} .

Se dice que $f(\mathbf{x})$ es una función cuadrática convexa si y sólo si la matriz **A** es semidefinida positiva, es decir, si para cualquier vector **x** se cumple que $\mathbf{x}^t \mathbf{A}\mathbf{x} \ge 0$. Por otra parte, la función es considerada estrictamente convexa, si y sólo si para cualquier vector **x** se cumple que $\mathbf{x}^t \mathbf{A}\mathbf{x} > 0$, es decir, si la matriz **A** es definida positiva (Murota, 2003).

Teorema 3 (Función convexa cuadrática discreta).

Sea A una matriz simétrica, y sea $f(\mathbf{z})$: $\mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ una función de dominio discreto asociada con la forma cuadrática definida por:

$$f(\mathbf{z}) = \frac{1}{2} \mathbf{z}^{t} \mathbf{A} \mathbf{z}, \forall \mathbf{z} \in \mathbb{Z}^{n}$$
(8)

Además, sea $\mathbf{u} \in \mathbb{Z}^n$ un vector cualquiera. Entonces, la función cuadrática discreta $f(\mathbf{z})$ es convexa, si su matriz \mathbf{A} es positiva semidefinida.

Demostración. Aplicando la ecuación 8 en la desigualdad 6 se obtiene que:

$$\mathbf{z}^{t}\mathbf{A}\mathbf{z} \leq \frac{1}{2}(\mathbf{z} - \mathbf{u})^{t}\mathbf{A}(\mathbf{z} - \mathbf{u}) + \frac{1}{2}(\mathbf{z} + \mathbf{u})^{t}\mathbf{A}(\mathbf{z} + \mathbf{u}), (9)$$

donde $\mathbf{u} \in \mathbb{Z}^n$ es un vector cualquiera.

Después de algunas operaciones sobre la desigualdad 9 se llega a que $\mathbf{u}^t \mathbf{A} \mathbf{u} \ge 0$, la cual al aplicar la definición 3, se concluye que la función es convexa.

Lema 2.

Si $\mathbf{d} \in \mathbb{R}^{n}$ es un vector *n* dimensional cualquiera. Entonces la matriz simétrica $\mathbf{d} \in \mathbb{R}^{n \times n}$ definida por $\mathbf{D} = \mathbf{d}\mathbf{d}'$ es semidefinida positiva.

Demostración. De la definición 3 se tiene que la matriz **D** es semidefinida positiva, si para cualquier vector $\mathbf{x} \in \mathbb{R}^{n}$

$$\mathbf{x}^{\prime}\mathbf{D}\mathbf{x} \ge 0. \tag{10}$$

Ahora como la matriz $\mathbf{D} = \mathbf{d}\mathbf{d}^t$, se tiene que

$$\mathbf{x}^{t}\mathbf{D}\mathbf{x} = \mathbf{x}^{t}\mathbf{d}\mathbf{d}^{t}\mathbf{x} = (\mathbf{d}^{t}\mathbf{x})^{t}\mathbf{d}^{t}\mathbf{x} = \|\mathbf{d}^{t}\mathbf{x}\|^{2}, \qquad (11)$$

donde $\|\cdot\|^2$ es obviamente un número real no negativo.

Además el lema establece que la matriz $\mathbf{D} \in \mathbb{R}^{nxn}$ es simétrica, hecho que puede ser fácilmente demostrado al multiplicar los vectores \mathbf{dd}^{t} .

Teorema 4. Sea $f(\mathbf{z}_a, \mathbf{z}_b)$: $\mathbb{Z}^n \ge \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ una función con expresión matemática dada por:

$$f(\mathbf{z}_{a}, \mathbf{z}_{b}) = \left[\sum_{i=1}^{n} d_{i} z_{a,i} - \sum_{i=1}^{n} d_{i} z_{a,i}\right], \qquad (12)$$

donde $\mathbf{z}'_a = (z_{a,1}, z_{a,2}, ..., z_{a,n}), \quad \mathbf{z}'_b = (z_{a,1}, z_{a,2}, ..., z_{a,n})$ y cada $d_i \in \mathbb{R}$ representa un parámetro. Entonces:

1. $f(\mathbf{z}_{a}, \mathbf{z}_{b})$ puede ser expresada como:

$$f(\mathbf{z}_a, \mathbf{z}_b) = (\mathbf{z}_a - \mathbf{z}_b)^t \mathbf{D} (\mathbf{z}_a - \mathbf{z}_b)$$
(13)

donde $\mathbf{D} \in \mathbb{R}^{n \times n}$ es una matriz simétrica.

2. $f(\mathbf{z}_a, \mathbf{z}_b)$ es una función convexa.

Demostración. Parte 1) Como

$$\mathbf{d}^{t}\mathbf{z} = \sum_{i=1}^{n} d_{i}z_{i}, \qquad (14)$$

donde $\mathbf{d}^{t} = (d_{1}, d_{2}, ..., d_{n})$ es el vector de parámetros y $\mathbf{z}^{t} = (z_{1}, d_{2}, ..., d_{n})$ el vector de variables, se tiene que al aplicar la ecuación (14) en la ecuación (12), se obtiene que

$$f(\mathbf{z}_a, \mathbf{z}_b) = (\mathbf{d}^t \mathbf{z}_a - \mathbf{d}^t \mathbf{z}_b)^2 = \mathbf{d}^t (\mathbf{z}_a - \mathbf{z}_b) \mathbf{d}^t (\mathbf{z}_a - \mathbf{z}_b).$$
(15)

Claramente, se tiene de la ecuación (15) que:

$$f(\mathbf{z}_a, \mathbf{z}_b) = (\mathbf{z}_a - \mathbf{z}_b)^t \mathbf{d} \mathbf{d}^t (\mathbf{z}_a - \mathbf{z}_b),$$

de donde claramente se puede afirmar que $dd' \in \mathbb{R}^{nxn}$ es una matriz simétrica, y en consecuencia:

$$f(\mathbf{z}_{a}, \mathbf{z}_{b}) = (\mathbf{z}_{a} - \mathbf{z}_{b})^{t} \mathbf{D}(\mathbf{z}_{a} - \mathbf{z}_{b}), \qquad (16)$$

donde la matriz $\mathbf{D} = \mathbf{d}\mathbf{d}^{t}$.

Parte 2) Debido a que $\mathbf{D} = \mathbf{d}\mathbf{d}^t$, del lema 2 se puede afirmar que la matriz \mathbf{D} es semidefinida positiva. En consecuencia, de acuerdo a la definición 3 la función $f(\mathbf{z}_a, \mathbf{z}_b)$ es convexa.

Teorema 5 (Óptimo global).

Sea $f(\mathbf{x})$: $\mathbb{R}^n \to \mathbb{R}$ una función convexa. Entonces su optimalidad global es garantizada por la optimalidad local.

Demostración. (Véase Murota, 2003).

PLANTEAMIENTO DEL PROBLEMA

Los problemas asociados al desbalance de cargas pueden producir una disminución de la vida útil de los generadores de energía eléctrica, además de los distintos componentes que están conectados a una red de distribución de energía eléctrica.

Obviamente, debido a la naturaleza aleatoria de la carga, los sistemas de distribución tienen una altísima probabilidad de estar sometidos a cargas desbalanceadas. No obstante, el principal propósito del modelo matemático es buscar que el sistema esté lo más balanceado durante el mayor tiempo posible.

