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ABSTRACT

In this paper, a weighted order statistic (WOS) filtering structure admitting real-valued weights is introduced. The pro-
posed filtering approach can effectively address a number of signal and image processing applications that require robust 
bandpass or highpass operations where the underlying contamination follows a nonsymmetric heavy-tailed distribution. 
The effect of negative weighting in the filtering operation is studied under a statistical viewpoint using a weight monotonic 
test. Furthermore, an adaptive optimization algorithm for the design of this class of WOS filters is also introduced. Several 
computer simulations show the performance of the proposed filtering structure.
 
Keywords: Robust signal processing, Nonlinear filters, Impulsive noise, Weigthed order statistic, Median filters.

FILTROS DE FRECUENCIA SELECTIVA
BASADOS EN ORDEN ESTADÍSTICO ADMITIENDO PODERACIONES REALES

RESUMEN

En este artículo, se desarrollan filtros de orden estadísticos ponderados admitiendo ponderaciones reales. El enfoque de 
filtrado propuesto puede ser utilizado eficientemente en innumerables aplicaciones de procesamiento de señales e imáge-
nes que requieren filtrado robusto tipo paso-alto o paso-banda, donde la contaminación de fondo es un ruido de naturaleza 
impulsiva, modelado por distribuciones de “colas pesadas” asimétricas. El efecto de las ponderaciones negativas en el 
proceso de filtrado se analiza bajo un punto de vista estadístico empleando pruebas monotónicas ponderadas. Adicional-
mente, también se presenta un algoritmo de optimización para el diseño de esta nueva familia de filtros no lineales. Se 
muestran numerosas simulaciones del desempeño de los filtros propuestos, así como también su correspondiente algoritmo 
de optimización.

Palabras clave: Procesamiento robusto de señales, Filtros no lineales, Ruido impulsivo, Orden estadístico ponderado, 
Filtros de mediana.

INTRODUCTION

Nonlinear filters based on weighted rank ordering of the 
input samples have been proven to outperform linear fil-
ters in applications where the underlying contamination 
has impulsive characteristic or obeys a heavy-tailed distri-
bution (Mitra & Sicuranza, 2001). In particular, weighted 
order statistic (WOS) filtering structure (Yu & Liao, 1994; 
Yli-Harja et al., 1991), that encompasses weighted median 
(WM), median, and rank order filters, has received conside-
rable attention since they have demonstrated improved fil-
tering ability compared to other popular non-linear filters.

WOS exploits, in some sense, the information provided by 
the relative ranking of the input samples as well as in their 

temporal ordering. More precisely, given an observation 
vector X = [ X1, X2,...,XN ]T , a set of weights  W1 , W, ... , 
WN      and a threshold value W0 , the output of a WOS filter 
is defined as:

	 Y = W0 : th largest value of the set

	 [ W1 ◊ X1 , W2 ◊ X2 ,..., WN ◊ XN ]		  (1)

where  ◊  denotes the replication operator defined as

		  Wi ◊ Xi = Xi , Xi ,..., Xi.

In (1), the filter weights are restricted to be nonnegative — 
a constrain that leads to a filtering structure with “lowpass” 
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filtering behavior. Hence, this filtering structure is discar-
ded for applications that require “bandpass” or “highpass” 
type filtering characteristics. Since these filters are  smoo-
thers they will be referred, hereinafter, as WOS smoothers 
to differentiate them from the new structure to be proposed 
in this paper.

The limitations of WOS smoothers have motivated a num-
ber of researches to define more powerful order statistic 
type filters capable of addressing the more demanding filter 
tasks. For instance, hybrid filtering structure has been de-
veloped in (Yin & Neuvo, 1994 and Song & Lee, 1996), 
whereas Arce et al. in (Arce et al. 1995) add data-dependent 
weighting to the structure of WOS smoothers. The shortco-
mings of all these filtering approaches, however, are their 
computational complexity and the large number of filter 
parameters.

