GEOLOGÍA DEL ÁREA DE GUATOPO - EL GUAPO ESTADO MIRANDA Y GUÁRICO. PARTE 1: Grupo Villa de Cura

FRANCO URBANI, ALFREDO CHIRINOS Y MIGUEL MARQUINA

RESUMEN

Los estudios geológicos llevados a cabo en la Faja de Villa de Cura en la región de Guatopo - El Guapo, revelan la presencia de las siguientes unidades:

- (1) Grupo de Villa de Cura, dentro del cual se diferencian dos zonas: a) Una con predominio de esquisto, granofel, así como matalava y metatoba. A veces el esquisto y metatoba presentan glaucofano. b) Otra con metatoba, metalava y más raramente granofel con una mineralogía de las facies de los esquitos verdes (clorita clinozoicita).
- (2) Fonnación Las Hernanas, donde también se distinguen dos zonas: a) una con predominio de metatoba piroxénica (volcaniclásticas proximales), y b) otra con metalava, metatoba y metabrecha piroxénico anfibólica plagioclásica (arco volcánico). Esta última zona es semejante a las rocas de la localidad tipo en San Sebastián. Esta formación presenta asociaciones mineralógicas de las facies de la prehnita-pumpellita, pumpellita-actinolita y esquistos verdes (clorita-clinozoicita) prograndates de SE a NW y pertenece a un ambiente de arco volcánico.
- (3) Complejo de Apa, constituido por rocas ultramáficas (dunita, wherlita, clinopiroxenita) y máficas (grabo hornblendico y piroxénico). Las rocas ultramáficas no muestran evidencias de metamorfísmo, pero algunas muestras de gabro presentan una asociación mineralógica que sugiere que fueron sometidos a un metamorfísmo de muy bajo grado. Este complejo tiene las características de un cuerpo ultramáfico tipo Alaska, lo cual también apunta hacia un ambiente de arco volcánico.

I. INTRODUCCIÓN

1.1 UBICACIÓN

La zona estudiada, se ubica en la Serranía del Interior y está delimitada por las coordenadas 65°55' y 66°32' de longitud oeste y 9°55' y 10°15' de latitud norte (Fig. 1). El área total abarca una superficie de unos 1200 Km² y políticamente esta incluida en forma parcial en los distritos Monagas (Guárico) y Paz Castillo, Acevedo y Páez (Miranda), dentro de los cuales se encuentra el Parque Nacional Guatopo. Adicionalmente se estudió una zona ubicada al sur de la Laguna de Tacarigua, en las cercanias del caserío San Ignacio, en el municipio San José de Río Chico, distrito Páez del estado Miranda.

1.2 TRABAJOS PREVIOS

A continuación se enumeran los trabajos previos que se han realizado dentro de los límites de la región en estudio.

EVANOFF, J. (1951) Geología de la región de Altagracia de Orituco, Guárico.

LAFOREST, R. (1952) Geología de la carretera Sta. Teresa - Altagracia de Orituco.

PATRICK, H. (1958) Geología de la cuenca de Barlovento, Miranda.

PEIRSON, A.L. (1965) Geología del frente de montañas de Guárico.

BECK, C. (1977) Geología de la faja piemontina y del frente de montañas en la zona de Altagracia de Orituco, Guárico.

---- y FURRER, M. (1977) Paleontología de sedimientos marinos no metamorfizados del Noecomiense en la zona de Altagracia de Orituco, Guárico.

CAMPOS *et al.* (1980) Geología del borde oriental del frente de montañas, Miranda, Guárico.

VIZCARRET, P. (1981) Resumen de la geología de las cuencas de los ríos Taguaza y Cuira.

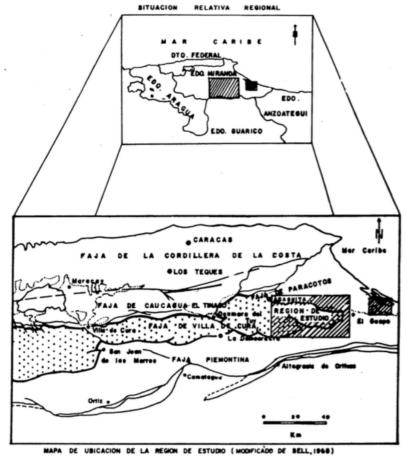


Figura 1. Mapa de Ubicación de la Región de Estudio (Modificado de Bell, 1968)

MAPA DE UBICACION

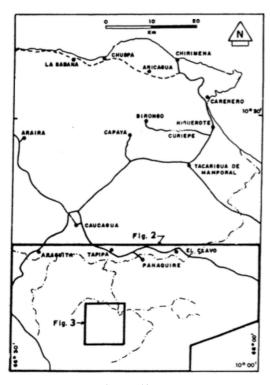


Figura 1b

VIZCARRET *et al.* (1982) Geología de la cuenca de los ríos Apa y Macaira, Parque Nacional Guatopo, Miranda.