En esta sección se presenta un modelo matemático alterno

al propuesto por Zhu *et al.* (1998) y cuya función objetivo es convexa, la cual facilita la identificación de su óptimo, para el caso de un sistema de distribución trifásico de energía eléctrica.

Considere el siguiente problema:

Problema 1.

Sea:

$$i_{\varphi} = \sum_{n=1}^{N} i_{\varphi,n} \qquad \forall \varphi = a, b, c, \qquad (17)$$

donde $i_{\phi,n}$ es la magnitud de la corriente eficaz correspondiente a la fase ϕ medida en el *n*-ésimo nudo. Entonces, el problema de optimización puede expresarse en términos de lo definido por la ecuación (17), como:

$$\min_{i_{q,n}} \left((i_a - i_b)^2 + (i_a - i_c)^2 + (i_b - i_c)^2 \right), \tag{18}$$

sujeto a:

$$i_{\phi,n} = i_{\phi,n+1} + d_{\phi,n}, \quad \forall \phi = a, b, c; n = 1, ..., N,$$

$$i_{\phi,N} = d_{\phi,n} \qquad \forall \phi = a, b, c,$$
(19)

donde:

 $d_{\phi,n}$ representa la corriente de la carga ubicada en el *n*-ésimo nudo y conectada a la fase ϕ .

La figura 1 muestra un grupo de cargas eléctricas conectadas a una fase del sistema de alimentación eléctrica. Nótese que únicamente se han representado las conexiones de cargas eléctricas a cada nudo de la red eléctrica, y cuya demanda es denotada por d_{hn} .

Figura 1. Red eléctrica.

Es importante señalar que se consideró la magnitud del valor eficaz y no su representación fasorial, debido al hecho de que se consideró que el factor de potencia de todas las cargas son iguales, además de suponer que la caída de tensión a lo largo de la línea de distribución es despreciable, lo cual bajo estas consideraciones la corriente de cada carga conectada a una fase tiene el mismo ángulo, y como resultado de esto, la corriente que entrega cada fase está dada por la suma de las corrientes de las cargas conectadas a una misma fase. Por otra parte, el hecho de que se haya considerado la suma de las diferencias de las magnitudes de la corriente al cuadrado, es debido a que se está haciendo la estimación sobre el supuesto de que el factor de potencia de las cargas conectadas al sistema de distribución es el mismo y además a la desigualdad de triangular:

$$\left|\sum_{k=1}^{N} z_{k}\right| \leq \sum_{k=1}^{N} |z_{k}|, \qquad (20)$$

donde:

 $z_{k} \in \mathbb{C}$ representa las diferencias de las corrientes.

Obviamente, si se minimiza el lado derecho de la desigualdad (20), se logra identificar el mínimo del problema, desde el punto de vista de su representación en fasores.

Además de estas consideraciones, la distribución probabilística de las cargas se suponen conocidas, bien sea, a través de alguna distribución probabilística típica o mediante alguna distribución probabilística empírica obtenida de los datos.

El problema entonces se fundamenta en definir cuál es la optima configuración de conexión, a objeto de obtener el mayor balance de carga durante el período estudiado, el cual es medido en función de la corriente eléctrica que entrega cada fase del sistema de distribución en los distintos puntos de conexión, siempre y cuando cumpla con la Ley de Corriente de Kirchoff (LCK).

Debido a que el modelo debe responder a qué fase del sistema de alimentación deben ser conectadas las cargas en los diferentes puntos de la red de distribución, se hace necesario replantear el Problema 1 en función de esta variable de decisión, la cual claramente debe ser una variable tipo $\{0,1\}^N$, para así indicar si la carga está conectada, en este caso su valor será 1, o desconectada que en cuyo caso debe tener el valor de 0.

El nuevo modelo matemático asociado al problema es entonces:

Problema 2.

$$\min_{\mathbf{K}_{\varphi,n}} \left(\left(i_a - i_b \right)^2 + \left(i_a - i_c \right)^2 + \left(i_b - i_c \right)^2 \right), \tag{21}$$

sujeto a:

donde:

 i_{φ} para todo $\varphi = a, b, c$ está definido por la ecuación (17), $\kappa_{\varphi,n}$ es la variable de decisión que indica si la carga está o no conectada a la fase φ del sistema, y C_n es la capacidad máxima de corriente eléctrica que puede entregar el sistema en el *n*-ésimo nudo.

UN MODELO ALTERNO

En este aparte, se mostrará un modelo matemático alternativo al propuesto en el Problema 2 a objeto de expresarlo explícitamente en función de sus variables de decisión, conexión de la carga.

Del análisis de las ecuaciones de restricciones se tiene que para cada nudo *n*,

$$i_{\phi,n} = i_{\phi,n+1} + d_{\phi,n} \kappa_{\phi,n} , \qquad (23)$$

Aplicando la ecuación (23) de forma recursiva, se obtiene:

$$i_{\varphi,q} = \sum_{n=q}^{N} d_{\varphi,n} \kappa_{\varphi,n}, \quad \forall \varphi = a, b, c,$$
(24)

donde:

q significa el nudo *q* de la red de distribución eléctrica, e $i_{\phi,q}$ representa la magnitud de la corriente eléctrica suministrada por la fase ϕ en el nudo *q*.

Sea $b_q^{[\phi_1\phi_2]}$ el índice de desempeño de la red, la cual permite medir el balance de corriente entre las fases ϕ_1 y ϕ_2 en el *q*-ésimo nudo de la red de distribución, y cuya expresión matemática está definida por:

$$b_{q}^{[\phi_{1}\phi_{2}]} = \left[\sum_{n=q}^{N} d_{n} \kappa_{\phi_{1},n} - \sum_{n=q}^{N} d_{n} \kappa_{\phi_{2},n}\right]^{2}$$
(25)

Empleando lo definido por la ecuación (25), para las fases a, b y c, se tiene que:

$$b_{q}^{[ab]} = \left(\sum_{n=q}^{N} d_{n} \kappa_{a,n} - \sum_{n=q}^{N} d_{n} \kappa_{b,n}\right)^{2}, \qquad (26)$$

$$b_q^{[ac]} = \left[\sum_{n=q}^N d_n \kappa_{a,n} - \sum_{n=q}^N d_n \kappa_{c,n}\right]^2, \qquad (27)$$

$$b_q^{[bc]} = \left[\sum_{n=q}^N d_n \kappa_{b,n} - \sum_{n=q}^N d_n \kappa_{c,n}\right]^2, \qquad (28)$$

donde:

 $\kappa_{a,n}$, $\kappa_{b,n}$ y $\kappa_{c,n}$ representan las componentes del vector de

conexión de la carga d_n en el *n*-ésimo nudo, y $q \in \{N | 1 \le q \le N\}$ indica el número del nudo desde donde se está determinando el balance de carga.

Aplicando las ecuaciones (24), (26), (27) y (28), en la ecuación (21) se tiene que el balance del sistema medido desde la fuente de generación puede estar definido como:

$$f(\mathbf{k}_{a}^{t},\mathbf{k}_{b}^{t},\mathbf{k}_{c}^{t}) = b_{1}^{[ab]} + b_{1}^{[ac]} + b_{1}^{[bc]} , \qquad (29)$$

donde:

 $\mathbf{k}_{\varphi}^{t} = \kappa_{\varphi,1}, \ldots, \kappa_{\varphi,N}$ para todo $\varphi = a, b, c; b_{1}^{[\varphi, \varphi_{2}]}$ es la medida de balance entre las fases φ_{1} y φ_{2} , y cuantificado desde el nudo 1. Observe que los términos de las variables de decisión $\kappa_{a,n}, \kappa_{b,n}$ y $\kappa_{c,n}$ representan la conexión de la carga d_{n} en el *n*-ésimo nudo.