In this paper, we propose a more general and powerful WOS 
filtering structure that is able to address problems that re-
quire bandpass or highpass operations. Since the new struc-
ture can synthesize any frequency-selective characteristic, 
they will be referred as WOS filters. In the new framework, 
WOS filters are allowed to use real-valued weights, and 
therefore they can be designed to retain or restore some 
desired signal frequency and reject others, similar to linear 
filters but with the implicit robustness in the rank-ordering 
operation.

Much like the class of WOS smoothers belongs to a richer 
family of nonlinear filters, the so-called stack smoothers 
(Wendt et al. 1986), the proposed filters are part of a wider 
family of nonlinear filters, the so-called stack filters (Pa-
redes & Arce, 1999). Moreover, like WOS smoothers that 
are defined by a threshold logic gate (Yli-Harja et al. 1991) 
in the binary domain created by a threshold decomposition 
operator, the proposed WOS filtering structure admits a si-
milar binary representation, as well. Furthermore, WOS fil-
ters include, as special cases, WOS smoothers (Yli-Harja et 
al. 1991), WM smoothers (Yin et al. 1996) and WM filters 
admitting negative-valued weights. This last class of filters 
has been recently introduced in (Arce, 1998) and proven 
to be successful in applications that require robust ban-
dpass characteristics. However, their performance degra-
des when the underlying contamination no longer follows 
a symmetric distribution. The round trip time in the trans-
mission control protocol (Li, 2000) and non-Rayleigh am-
plitude distribution in a broadband communication channel 
(Middleton. 1999) are just two examples that are better mo-
delled by a nonsymmetric heavy-tail distribution.

In general, the real-valued weights of the proposed WOS 
filter must be determined following some optimal criterion. 

In this paper, we exploit the binary representation of the 
proposed filter to develop an iterative optimization algori-
thm to find the best filter weights that minimize the mean 
absolute error (MAE) between the filter output and some 
desired signal. We compare the performances of the opti-
mal WOS filter to those yielded by a WOS smoother, an 
FIR filter and a WM filter designed for the same tasks.

The organization of the paper is as follows. In the first sec-
tion, the new WOS filtering structure admitting real valued 
weights is introduced. Next, we explore a binary represen-
tation of the WOS filtering operation using threshold de-
composition. Then, the effect of negative weights in the 
filtering operation is studied. An adaptive optimization al-
gorithm for the design of the proposed filter is developed 
and used in the design of a robust highpass filter and a fre-
quency selective filter. Finally, some conclusions are drawn 
at the end.

WEIGHTED ORDER STATISTIC FILTERS ADMIT-
TING NEGATIVE WEIGHTS 

To define the running WOS filters, let {X(.)} be a discrete-
time continuous-valued signal. The running WOS filter pas-
ses a window over the signal {X(.)} that selects, at each ins-
tant n, a set of samples to constitute the observation vector 

X(n) = [X(n - b), X(n - b + 1),...,X(n),...,X(n + b) ]T =
         = X1(n)X2(n),..., XN(n)]T

where  Xi(n) = X(n - b + i - 1),     N = 2b + 1, is the obser-
vation window size and T denotes the transpose operation. 
Following a similar approach to that described in (Arce, 
1998), the output of a WOS filter with real-valued weights         	
  W1 ,W2 ,...,WN ;W0     is defined as:

	 Y(n) = W0: th largest value of the set

						      (2)

where sgn(.) is the sign function defined as sgn(x) = +1 for  
x ≥ 0 ,  -1  otherwise.  W0  is the selection parameter and 
must be in the range                      .

Note that for each sample in the observation window the 
sign of the weight is passed to the corresponding sample 
to yield the signed sample, Si = sgn(Wi)Xi , that is weighed 
through the replication operator by the magnitude of Wi. 
Thus, weighting in the WOS filter structure is equivalent 
to uncoupling the weight sign from its magnitude, merging 
the sign with the observation sample and replicating the 
“signed” sample according to the magnitude of the weight 
(Arce, 1998). The filter output is then the W0 largest value 
of the “signed” sample set. Although the weights in (2) may 

[ W1 ◊ sgn(W1)X1(n),..., WN  ◊ sgn(WN)XN(n)]

0,         Wi Si = 1

N[ ]
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seem restricted to integer values, a more general interpre-
tation of the ◊ operator is presented next similar to the one 
used for WOS smoothers (Yin & Neuvo, 1994).