Combinando el modelo representado por las ecuaciones (29) y (22), se tiene que el problema puede ser planteado como:

Problema 3.

$$\min_{\kappa_{\varphi,n}} \left(b_1^{[ab]} + b_1^{[ac]} + b_1^{[bc]} \right), \tag{30}$$

sujeta a:

$$\sum_{n=1}^{N} d_n \kappa_{\varphi,n} \leq C^{[\varphi]} \quad \forall \varphi = a, b, c,$$

$$\kappa_{\varphi,n} \in \{0,1\}, \qquad \forall \varphi = a, b, c; n = 1, ..., N, \quad (31)$$

$$\sum_{\varphi \in \{a,b,c\}} \kappa_{\varphi,n} = 1, \qquad \forall n = 1, ..., N,$$

donde:

 $b_q^{[\phi,\phi_2]}$ para todo $\phi_1 \neq \phi_2 = a, b, c$ están definidos respectivamente por las ecuaciones (26), (27) y (28).

Nótese que el Problema 3 está expresado en función de la variable entera conexión $\kappa_{q,N}$ de la carga d_n en el *n*-ésimo nudo.

Es importante señalar que la carga es considerada aleatoria con función de densidad de probabilidad conocida. Este último hecho obliga a estudiar el problema desde una perspectiva estocástica, para lo cual se propone un método de identificación de óptimo por Monte Carlo. No obstante, se estudió su solución primeramente bajo el supuesto de que la carga eléctrica es determinista, para así luego estudiar el problema desde una óptica aleatoria.

Observación 1. De acuerdo a los teoremas 2, 4 y 5, la función objetivo propuesta en el Problema 3 es una función convexa y su mínimo global es identificado por medio de un mínimo local.

Definición 4 (Matriz de conexión). Denote por $\mathbf{K} \in \{0,1\}_{3KV}$ la matriz compuesta únicamente por elementos $\{0,1\}$ tal que cada fila representa una fase del sistema, y cada *j*-ésima columna representa el correspondiente nudo *j* del sistema de distribución.

Observación 2. Para cada *j*-ésima columna, debe satisfacerse que $\sum_{\varphi=1}^{3} k_{\varphi_{i},j} = 1$ debido a que cada carga está exclusivamente conectada a una sola fase del sistema de distribución de energía eléctrica.

Observación 3. Para cada fase φ la suma de las magnitudes conectadas a ella debe ser menor o igual a su capacidad. Es decir, $\sum_{n=1}^{N} k_{\varphi,n} d_n \leq C^{[\varphi]}$. No obstante, a los efectos del alcance de este estudio, se supondrá que la capacidad del sistema de distribución es mucho mayor que la suma de las cargas posibles que pueden ser conectadas.

Un ejemplo de la matriz de conexión, para el caso de 7 nudos es:

$$\mathbf{K} = \begin{pmatrix} 0 \ 1 \ 1 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 1 \ 0 \\ 1 \ 0 \ 0 \ 0 \ 1 \ 1 \end{pmatrix}$$

Nótese que la única información necesaria para definir la matriz de conexión es el número de la fila donde está 1, lo cual permite simplificarla a través del vector de conexión $k_{[N]}$, donde *N* significa el número de nudos. Siguiendo el ejemplo anterior se tiene que:

$$k_{[7]}^{t} = (3, 1, 1, 0, 2, 3, 3)$$

Observe que de acuerdo a la matriz de conexión no existe carga conectada al nudo 4, lo cual es indicado en el vector de conexión con un cero en el cuarto elemento del vector. En general el vector k_{INI} viene dado por:

$$k_{[N]}^{t} = (k_1, k_2, \dots, k_N),$$

donde:

 $k_n \in \{0,1,2,3\}$ representa si la *n*-ésima carga está desconectada indicándose con un 0, o en el caso de estar conectada a una de las fases, la misma es indicada con el número de la fase a la cual está conectada. De aquí 1, 2 y 3 representan la conexión a las fases *a*, *b* y *c*, respectivamente.

Debe señalarse que el número de distintas conexiones factible es 3^N bajo la consideración que en cada uno de los nudos existe una carga conectada al sistema de alimentación y cada fase del sistema tiene capacidad ilimitada. Esto significa que en un problema de 12 nudos, el número máximo de configuraciones es de 531.441, lo cual representa un número considerablemente elevado.

Esta eventual situación crea la necesidad de emplear algún método eficiente de identificación de óptimos, y más si debe estudiarse el problema para el caso cuando la carga es considerada aleatoria, ya que debe hacerse un número significativo de réplicas a objeto de coleccionar las muestras de cada réplica y así realizar el estudio estadístico de la solución.

EL MÉTODO ALGORÍTMICO

En virtud de que la carga d_n conectada a cada *n*-ésimo nudo es considerada aleatoria con distribución acumulativa de probabilidades $F_{D_n}(d)$, se empleó como metodología de identificación de la óptima configuración de conexión, el enfoque de Monte Carlo para simular las distintas cargas asociadas a las aleatoriedades, Law & Kelton (2000), y el método de particiones anidadas (MPA) a objeto de identificar la óptima configuración de conexión, Shi & Ólafsson (2000a).

La figura 2 muestra un esquema general en donde se representa cada uno de los principales pasos que son propuesto como método, a fin de identificar la óptima configuración de conexión que permita el mejor balance. En la figura,

 $F_{D_n}(d)$ representa la función de distribución acumulativa de probabilidades de cada *n*-ésima carga, *q* representa el contador de réplicas, y U(0,1) significa una variable aleatoria distribuida uniformemente entre 0 y 1.

Una forma alterna de identificar el mínimo es a través de la evaluación de cada punto, dado que las variables de decisión son enteras. No obstante, cuando el número de puntos de diseño es elevado, este método resulta sustancialmente costoso. Por esta razón, se debe emplear algún método que permita identificar sistemáticamente el punto óptimo.

Un aspecto importante en mencionar es el hecho de que este enfoque, aun cuando es analizado bajo un enfoque estático, considera los aspectos aleatorios que tienen las cargas, a través de los valores que pueden tomar las cargas, los cuales son reflejados en las distribuciones probabilísticas que toman en cuenta la permanencia en el tiempo. Esto es debido al hecho de que el interés en el trabajo es proponer un método, que a través de un estudio estadístico de las soluciones aportadas por cada réplica, pueda sugerirse la mejor configuración de conexión de las cargas. No obstante, este estudio estadístico y un estudio cuando las cargas varían dinámicamente será tema a tratar en un futuro artículo.

Método de particiones anidadas

El método de particiones anidadas (MPA) busca dividir la región de factibilidad en regiones, a objeto de identificar la región prometedora mediante la comparación de una muestra de puntos de diseños tomados de cada región, permitiendo así concentrar la búsqueda, mediante la subdivisión de la región prometedora. Sin embargo, el método permite escapar de los óptimos locales a efecto de identificar el óptimo global, por cuanto una de sus características es su aleatoriedad, en la evaluación de las distintas opciones o puntos de diseños definidos por las combinaciones que conforman el conjunto de soluciones factibles.