The output of a WOS filter for non-integer weights can be 
determined as follows:

1)	Sort the “signed” sample set                                  .

2)	Start from the higher end of the sorted “signed” sam-
ples and add up the corresponding magnitude weight.

3)	The WOS filter output is the signed sample whose 
magnitude weight causes the sum to become ≥ W0 .

As an example, consider the WOS filter with real-valued 
weights  0.2, -0.4, 0.6, -0.4, 0.1; 0.55  acting on an observa-
tion vector X = [6, -8, 4, 3, 2]T. The filter output is 6 since 
when starting from the right (largest value of the signed 
set) adding up the weights, the selection parameter W0 is 
not reached until the weight associate with this sample is 
added.

The three-step procedure described above to compute the 
output of the WOS filter can be compactly expressed as fo-
llows. Let  S(i)  be the i-th smallest sample in the signed sam-
ple set, where  S(1) ≤ S(2) ≤ ... S(N). Further, let WI(k)  be the 
absolute valued weights corresponding to the sorted sam-
ples, where I(k) is the location in the observation window 
of the k-th order statistic. Then a necessary and sufficient 
condition for S(N - k), 0 ≤ k ≤ N - 1, to be the output of the 
WOS filter is

						      (3)

For the above example, for j = 1,

therefore the filter outputs S(N - 1) = 6.

Note that as W0 → 0, WOS filter outputs the largest sig-
ned sample whereas for W0 →          Wi , the filter output 
becomes the smallest value in the signed set. Note also 
that WOS filters include median, rank order, and weighted 
median (WM) filters as special cases. In particular, if the 
selection parameter W0 is set to                  , the WOS filter 
reduces to a weighted median (WM) filter admitting real-
valued weights (Arce, 1998). Furthermore, if the weights 
are restricted to be nonnegative WOS filters become WOS 
smoothers (Yu & Liao. 1994; Yli-Harja et al. 1991).

Si = sgn(Wi)Xi{ i = 1

N {

{k = min   j       WI(N - i)  ≥ W0S
i = 0

j {
W1(N) + W1(N - 1) = W2 + W1 = 0.4 + 0.2 ≥ 0.55 ,

Si = 1

N

Wi  /2Si = 1

N

THRESHOLD DECOMPOSITION AND WOS FIL-
TERS

Threshold decomposition (TD) is a useful tool utilized in 
the analysis and optimization of stack filters (Arce, 1998) 
and smoothers (Wendt et al. 1986). TD has been initially 
developed for signal quantized to finite number of levels 
(Wendt et al. 1986) and extended later to real-valued sig-
nals (Yin & Neuvo. 1994; Arce. 1998). For the purpose of 
this paper, we adopt a similar approach to that described 
in (Arce, 1998). Let Z           be an N-dimensional vector, 
where       denotes the set of real numbers.

The threshold decomposition acting on this vector is defi-
ned as:

						      (4)

where q          and                        . Thus, TD maps a real-valued 
vector to an infinite set of binary vectors. For short notation, 
TD of a vector Z at level q is denoted as

         zq = [z1
q,...,zN

q]T = [sgn(Z1 - q),..., sgn(ZN - q)]T.

Each component of the original real-valued vector can be 
reconstructed from its binary representation as:

						      (5)

Now, let X be an observation vector and let  Sq  be the TD of 
the signed observation vector at level q, i.e.,

sq=[s1
q,...,sN

q]T=[sgn(sgn(W1)X1-q),...,sgn(sgn(WN)XN-q)]T,

for some filter coefficients           . In the binary domain, the 
output of the WOS filter with weights        and threshold 
parameter  W0  reduces to

						      (6)

where W = [W0 ,  W1  , W2   ,..., WN   ]
T  and

x
q =                          with  xq = -1 and  xq =           , 

i = 1,2,..., N.