Por otra parte, el hecho de contar con una función objetivo convexa permite asegura la identificación de al menos un óptimo global, en virtud de que pueden existir más de una configuración que alcance el óptimo global.

En cuanto a la convergencia del MPA, su estudio fue presentado por Shi & Ólafsson (2000c), el cual está basado en el enfoque de cadena de Markov.

Notación

A fin de mostrar el método, son definidos algunos conceptos básicos del método y la notación empleada por Shi & Ólafsson (2000a). Θ : es la totalidad de la región factible.

$$\Sigma = \{ \sigma \subseteq \Theta \mid \text{es una región válida de una partición } \}.$$

 $\Sigma_0 = \{ \sigma \in \Sigma \mid \sigma \text{ está a la máxima profundidad } \}.$

$$\sigma(k)$$
: la región prometedora en la k-ésima iteración.

d(k): profundidad de la región $\sigma \in \Sigma$.

s(k): superregión $\sigma \in \Sigma$.

El algoritmo

El MPA está compuesto de cuatro principales pasos, denominados: partición, muestreo, estimación de la región prometedora y retroceso.

Partición

Denótese por $M_{\sigma(k)}$ como el número de subregiones de $\sigma(k)$ de la región prometedora. Es decir, la partición de $\sigma(k)$ en $M_{\sigma(k)}$ subregiones es definida por $\sigma_1(k), \ldots, \sigma_{M_{\sigma}}(k)$ y la superregión es definida por $\Theta \setminus \sigma(k)$, la cual es indicada como la región $M_{\sigma(k)} + 1$.

Muestreo

Este paso ofrece mucha flexibilidad, por cuanto el método permite cualquier esquema de muestreo. Sin embargo, para la aplicación planteada en este artículo, se aplicará un esquema de muestreo uniforme, el cual asegura una competencia entre todas las soluciones con el mismo peso de ser seleccionado.

Una formulación matemática de este paso es como sigue: sea N_j el número de puntos de diseño provenientes de la región $\sigma_j(k)$ a ser muestreado, definida en la *k*-ésimo iteración. Emplee cualquier esquema de muestreo para seleccionar N_j de cada $\sigma_j(k)$ región, para todo $j = 1, 2, ..., M_{\sigma(k)} + 1$. Es decir, como consecuencia del muestreo de cada *j*-ésima región deben ser seleccionados los diferentes puntos de diseños $\theta^{j_1}, \theta^{j_2}, ..., \theta^{j_N}$ para todo $j = 1, 2, ..., M_{\sigma(k)} + 1$. Además, se estima la función de desempeño para cada punto de diseño muestreado. En términos matemáticos, obtenga $f(\theta^{j_1}), f(\theta^{j_2}), ..., f(\theta^{j_N})$ para cada $j = 1, 2, ..., M_{\sigma(k)} + 1$.

Estimación de la región prometedora

El principio de este paso es identificar la región con la mejor función de desempeño. Para esto, determine:

$$I(\sigma_j) = \min_{i \in \{1, 2, \dots, N_j\}} f(\theta^{j_1}) \qquad j = 1, 2, \dots, M_{\sigma(k)} + 1, \quad (32)$$

La ecuación (32) determina el índice de la región que contiene el mejor punto de diseño. Es importante destacar que en el caso de funciones de desempeño aleatorios, la estimación del mínimo puede recurrirse a cualquier método de optimización ordinal, Chen *et al.* (2000), o algún método directo de optimización.

Retroceso

El MPA ofrece dos reglas de retroceso a los efectos de escapar del proceso de búsqueda sobre una subregión, cuando ella eventualmente no contenga el óptimo global. No obstante, en este estudio se implementó la regla de retroceso en la cual el MPA reinicia su exploración sobre la totalidad de la región de factibilidad. Es decir, si al comparar los diferentes puntos de diseños resulta como región prometedora la correspondiente a la superregión, entonces se reinicia el algoritmo nuevamente.

En términos matemáticos, se tiene: si $j_k < M_{\sigma(k)} + 1$, entonces $\sigma(k+1) = \sigma_{j_k}(k)$ y d(k+1) = d(k) + 1. En caso contrario, $\sigma(k+1) = \Theta$ y d(k+1) = 1.

EJEMPLOS NUMÉRICOS

En esta sección se presentan dos tipos de ejemplos numéricos, el primero de ellos es determinista, y fue realizado a los efectos de verificar el algoritmo, con diferentes valores de cargas. El segundo, definido por variables aleatorias, las cuales son definidas en el preámbulo de cada experimento.

Es importante destacar que el número de puntos de diseños muestreados, para las subregiones y superregiones, denotados por n_{σ} y $n_{\bar{\sigma}}$, respectivamente, es determinado de forma dinámica de acuerdo a la profundidad en función del número máximo de posibles casos, es decir, de acuerdo a:

$$n_{\sigma} = \max(2, \lfloor \rho_{\sigma} 2^{N \cdot d} \rfloor)$$
(33)

$$n_{\sigma} = \max(2, \lfloor \rho_{\sigma} 2^{N-d} \rfloor)$$
(34)

donde:

 $\rho_{\sigma} \in (0,1)$ es el factor de muestreo para cada subregión, $\rho_{\overline{\sigma}} \in (0,1)$ es el factor de muestreo para cada superregión definida por el algoritmo, *N* es el número total de nudos y *d* es la profundidad de búsqueda definida por el MPA. Este esquema de muestreo dinámico es propuesto por el autor como resultado de la heurística ensayada en el algoritmo, no obstante, su estudio teórico debe constituir un próximo paso en la línea de investigación iniciada en este trabajo.

Además, la eficiencia del método algorítmico es determinada mediante:

$$\eta = \frac{3^N - m}{3^N},\tag{35}$$

donde:

m representa el número de evaluaciones de la función objetivo requeridos para identificar al menos un óptimo.

Con relación al generador de números pseusoaleatorio U(0,1) empleado para la realización en los ejemplos numéricos, se implementó el código de programación propuesto por Law & Kelton (2000).

Caso determinista

A objeto de verificar el desempeño del algoritmo, se realizaron un número importante de pruebas, con distintos valores de carga de enteras, ya que de esta manera puede ser verificado fácilmente el resultado obtenido. Para esto, el factor de muestras por cada subregión y superregión fue de $\rho_{\sigma} = 0,4~y~\rho_{\sigma} = 0,5$, los cuales son empleados para definir el número de puntos de diseños a ser muestreados tanto en las subregiones como en las superregiones definidas en las iteraciones a través de las ecuaciones (33) y (34), respectivamente.

La tabla 1 muestra un conjunto de 20 réplicas con distintos valores de cargas. Nótese que el algoritmo logra identificar al menos un óptimo global con tan sólo 8.390 evaluaciones de la función objetivo, de un total de 531.441 posible combinaciones, debido al hecho de que pudieran existir más de un esquema de conexión óptimo. El esquema de conexión óptimo para cada réplica es indicado por la primera fila de cada réplica del tercer grupo de valores, para una carga por nudo, en cientos de Amperes, las cuales son indicadas en la segunda fila de ese mismo grupo de resultados. Además, en el cuadro en referencia. R significa el número de la réplica o escenario, NE denota en número de evaluaciones de la función objetivo, i_1 , i_2 e i_3 , representan las sumas de las corrientes entregada por el sistema de distribución para las fases a, b y c, respectivamente. Por ejemplo, la réplica 1, y cuyo reporte es mostrado en las dos primeras filas de la tabla 1 indica: el valor obtenido de la función objetivo $f(K_{12}) = 2$; número de evaluaciones NE = 8.390; $i_a = 119$; $i_{h} = 120$; $i_{c} = 120$; la carga ubicada en el nudo n_{1} de magnitud 27 es conectada a la fase 2, es decir, a la fase b; la carga localizada en el nudo n_2 de magnitud 32 es conectada a la fase 3, en otras palabras, a la fase c; la carga ubicada en el nudo n_1 de magnitud 28 es conectada a la fase 1, es decir, a la fase a, y así sucesivamente.

Como fue definido anteriormente, el esquema de conexión ha sido representado por los número 1, 2 y 3, para indicar que carga es conectada, respectivamente, a las fases a, b y c.

Por otra parte, según lo definido por la ecuación (35), puede afirmarse que para este grupo de experimentos la eficiencia en todas las réplicas fue de $\eta = 98,42\%$, lo cual comprueba la alta eficiencia del método algorítmico para el modelo matemático propuesto.

La tabla 2 presenta los resultados obtenidos para una misma carga determinista. Las condiciones de muestreo fueron las mismas del caso anterior. Observe que el algoritmo identificó diversas configuraciones óptimas de conexión, las cuales corresponden a mínimos locales, y por ende a mínimos globales debido a las características de la función objetivo. Por otra parte, el MPA identificó en cada réplica al menos un mínimo local con una eficiencia $\eta = 98,11\%$.

Los resultados obtenidos por el algoritmo, para este específico caso de estudio son fácilmente verificables, en virtud de que obviamente sendas cargas de 20, 22, 30 y 35, tienen que estar conectadas a sendas fases en el sistema de distribución de energía eléctrica.

Caso aleatorio

Para estudiar este caso, se adjudicaron cargas reales aleatorias con distribuciones uniformes continuas tales que D_n ~ $U(\mu_n - \sqrt{3}\sigma, \mu_n - \sqrt{3}\sigma)$ para todo n = 1, 2, ..., N, donde μ_n y σ denotan la media de la *n*-ésima carga y su desviación típica, respectivamente.

Para el caso bajo estudio, se tomó como valores medios de las cargas especificadas por la tercera réplica del experimento reportado por la tabla 1, es decir, el vector $\mathbf{d}^{t} = (36, 24, 19, 31, 22, 24, 21, 38, 28, 20, 35, 38)$ y desviaciones típicas $\sigma = 0,1; 1; 6$.

La tabla 3 muestra el resultado de 20 réplicas, en donde todas las cargas tienen una desviación típica de $\sigma = 0,1$. En cuanto al factor de muestras por cada subregión y superregión fue, respectivamente, de $\rho_{\sigma} = 0,7$ y $\rho_{\sigma} = 0,5$.

Obsérvese que el método no identificó el óptimo en el 20% de los casos. Sin embargo, el método mostró tener una eficiencia $\eta = 97,4\%$. Además, nótese que la eficiencia del método depende ciertamente del número de muestras que tome en cada subregión y superregión.

En el caso reportado por la tabla 4, el factor de muestras por cada subregión y superregión fue de $\rho_{\sigma} = 0.7$ y $\rho_{\overline{\sigma}} = 0.5$, y en cuanto a la desviación típica de las cargas se fijó a un valor de $\sigma = 1$.

Obsérvese que en este caso, el método no identificó el óptimo en el 20% de los casos, y su eficiencia fue de $\eta = 97,4\%$,

excepto en la réplica 2, que fue de 96,5%.

de muestreo se dejaron en los mismos valores de los casos anteriores. El método presentó una eficiencia de $\eta = 97,4\%$ en 18 réplicas, mientras que en las restantes mostró una eficiencia del alrededor de 96%.

En la tabla 5 son reportados los resultados de 20 réplicas, cuando la desviación típica se fijó en σ = 6. Las condiciones

Tabla 1. F	Resumen o	de experimentos	con distintas	cargas	deterministas.
------------	-----------	-----------------	---------------	--------	----------------

R	f(K ₁₂)	NE	i _a	i _b	i _c	n_1	<i>n</i> ₂	<i>n</i> ₃	n_4	n_{5}	<i>n</i> ₆	<i>n</i> ₇	n ₈	<i>n</i> ₉	<i>n</i> ₁₀	<i>n</i> ₁₁	<i>n</i> ₁₂
						2	3	1	1	3	2	3	1	2	1	2	3
1	2	8390	119	120	120	27	32	28	27	30	34	23	37	33	27	26	35
						3	2	1	2	1	1	1	3	1	2	3	2
2	8	8390	121	119	119	39	34	27	29	26	21	26	40	21	35	40	21
						1	1	2	1	3	3	1	3	3	2	2	2
3	0	8390	112	112	112	36	24	19	31	22	24	21	38	28	20	35	38
						2	3	1	3	1	1	2	2	2	3	3	1
4	2	8390	123	123	122	33	31	26	22	38	24	25	28	37	40	29	35
						3	1	1	3	2	1	2	2	2	3	1	3
5	2	8390	122	121	121	20	25	31	40	33	34	30	22	36	22	32	39
						1	2	3	3	1	1	1	2	3	2	3	2
6	8	8390	122	124	124	32	24	29	24	35	34	21	29	39	40	32	31
						1	1	3	1	3	2	3	2	3	2	2	1
7	8	8390	124	126	124	30	35	20	23	40	19	39	29	25	39	39	36
						2	3	3	1	2	2	3	3	1	1	1	3
8	2	8390	125	124	125	22	32	32	32	36	30	36	30	24	30	39	31
						1	3	1	1	2	3	3	3	1	2	2	2
9	6	8390	102	103	101	28	21	27	20	22	28	32	20	27	29	27	25
						2	3	3	1	2	1	3	3	2	1	1	2
10	8	8390	123	125	123	30	22	38	37	36	36	23	40	22	29	21	37
						2	2	3	3	3	1	1	1	3	2	1	2
11	0	8390	122	122	122	29	20	25	40	26	19	38	31	31	37	34	36
						1	1	2	3	3	2	1	3	1	2	2	3
12	2	8390	127	127	126	29	39	35	37	33	31	19	36	40	24	37	30
						1	3	2	2	1	1	2	2	1	3	3	3
13	6	8390	126	127	125	26	26	35	38	36	32	35	19	32	40	34	25
						1	2	2	2	3	1	3	3	1	1	2	3
14	2	8390	131	132	131	38	36	39	26	36	31	27	37	26	36	31	31
						1	2	1	3	3	2	1	3	1	2	2	3
15	8	8390	115	117	117	34	20	21	31	34	38	39	29	21	19	40	23
						2	1	1	2	1	2	2	3	1	3	3	3
16	26	8390	122	126	123	31	23	39	36	22	38	21	30	38	37	35	21
						3	3	2	1	2	1	2	3	3	1	1	2
17	2	8390	105	106	105	20	24	21	19	25	37	27	34	27	30	19	33
						1	1	1	3	3	2	2	2	3	2	3	1
18	6	8390	114	113	112	24	31	22	34	24	25	33	31	22	24	32	37
						1	3	2	2	2	2	3	1	3	1	1	3
19	6	8390	114	112	113	29	36	24	21	31	36	30	23	21	29	33	26
						1	1	1	1	3	2	2	3	3	2	3	2
20	6	8390	124	125	123	32	20	33	39	37	25	34	33	22	29	31	37