In (6) the compact representation (3) of the filtering opera-

Nℜ∈
ℜ

ℜ∈

NN:T ℵ→ℜ×ℜ

{T(Z, q) i = 
1       Zi ≥ q

-1      Zi < q
i = 1, 2,..., N

{ }1,1−=ℵ

Zi =         zi
q dq⌠⌠1

2

8
8-

Wi
i = 1

N

Wi
i = 1

N

[ [x
q , xq ,..., xq  0 1 N

T

2
sq + 1i

0

D  sgn(WT x
q)f(sq) 

1  if           Wi  (si
q + 1) ≥ 2 W0{-1  otherwise

Si = 1

N

=
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tion has been exploited. Furthermore, f(sq) is a special case 
of Boolean functions, and is called threshold logic gate 
(Muroga, 1971).

Using (5) the real-valued WOS filter output can be obtained 
by an integration operation as follows

						      (7)

Note that applying WOS filter on a real-valued signal is 
equivalent to decomposing the real-valued signal using 
threshold decomposition, applying the binary WOS filter 
(6) to each binary signal separately, and then adding up the 
binary outputs to obtain the real-valued output (Paredes & 
Arce, 1999).

The integral term in (7) seems to be difficult to implement. 
However, further simplification of this expression can be 
achieved if we note that for any q    (-     , S(1)] or q    (S(i-1), 
S(i)], i = 2,..., N  or  q    (S(N),     ] , TD outputs the same bi-
nary vector. Hence, there are at most N + 1 different binary 
vectors sq. Using this fact, Eq. (7) becomes

						      (8)

As                           and after some simplification, (8) redu-
ces to

						      (9)

where S(i)  is the i-th smallest signed sample. This is another 
form to implement the WOS filtering operation and gives 
the same result as the one obtained using the three-step pro-
cedure showed above. This representation, however, provi-
des us with an interesting interpretation of the WOS filter. 
It turns out that, the filter output is given by the sum of the 
midrange of the signed samples (S(1) + S(N))/2  and a linear 
combination of the difference between successive order sta-
tistic (S(i) - S(i-1))  weighted by a factor of  ±1/2.

EFFECTS OF NEGATIVE WEIGHTS IN THE FILTE-
RING OPERATION

In this section, we study the effect that real-valued weights 
have in the WOS filtering process. The approach followed 
in this section is different to the one presented by Arce in 

Y =         sgn  WT x
q  dq⌠⌠1

2

8
8-

( (

8ℜ∈ ℜ∈
ℜ∈ 8

Y =             sgn(WT xS(1))dq  + 1
2 [ ⌠⌠

8-

S(1) [
1
2 S

i = 2

N[ sgn(WT xS(i))dq +     sgn(WT x   )dq

[⌠⌠

S(i)

S(i-1)

8⌠⌠

S(N)

8

xi =            = 0

8 si + 1
2

8

Y =                 +         (S(i) - S(i-1)) sgn(WT xS(i))
S(1) + S(N)

2
1
2 S

i = 2

N

(Arce, 1998) where the effects of negative weighting in 
WM filters are studied using the theory of maximum like-
lihood estimate of location and the analogies between FIR 
and WM filters. Here, we exploit the concept of weight mo-
notonic property recently introduced in (Marshall, 2002; 
Marshall, 2004).

As mentioned above, WOS filters belong to a richer class of 
nonlinear filters, the so-called stack filters (Paredes & Arce, 
1999) and, hence, they satisfy the stacking property. More 
precisely, if two binary vectors  u             and v            stack 
(i.e. ui ≤ ui for i = 2,..., N), their respective outputs stack, 
f (u) ≤  f (v). This property is a restriction on the type of 
signal processing tasks that can be carried out by a filter 
possessing this property.

Based on this fact, Marshall developed in (Marshall, 2002) 
a test to define whether the kind of filters satisfying the 
stacking property are useful or not for a specific applica-
tion. Thus, a simple test is applied to the training data set 
to determine if it is suitable for processing with a filter ha-
ving the stacking property. The basic idea in the test is to 
determine whether the training samples possess the weight 
monotonic property, defined as follows (Marshall, 2002).

Let  {X(.)}  be an observed process that is statistically re-
lated to a desired process {D(.)}. Define a set of training 
samples {(X(n), D(n)) for n = n0 ,..., L, L >  n0 }, where X(n) 
is the N-dimensional observation vector defined as before. 
This set of training samples satisfies the weight monotonic 
property if 

	 Pr(d = 1││x│= k) ≥ Pr (d = 1││x│= j)	 (10)

for  k > j  with │x│=                      and where Pr(.│.) is the 
conditional probability, d and xi are the TD of D and Xi , 
respectively, at an arbitrary threshold level q. Note that│x│ 
is just the number of 1’s in the observation window. Thus, 
the weight monotonic property holds for distributions whe-
re the probability of the output being 1 increases with │x│. 
If this property holds then stack filters, like WOS filters, 
will yield good performance in restoring the desired signal 
from the corrupted one; otherwise it is useless (Marshall, 
2004).

For the applications at hand, we are interested in the use of 
WOS filters in a frequency selection type of filtering pro-
cess and therefore the weight monotonic property should 
be held in order to achieve the desired performance. For 
instance, consider the application of designing a high-pass 
filter whose main goal is to preserve a high-frequency tone 
while removing all low-frequency terms. More precisely, 
let X(n) = sin(2pf1n) + sin(2pf2n + p/4) + h(n) be the co-

Nℵ∈ Nℵ∈

S
i = 0

N

xi
1
2

N
2 +
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Figure 1. Output conditional probability as a function of number of 1’s in the observation window for 
an observation window size of 7 samples. (a) All filter weights are positive,
(b) sgn(W2) = -1, sgn(W6) = -1  the other weights are positive.

rrupted input signal where h(.) is the noise obeying a nor-
mal distribution N(0, 0.1) and let  D(n) = sin(2pf2n + p/4)  
be the desired signal for some   f1 < f2.

To see if the weight monotonic property is valid for this 
set of training samples the output conditional probability is 
determined for two different cases of filter weights. In the 
first one, all the filter weights are assumed to be positive, 
i.e. a WOS smoother is used. In the second case, the filter 
weights are allowed to be negative. In this later case, to 
compute│x│, the TD of the signed samples is used in place 
of the TD of the original input sample.

Figure 1(a) depicts the conditional probability function 
when all the filter weights are positive for an observation 
window size 7. Note that the values of Pr (d = 1│ │x│) 
do not increase monotonically as the number of 1’s in the 

observation window increases. Therefore, the weight mo-
notonic property does not hold and WOS smoothers should 
be discarded for this application. On the other hand, Fig. 
1(b) shows the output conditional probability for the same 
window size and sgn(W2) = -1, sgn(W6) = -1, all the other 
weights are positive. Note that using negative weights the 
value of Pr (d = 1│ │x│) does increase monotonically 
as│x│ increases, and therefore WOS filters can indeed be 
used for this application.

In this example, we have shown the effect that negative 
weights have on the conditional probability. We observe 
that passing the sign of the weights to the observation sam-
ples, indeed, changes Pr (d = 1│ │x│), forcing the weight 
monotonic property to hold and therefore enriching the 
field of application of WOS filters and, overcoming the li-
mitations of WOS smoothers.
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OPTIMIZATION OF WOS FILTERS 

The main objective in an optimization algorithm is to find 
the best filter coefficients such that a performance crite-
rion is minimized. A criterion widely used in the design 
of WOS smoothers (Yin et al. 1996) is the mean absolute 
error (MAE) between the filter’s output and the desired sig-
nal. If  {D(.)} and {X(.)} are jointly stationary, then the cost 
function to be minimized is
                                                                                             	
		  J(W) = E{|D(n) - Y(n)|}		  (11)

where E{.} denotes the statistical expectation, W = [W0, 
W1,..., WN]T and Y(n) is the WOS filter output given by (2) 
for an input observation vector X(n). Using TD, it is easy to 
prove that Eq. (11) reduces to

        J(W) =       E|sgn(D(n) - q) - sgn(WTxq(n))|dq	 (12)

	 =      E(sgn(D(n) - q) - sgn(WTxq(n)))2dq	 (13)

where the fact that, for any instant n, the argument inside 
the absolute value operator can only take on values either in 
the set {−2, 0} or in the set {0, 2}, has been used to inter-
change the absolute value and the integral operators in (12) 
and to replace the absolute value operator by a properly sca-
led second power operator in (13).