R	f(K ₁₂)	NE	i _a	i _b	i _c	<i>n</i> ₁	n ₂	<i>n</i> ₃	<i>n</i> ₄	<i>n</i> ₅	<i>n</i> ₆	<i>n</i> ₇	<i>n</i> ₈	<i>n</i> ₉	<i>n</i> ₁₀	<i>n</i> ₁₁	<i>n</i> ₁₂
						1	2	3	3	2	1	1	2	3	3	2	1
1	0	10036	107	107	107	20	20	20	22	22	22	30	30	30	35	35	35
						1	3	2	1	2	3	2	1	3	3	1	2
2	0	10036	107	107	107	20	20	20	22	22	22	30	30	30	35	35	35
						1	2	3	2	1	3	3	2	1	2	1	3
3	0	10036	107	107	107	20	20	20	22	22	22	30	30	30	35	35	35
						1	2	3	3	1	2	2	1	3	1	3	2
4	0	10036	107	107	107	20	20	20	22	22	22	30	30	30	35	35	35
						1	2	3	2	3	1	1	2	3	1	2	3
5	0	10036	107	107	107	20	20	20	22	22	22	30	30	30	35	35	35
						1	3	2	2	1	3	1	2	3	1	2	3
6	0	10036	107	107	107	20	20	20	22	22	22	30	30	30	35	35	35
						1	2	3	1	3	2	3	2	1	1	3	2
7	0	10036	107	107	107	20	20	20	22	22	22	30	30	30	35	35	35
						1	3	2	2	3	1	2	1	3	2	3	1
8	0	10036	107	107	107	20	20	20	22	22	22	30	30	30	35	35	35
						1	3	2	1	3	2	3	2	1	2	1	3
9	0	10036	107	107	107	20	20	20	22	22	22	30	30	30	35	35	35
						1	3	2	2	1	3	3	1	2	3	2	1
10	0	10036	107	107	107	20	20	20	22	22	22	30	30	30	35	35	35
						1	2	3	1	3	2	2	1	3	1	2	3
11	0	10036	107	107	107	20	20	20	22	22	22	30	30	30	35	35	35
						1	2	3	1	3	2	3	2	1	2	1	3
12	0	10036	107	107	107	20	20	20	22	22	22	30	30	30	35	35	35
						1	2	3	1	3	2	2	1	3	3	1	2
13	0	10036	107	107	107	20	20	20	22	22	22	30	30	30	35	35	35
						1	3	2	2	1	3	3	2	1	1	3	2
14	0	10036	107	107	107	20	20	20	22	22	22	30	30	30	35	35	35
						1	2	3	3	1	2	2	3	1	1	3	2
15	0	10036	107	107	107	20	20	20	22	22	22	30	30	30	35	35	35
						1	2	3	1	3	2	2	3	1	3	1	2
16	0	10036	107	107	107	20	20	20	22	22	22	30	30	30	35	35	35
						1	3	2	3	2	1	3	2	1	1	3	2
17	0	10036	107	107	107	20	20	20	22	22	22	30	30	30	35	35	35
						1	2	3	3	2	1	3	1	2	1	2	3
18	0	10036	107	107	107	20	20	20	22	22	22	30	30	30	35	35	35
						1	2	3	2	3	1	3	1	2	1	3	2
19	0	10036	107	107	107	20	20	20	22	22	22	30	30	30	35	35	35
						1	3	2	3	2	1	3	1	2	2	3	1
20	0	10036	107	107	107	20	20	20	22	22	22	30	30	30	35	35	35

Tabla 2. Resumen de experimentos con la misma carga determinista.

Tabla 3.	Cargas	aleatorias	$\cos \sigma$	= 0,1.
----------	--------	------------	---------------	--------

R	f(K ₁₂)	NE	i _a	i _b	i _c	<i>n</i> ₁	<i>n</i> ₂	n ₃	<i>n</i> ₄	n ₅	n ₆	n ₇	n ₈	n ₉	<i>n</i> ₁₀	n ₁₁	<i>n</i> ₁₂
						3	3	2	1	1	3	1	1	3	2	2	2
1	0,0	13913	111,97	111,97	112,13	35,966	24,039	18,977	30,959	22,002	24,072	20,891	38,116	28,051	19,957	34,947	38,091
	1					1	1	2	3	3	1	1	3	1	3	2	2
2	4,3	13913	111,80	112,89	112,89	35,874	24,053	19,029	31,103	22,073	23,837	21,129	38,037	28,037	20,010	34,886	37,841
						2	1	2	3	3	3	1	1	1	2	3	2
3	5,9	13913	111,09	113,04	111,76	36,090	24,106	18,900	30,915	21,976	23,879	20,988	37,934	28,059	19,912	34,989	38,140
	1					3	1	2	1	2	1	2	3	3	1	3	2
4	2814,0	13913	99,28	100,10	137,19	36,095	24,037	19,164	31,114	22,149	24,129	20,878	37,959	28,164	20,002	34,976	37,907
						1	1	3	2	2	1	2	2	1	3	3	3
5	0,1	13913	111,83	111,75	111,98	35,831	23,992	18,894	30,897	21,878	23,901	20,935	38,040	28,109	20,065	34,873	38,146
						1	1	2	1	3	3	1	2	3	2	2	3
6	0,1	13913	112,27	112,00	112,06	36,085	24,028	18,939	31,006	21,995	23,970	21,145	37,972	28,126	20,120	34,966	37,970
						3	1	2	2	1	2	3	2	1	3	3	1
7	0,0	13913	111,98	112,11	111,97	36,002	24,158	19,003	31,127	21,909	24,065	20,885	37,918	27,913	20,144	34,936	38,001
						2	3	1	2	3	2	2	1	3	1	1	3
8	0,0	3913	112,02	112,20	112,14	36,056	24,011	19,126	31,060	21,928	23,997	21,082	37,859	28,062	20,097	34,940	38,138
						3	3	1	1	1	2	2	3	1	2	2	3
9	2599,9	13913	99,93	100,03	136,03	36,009	24,068	19,124	31,063	21,857	23,844	21,027	37,934	27,890	20,009	35,148	38,024
						2	2	2	1	2	3	1	3	1	1	2	3
10	2607,4	13913	99,90	136,07	100,02	35,967	23,949	19,143	30,835	21,986	24,104	20,866	37,898	28,039	20,161	35,025	38,023
						3	3	2	1	1	3	1	1	3	2	2	2
11	0,2	3913	112,26	112,15	111,89	36,086	24,049	18,975	30,976	22,036	23,897	21,157	38,087	27,861	20,085	35,121	7,967
						3	2	2	1	1	1	2	3	2	2	1	3
12	0,4	13913	112,33	111,80	111,97	35,989	23,906	18,958	31,049	22,007	24,127	20,848	37,911	27,931	20,160	35,150	38,068
						2	1	3	3	1	3	2	1	1	2	2	3
13	0,0	13913	111,79	111,92	111,91	36,100	24,012	19,171	30,875	21,999	23,886	20,909	37,874	27,901	19,889	35,021	37,981
						3	1	2	1	1	2	2	3	2	2	1	3
14	0,0	13913	112,02	112,00	111,90	36,035	23,963	19,161	31,001	21,909	24,078	20,884	37,914	27,887	19,989	35,151	37,947
						3	1	2	2	1	2	3	1	1	3	3	2
15	0,0	13913	111,82	111,84	111,91	36,027	23,862	18,863	30,901	21,984	23,911	20,850	37,896	28,074	19,891	35,144	38,168
						2	1	2	3	3	3	1	1	1	2	3	2
16	4,8	13913	111,21	112,98	111,85	35,863	23,918	19,129	31,094	21,985	23,892	21,088	38,103	28,105	20,048	34,879	37,940
						2	2	3	1	1	2	1	3	2	3	3	1
17	0,7	3913	112,52	111,99	111,92	35,946	24,093	18,991	31,162	22,170	24,063	21,050	37,964	27,886	19,889	35,076	38,144
						3	2	3	2	1	1	2	1	1	3	2	3
18	4,0	3913	112,23	111,26	112,88	35,883	24,145	18,949	31,125	22,107	24,055	21,144	38,003	28,061	20,155	34,849	37,895
						2	1	3	1	1	3	3	2	3	3	1	2
19	0,1	13913	112,27	112,02	112,04	35,895	24,027	18,889	31,141	22,086	24,025	20,922	38,101	28,149	20,057	35,015	38,026
						3	1	1	2	1	3	2	3	2	2	1	3
20	2601,2	13913	99,94	99,97	136,02	36,080	23,851	18,944	31,102	22,029	24,131	20,914	37,845	27,970	19,981	35,111	37,959