Since it is not possible to find a closed form expression for 
the filter coefficients that minimize (13), we resort to the 
steepest descend algorithm to form the iterative optimiza-
tion algorithm

		  W(n + 1) = W(n) + 2m[-   J]	 (14)

where the gradient of the cost function (  J) has to be com-
puted to update the filter weights. However, since the sgn 
function has a discontinuity at the origin, its derivative in-
troduces the dirac function which is not convenient for fur-
ther analysis. To overcome this difficulty, the sgn function 
is approximated by a differentiable function. We approxi-
mate sgn(x) by tanh(x) whose derivative is sech(x). With 
this approximation, the gradient of the cost function beco-
mes

						      (15)

						      (16)

1
2
⌠⌠

8-

8

1
4
⌠⌠

8-

8

D

D

6J
6W0

1
2

⌠⌠
8-

8

E  eq(n)sec h2(WTxq(n))  dq{ {=

6J
6Wl

1
2

⌠⌠
8-

8

E  eq(n)sec h2(WTxq(n))sgn(Wl)xl
q(n) dq{ {=-

for   = 1,..., N, and where eq(n) is the TD of the error at 
threshold level q, i.e. eq(n) = sgn(D(n) - q) - sgn((WTxq(n)). 
Upon closer examination, this error term takes on nonzero 
values only if q is between the desired output D(n) and the 
actual filter output Y(n). Assuming that the desired output 
is one of the signed samples, say S(m), and that the actual 
output Y(n) is S(j); eq(n) ≠ 0 only for q  (min(S(m), S(j)), 
max(S(m)), S(j)) . Furthermore, as mentioned in section III, 
for any instant n, sq(n) takes at most N + 1 different values, 
so does xq(n). Those vectors xq(n) are for q = S(i)(n), i = 1, 
2,..., N  and q =   . Hence, combining these two facts, the 
adaptive optimization algorithm reduces to:

						      (17)

						      (18)                  

for     = 1,..., N, and where the instantaneous estimate for the 
gradient has been used. P[.]  is a projection operator defined 
as P(x) = x, if  x ≥ 0  and 0 otherwise. This ensures that 
the selection parameter takes on nonnegative values (Yin 
& Neuvo. 1994).

Further simplifications of this optimization algorithm can 
be achieved following the same arguments used in (Arce. 
1998) and (Yin & Neuvo. 1994). It turns out that each 
term in the summations of (17) and (18) contributes to the 
weight updating by an amount that basically depends on 
the function sec h(WTxq), which reaches a maximum when 
its argument is zero. Therefore, for some value of q, WTxq  
takes its closest value to zero. It is easy to show that for q 
= Y(n), WTxq  is closest to zero (Yin & Neuvo. 1994; Arce. 
1998). Thus, q = Y(n) produces the largest update contribu-
tion. Using this fact, the optimization algorithm reduces to:

	 W0(n + 1) = P[W0(n) - m(D(n) - Y(n))]	 (19)

      Wl (n + 1) = Wl (n) + msgn(Wl)(D(n) - Y(n))xl

Y(n)	 (20)

l

[

8

[
W0(n + 1) = P [W0(n)] -

P  m           (S(i) - S(i - 1)) e
S(i) sec h(WTxS(i)) [S

i = min(m, j) + 1

max(m, j)

Wl (n + 1) = Wl (n) +

m sgn(Wl )          (S(i) - S(i - 1)) e
S(i) sec h(WTxS(i))xl 

S(i)S
i = min(m, j) + 1

max(m, j)

l

for  l = 1, 2,..., N, and where

	 xl

Y(n) =     (sgn(sgn(Wl )Xl - Y(n)) + 1).

The principle of the adaptive optimization algorithm can be 
explained as follows. When the actual output of the WOS 
filter is smaller than the desired signal, the selection para-
meter ( W0 ) is decremented whereas the magnitude of those 

1
2

ℜ∈
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weights corresponding to the signed samples that are larger 
than the filter output are incremented (they become more 
positive if they are positive or more negative if they are 
negative). Note that the new values of  W0 and Wi|   try 
to push the estimate toward the desired signal. A similar 
analysis can be done if the output of the WOS filter is larger 
than the desired output.

COMPUTER SIMULATIONS

To illustrate the performance of the proposed filters and 
their corresponding adaptive optimization algorithm, two 
frequency selective applications are carried out. In the first 
example, we have designed a high-pass WOS filter using 
the simplified version of the adaptive optimization algori-
thm, and compare it to the performances yielded by a linear 
FIR filter, a WOS smoother (Yin & Neuvo, 1994) and a 
WM filter (Arce, 1998). As performance measures we use 
the MSE and MAE as well as a visual inspection of the 
output signals. The second example concerns with the de-
sign of a robust frequency selective filter. This last applica-
tion is quite helpful in biomedical signal processing since it 
can be used to reduce the effect of the undesired, but always 
present, 60 Hz frequency component in a biomedical signal.

A.	 Design of a high-pass WOS filter

The first application at hand is the design of a 33-tap high-

i = 1
N

for the same task using Yin’s fast adaptive algorithms (Yin 
& Neuvo, 1994). Likewise, the fast optimization algorithm 
introduced by Arce in (Arce, 1998) is used to design a WM 
filter. For both algorithms, the same training data, weight 
initial condition and step-size, as described above, are used.

Figure 2 shows the performance of the various filters for 
the application at hand on noise-free signal (left half) and 
on impulsive noise signal (right half). Note, in Fig. 2(e), 
that the WOS smoother fails to remove the low-frequency 
component, as expected since those filters can only synthe-

pass WOS filter with a cut-off frequency of  0.15 Hz (nor-
malized Nyquist frequency equal to 1). As a training signal 
we use the two-tone signal described in Section IV with 
f1 = 0.03Hz  and  f2 = 0.25Hz, where the desired signal is 
the higher frequency component. Whereas as test signals 
the two-tone signal is contaminated with nonsymmetric a-
stable noise simulating noise with impulsive characteristic 
(Nikias & Shao, 1995).

The simplified adaptive optimization algorithm is used to 
design the WOS filter where the filter weights were initiali-
zed to small random numbers (on the order of 10-1) and the 
step-size has been fixed to 10-3.

For comparative purposes, a 33-tap linear FIR filter is de-
signed using Matlab’s fir1 function with a cut-off frequency 
of 0.15Hz. On the other hand, a WOS smoother is designed 

Figure 2. High-pass filter design. (a) Input test signal, (b) Linear high-pass FIR filter, (c) Optimal 
WOS filter, (d) Optimal WM filter, (e) Optimal WOS smoother with non-negative weights.
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Table I. Comparison of MSE and MAE for each filter

MSE MAE

Filter type noise free a = 1.25 a = 1.50 a = 1.75 noise free a = 1.25 a = 1.50 a = 1.75

Identity 0.5000 12.0275 2.8458 1.3756 0.6363 1.3712 1.0285 0.8845

FIR filter 10-5 9.1951 1.8528 0.7082 0.0026 1.2414 0.7742 0.5936

WOS filter 0.0547 0.0940 0.0878 0.0804 0.1792 0.2417 0.2336 0.2230

WM filter 0.0621 0.1054 0.0981 0.0896 0.1963 0.2568 0.2476 0.2365

WOS 
smoother 0.1687 0.2295 0.1941 0.1941 0.3305 0.3805 0.3599 0.3529

size low-pass behavior. Note also that WM filter as well as 
WOS filter yield similar performance, at least, visually for 
the noise-free part of the signal.