Tabla 4. Cargas areatorias com o m	Tabla 4.	Cargas	aleatorias	con	σ=	1.
------------------------------------	----------	--------	------------	-----	----	----

R	f(K ₁₂)	NE	i _a	i _b	i _c	<i>n</i> ₁	n ₂	n ₃	<i>n</i> ₄	n ₅	n ₆	n ₇	n ₈	n ₉	<i>n</i> ₁₀	n ₁₁	n ₁₂
						1	1	2	1	1	3	2	2	3	3	2	3
1	1,4	13913	112,66	112,31	111,71	35,655	24,393	18,770	30,595	22,021	24,724	19,909	39,156	28,507	9,569	34,474	38,913
						3	2	1	2	1	2	1	3	3	2	3	1
2	2519,9	18594	100,72	99,04	135,35	34,745	24,532	19,292	32,028	22,731	22,375	22,286	38,370	28,366	20,103	33,865	36,412
						2	3	2	1	3	3	2	3	1	1	1	2
3	1,6	3913	112,93	112,08	111,98	34,902	25,272	17,462	32,041	23,545	24,749	20,563	38,415	26,766	20,145	33,982	39,155
					ĺ	3	2	2	1	2	2	2	3	1	1	1	3
4	3,7	13913	113,79	112,55	114,00	35,967	25,113	19,821	30,112	21,102	25,478	21,037	37,959	28,604	19,873	35,202	38,474
						2	3	2	3	1	1	3	2	1	2	2	1
5	1,0	13913	113,55	114,18	114,34	37,714	23,994	18,762	31,175	22,515	25,647	21,082	38,040	28,109	21,599	36,104	37,094
						1	3	3	2	1	2	1	2	3	2	2	3
6	0,4	13913	113,10	113,47	113,56	34,343	25,340	20,235	31,725	21,631	25,339	19,730	37,972	28,126	21,141	35,264	38,644
						3	2	1	2	3	1	2	2	1	3	3	1
7	0,8	13913	112,79	113,50	112,97	35,904	23,538	20,174	32,432	21,780	25,320	21,137	37,918	28,135	21,406	33,879	39,164
						3	3	2	1	1	2	1	1	2	3	3	2
8	3,5	3913	109,07	110,14	110,54	34,455	22,314	19,828	30,963	20,424	22,312	20,471	37,212	29,483	19,581	34,192	38,513
						3	1	3	2	3	2	1	3	1	2	2	1
9	1,9	13913	113,90	112,79	113,20	34,361	25,241	19,558	32,665	21,814	25,060	19,507	37,470	29,561	20,159	34,909	39,594
						1	1	1	3	3	2	3	3	1	1	1	3
10	3,9	13913	116,17	114,63	115,00	35,687	24,629	19,495	31,007	23,714	24,995	22,638	39,519	28,830	21,287	36,358	37,644
						3	3	1	3	1	2	3	2	2	2	1	1
11	0,4	3913	110,50	110,92	110,46	35,635	23,776	18,199	29,982	20,432	24,072	21,070	37,759	28,277	20,809	34,852	37,017
						1	3	1	3	2	3	3	1	3	2	2	1
12	5857,9	13913	129,86	76,44	31,23	35,599	24,821	18,031	30,814	21,948	24,951	22,648	36,896	27,998	19,684	34,805	39,330
						2	1	1	1	2	3	1	2	3	1	2	3
13	2103,0	13913	117,48	129,51	92,79	37,012	23,842	20,583	31,915	21,427	24,616	20,821	37,690	29,574	20,319	33,381	38,598
			ļ			3	3	3	1	1	2	1	2	2	2	3	1
14	0,1	13913	111,50	111,72	111,49	34,854	25,535	17,558	30,461	22,371	23,690	19,398	38,788	28,341	20,901	33,544	39,264
						3	2	3	2	1	3	1	2	1	2	3	1
15	1,9	13913	111,97	112,68	111,56	35,136	25,399	18,726	29,380	21,174	23,309	22,119	39,327	29,524	18,575	34,392	39,151
						2	3	2	3	1	1	3	3	1	2	2	1
16	1,8	13913	112,36	113,20	113,38	36,639	24,031	18,906	32,224	22,609	23,197	20,302	36,829	28,838	21,668	35,988	37,715
						3	3	1	3	2	2	1	2	2	3	1	1
17	0,6	3913	111,54	111,71	111,08	36,981	22,927	18,311	31,095	21,777	25,339	21,171	37,224	27,370	20,072	33,709	38,351
						3	2	2	1	1	3	3	2	3	3	2	1
18	2007,8	3913	90,60	114,92	126,43	35,616	25,250	18,386	29,677	21,459	24,344	20,217	37,322	27,319	18,929	33,964	39,460
						2	3	1	3	3	1	1	2	1	1	3	2
19	0,3	13913	110,46	110,55	110,91	36,175	24,763	19,716	30,144	20,355	22,686	20,037	36,349	26,988	21,039	35,645	38,028
						3	3	1	2	3	2	2	1	3	1	1	2
20	1,0	13913	110,21	109,61	109,44	36,968	23,618	19,796	29,890	20,938	23,348	19,707	36,465	27,920	20,028	33,923	6,668