In order to test the robustness of the different filters, the 
two-tone signal is contaminated with additive nonsymme-
tric impulsive noise. The additive noise was chosen to have 
a zero-mean nonsymmetric  a-stable distribution (Nikias 
& Shao, 1995) with a characteristic exponent   a = 1.5,  a 
dispersion d = 0.5  and a skewness parameter  b = 0.75. 
Impulsive noise is well-modelled by the heavy-tailed class 
of α-stable distributions which include the Gaussian distri-
bution as special case when a = 2  and b = 0. The charac-
teristic exponent (0 < a ≤ 2) measures the heaviness of the 
tails (a smaller value indicates heavier tails), whereas the 
dispersion decides the spread of the distribution around the 
origin. The skewness parameter ( -1 ≤ b ≤ 1 )  is a shape 
parameter that defines the degree of symmetric around the 
origin of the distribution. Thus, when b = 0  the distribution 
is symmetric whereas as b → 1 ( b → -1) the probability 
that a negative (positive) impulse occurs is decreased.

Figure 2 (right half) depicts the filter outputs of the various 
filter for a noise input signal. Note the poor performance 
of the linear FIR filter. On the other hand, WOS and WM 
filter outputs, shown in Fig. 2(c) and Fig. 2(d), respectively, 
are not severely degraded by the impulsive noise. However, 
several minor artifacts appear at the output of the WM filter 
that are not present in the WOS filter output.

The MSE and MAE for several values of parameter α are 
computed and shown in Table 1. Each entry in the table was 
obtained by averaging out the MSE and MAE of 500 reali-
zations of the contaminated two-tone signal. The results in 
Table I indicate that WOS filters outperform the others for 
noise signals. Furthermore, the linear FIR filter outperforms 
the nonlinear structures in the noise-free case, as expected. 

Finally, Fig. 3 shows the ensemble-averaged absolute error 
for the simplified iterative algorithm. This curve plots the 
absolute error, averaged over 100 trials, as a function of 
algorithm iterations. As this curve indicates, the adaptive 
algorithm converges in about 350 iterations.
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Figure 3. Ensemble-averaged absolute error learning curve for the adaptive WOS filter 
algorithm.

B.	 Design of a robust frequency selective WOS filter

To test the frequency selective capabilities of the propo-
sed filter, the adaptive optimization algorithm described 
in Section V is used to design a 43-tap WOS filter to 
remove the middle-frequency tone from a signal com-
pounded of three sinusoidal signals corrupted by impul-
sive noise.  The training signals are: the observed signal  
X(n) =         sin(2pfkn) + h(n) and the desired signal D(n) 
= sin(2pf0n) + sin(2pf2n) where f0 = 0.015, f1 = 0.12, and 
f2 = 0.20 (normalized Nyquist frequency equal to 1). The 
additive noise is nonsymmetric a-stable noise with a = 1.5, 

b = 0.5 and  d = 0.5. The test signal, shown in Fig. 4(a), is 
a 1000-sample sequence where the first 500 samples are 
noise-free whereas the last 500 samples are corrupted with 
impulsive noise.

Figure 4(d) shows the output of the optimal WOS filter. 
It can be seen that the performance of WOS filters is not 
severely affected by the presence of impulsive noise. In 
contrast, a 43-tap FIR filter designed using Matlab’s fir1 
function with passed bands 0 ≤ f ≤ 0.09 and 0.15 ≤ f ≤ 0.25 
performances poorly in the part of the input signal corrup-
ted by impulsive noise. Figure 4(c) shows the FIR filter 
output for the test signal.

Sk = 0

2
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Figure 4. Frequency selective filter design. (a) Input test signal. (b) Desired signal. (c) Linear 
FIR filter output. (d) WOS filter output.

CONCLUSION

In this paper, we have presented a new class of robust non-
linear filters based on order statistic. The proposed filter 
can be suitable in applications where robustness as well 
as high-pass or bandpass behavior are needed in nonsym-
metric impulsive noise environments. An adaptive optimi-
zation algorithm for the design of this kind of filters was 
also introduced. The performance of the proposed filters 
was compared to the performances of the linear FIR filters, 
WOS smoothers and WM filters through computer-based 
simulations. It was shown that the proposed filters outper-
form the other filters not only in the MSE and MAE perfor-
mance measures but also visually.
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