R	f(K ₁₂)	NE	i _a	i _b	i _c	<i>n</i> ₁	<i>n</i> ₂	n ₃	<i>n</i> ₄	n ₅	n ₆	<i>n</i> ₇	n ₈	n ₉	<i>n</i> ₁₀	<i>n</i> ₁₁	n ₁₂
						2	1	3	2	2	2	3	1	3	3	3	1
1	9,4	13913	114,77	112,97	112,37	33,932	26,361	17,620	28,568	22,128	28,347	14,455	44,934	31,039	17,413	31,845	43,478
						3	3	1	2	3	2	2	1	2	1	1	3
2	0,9	13913	109,78	110,33	110,52	28,467	27,192	20,754	37,168	26,388	14,248	28,718	40,220	30,199	20,619	28,188	28,475
						3	1	2	2	1	1	3	3	3	1	1	2
3	2863,4	13913	116,71	85,24	127,22	41,413	30,337	12,971	25,891	20,557	16,747	20,261	34,021	3,520	14,724	34,349	46,375
						3	1	1	1	3	2	1	2	3	1	2	3
4	2700,1	13913	126,74	100,82	142,87	41,693	26,198	28,868	37,851	30,918	31,719	13,702	35,542	37,825	20,118	33,556	32,429
						3	1	3	2	2	3	1	2	1	2	1	3
5	2,5	18892	102,55	103,84	103,29	25,854	23,512	12,630	24,839	14,708	18,072	17,071	40,412	34,557	23,878	27,409	46,737
						2	2	3	3	1	2	3	2	1	1	1	3
6	0,7	13913	108,02	107,43	107,45	28,070	30,215	26,765	29,768	15,397	20,101	13,388	29,042	25,034	22,923	44,663	37,532
						2	3	3	3	2	2	2	1	3	1	2	1
7	3744,7	13913	105,19	148,38	105,02	43,824	33,497	11,668	35,385	30,424	24,156	17,575	47,538	24,474	18,393	32,396	39,256
						1	1	1	3	3	2	2	2	3	1	3	2
8	0,3	13913	112,01	111,58	111,93	40,937	23,760	27,647	24,958	20,090	30,614	17,595	29,342	29,719	19,662	37,162	34,024
						3	2	2	2	2	3	3	1	2	1	1	3
9	1377,7	19011	91,45	92,61	118,26	27,401	15,512	20,121	22,560	16,737	25,739	25,094	43,144	17,682	10,887	37,420	40,024
						2	2	1	3	3	3	2	3	1	2	1	1
10	0,9	13913	98,16	98,91	98,39	34,038	30,203	8,623	23,242	19,731	23,887	20,945	31,527	23,926	13,729	32,224	33,388
						1	2	2	2	2	1	2	3	1	3	3	1
11	6,1	3913	107,98	106,96	108,97	38,662	22,531	24,291	27,722	12,791	16,387	19,627	35,170	20,570	28,873	44,930	32,361
						1	3	3	2	1	3	3	2	3	2	2	1
12	0,6	13913	113,50	112,95	112,98	43,065	26,107	17,956	24,325	24,339	27,073	23,662	34,508	18,187	17,067	37,044	46,096
						2	2	2	2	2	3	1	1	1	3	3	2
13	8052,9	13913	100,96	165,37	102,92	35,194	28,083	22,063	28,065	21,313	32,548	24,950	39,466	36,539	26,296	44,078	30,652
						3	3	2	1	3	2	3	1	3	2	1	2
14	2893,8	13913	100,62	101,08	138,89	38,633	20,943	15,463	35,153	31,439	30,810	19,101	35,693	28,769	13,478	29,776	41,325
						3	3	1	2	2	3	3	2	1	2	1	1
15	7,0	13913	116,74	115,01	114,76	38,870	26,591	24,156	24,532	17,980	20,647	28,649	44,519	33,438	27,978	31,333	27,810
						1	2	3	1	1	2	1	2	3	3	3	2
16	5,5	13913	104,25	104,85	106,12	44,953	20,289	11,816	22,687	12,195	21,190	24,413	33,652	23,956	29,394	40,951	29,717
						1	3	2	1	1	3	1	3	2	2	3	2
17	5,5	13913	114,16	112,46	112,56	36,416	15,081	14,756	31,909	15,748	25,224	30,090	30,618	33,182	20,438	41,632	44,088
						1	1	2	3	2	1	2	2	3	3	1	1
18	10814,2	18636	152,59	78,80	79,32	40,601	33,296	12,363	33,074	26,240	13,722	12,108	28,088	30,750	15,498	31,457	33,517
						1	1	2	2	1	1	1	3	3	2	2	3
19	0,6	13913	118,48	118,28	118,87	46,253	20,642	21,842	33,567	20,089	16,950	14,542	36,382	37,231	24,445	38,423	45,260
						1	2	1	3	2	2	3	1	1	2	3	2
20	1620,5	13913	125,06	112,71	92,51	33,231	21,759	16,523	40,547	30,926	15,443	11,007	43,454	31,855	13,018	40,955	31,567

Tabla 5. Cargas aleatorias con $\sigma = 6$.

CONCLUSIONES

De lo reportado en esta investigación se puede concluir que:

El modelo matemático propuesto a los efecto de medir el balance de las cargas conectadas a un sistema de distribución de energía eléctrica es lo suficientemente adecuado, en virtud a sus propiedades de convexidad, las cuales al identificar al menos un óptimo local, el problema es solucionado globalmente.

Aun cuando el método de identificación de óptimo empleado puede fallar, el mismo puede emplearse, en virtud de que a través de las réplicas se identifican al menos un mínimo local, el cual constituye un mínimo global del problema.

En cuanto a la identificación de la óptima configuración bajo restricciones de capacidades en el sistema de distribución de energía eléctrica, puede emplearse algún método de penalización a fin de no seleccionar como solución, si ésta viola la capacidad de carga de la o las fases. No obstante, el tema abordado en esta investigación no limita el enfoque empleado en el trabajo.

De los ejemplos numéricos, puede apreciarse la necesidad de estudiar concienzudamente el método de particiones anidadas, sobre todo en cuanto a la optimización del número de muestras para cada subregión y superregión. Esto último pudiera constituir un interesante tema a ser estudiado a fin de mejorar el método algorítmico de particiones anidadas.

AGRADECIMIENTO

El autor desea agradecer al Consejo de Desarrollo Científico y Humanístico de la Universidad Central de Venezuela por el financiamiento de esta investigación registrada bajo en número PI 08-00-5690-2004. Además, el autor desea también expresar su gratitud a los árbitros anónimos, quienes con sus observaciones contribuyeron en la mejora de este artículo.

REFERENCIAS

- BAZARRA, M. S., SHERALI, H. D., SHETTY, C. M. (1993). Nonlinear Programming: Theory and Algorithms. New York: Wiley. 2nd. edition.
- BREA, E., CHENG, R. C. H. (2003). Optimisation of four queue network via Nested Partition method. International Journal of Simulation, Systems, Science & Technology 4(1/2); 23-28.

- CHEN, C-H., LIN, J., YÜCESAN, E., CHICK, S. E. (2000). Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discrete Event Dynamic Systems: Theory and Applications 10(3); 251-270.
- LAW, A. M., KELTON, W. D. (2000). Simulation Modeling and Analysis. Boston: McGraw-Hill. 3rd. edition.
- MUROTA, K. (2003). Discrete Convex Analysis. Philadelphia: Society for Industrial and Applied Mathematics.
- SHI, L., ÓLAFSSON, S. (2000a). Nested Partitions method for global optimization. Operations Research 8(3); 390-407.
- SHI, L., ÓLAFSSON, S. (2000b). Nested Partitions method for stochastic optimization. Methodology and Computing in Applied Probability 2(3); 271-291.
- SHI, L., ÓLAFSSON, S. (2000c). Stopping rules for the stochastic Nested Partitions method. Methodology and Computing in Applied Probability 2(1); 37-58.
- ZHU, J., BILBRO, G., CHOW, M-Y. (1999). Phase balancing using simulated annealing. IEEE Transactions on Power Systems 14(4); 1508-1513.
- ZHU, J., CHOW, M-Y., ZHANG, F. (1998). Phase balancing using mixed-integer programming. IEEE Transactions on Power Systems 13(4); 1487-1492.