CORTIULA, B. (1983) Estudio geológico de un área ubicada al sur de Panaquire y este del río Cuira, Miranda.

ZERPA, L. (1982) Geoquímica de los sedimientos de la cuenca de los ríos Taguaza y Cuira, Miranda.

BAUDUHIN, P. (1983) Estudio geológico de la cuenca del río Taguaza, Parque Nacional Guatopo, Estado Miranda.

BECK, C. (1985, 1986) Geología de la parte central de la Cordillera de la Costa, incluye el área de Altagracia de Orituco, Guárico.

PEREZ, A. (1986) Estudio geológico de la cuenca del río Cuira, Miranda.

URBANI et al. (1986a) El contacto volcánico-sedimentario en la zona de Guatopo, Miranda y Guárico.

URBANI et al. (1986b) Resumen sobre el Complejo de

Apa, Miranda.

KANCEV, I. (1986, 1987); KANCEV y URBANI (1987) Estudio de los filosilicatos de la Formación Río Aragua.

CHIRINOS, A. y MARQUINA M. (1987) Geología del área de Guatopo, Miranda y Guárico.

CHIRINOS *et al.* y URBANI (1987a,b) Presenta los mapas geológicos del área a escala 1:50000 y 1:100000.

URBANI *et al.* (1988) Reconocimiento geológico de la región de Guatopo - El Guapo, Miranda y Guárico.

PERAZA, J. y SANABRIA, M. (1989) Geología del área Panaquire-Guayas-El Guapo, Barlovento, Miranda.

1.3 ABREVIA TURAS

Debido a la diversidad de tipos de rocas aflorantes en el área, la tablas se datos petrográficos contienen mucha información y en ellas se utilizaron las siguientes abreviaturas.

ripción petrográfica de esquisto	Descripción petrográfica de granofel	Descripción petrográfica de metaft
MINERALOGIA	NI WE RAL OCI A	MINERALOGIA
Z : Cuarzo	CZ : Cearze	fl6 : Plagioclasa
FLD : Feldespåtico	FLD : Feldespåtice	CZ : Cwarzo
PLG : Flagiocíasa	FLG : Plagioclasa	CLO : Clerita
CZFLD: Matriz cwarzo-albitica	CZFLD: Matriz cuarzo-albitica	SER : Sericita
to : Clerita	CLO : Clorita	EPD : Epidoto
SER : Sericita	SER : Sericita	ACT : Actinolita
[PD : Epidoto	EPD : Epidoto	CAL : Calcita
YAZ : Anfibol verde-azul	CLZ : Climezoisita	MAG : Magnetita
GLA : Glaucofamo	ACT : Actimolita	HEM : Hematita
CPX : Climopiroxemo	VAZ : Anfibol verde-azul	tim : Limonita
[ST : Estilpnomelano	MBL : Horablenda	PIE : Pirita
PRH : Prehnita	CPX : Climopiroxemo	Oli : Oxidos de titanio
PM : Pempellita	PRH : Frehnita	NZMID : Matriz no identificada
CAL : Calcita	PMP : Pumpellita	FOS : Fésiles
PIR : Pirita	EST : Estilpnomelano	FE : Fragmentos de roca
Oll : Oxidos de titamio	CAL : Calcita	VI CZ : Vetas de cuarzo
OFE : Oxidos de hierro	GRA : Gramate	VT [PD: Vetas de epidoto
S& : Esquisto	fit : firita	VI FRN: Vetas de prehnita
	OTI : Oxidos de titanio	VT CLO: Vetas de clorita
	OFE : Oxidos de hierro	VI CAL: Vetas de calcita
	GR : Granofels	VI PHF: Vetas de pumpellita
		N-FT : Netaftanita

INDICE DE ABREVIATURAS

Descripción petrográfica de gabro

Descripción petrográfica de las ultramáficas:

HINERALOGIA	CLASIFICACION	MI WE RALOGIA	CLASIFICACION
? : Cwarzo	GBHB : Gabro harmblendico	PLG : Plagroclasa	CP; Clinopiroxenita
lG : Flagroclasa	GBPX : Gabro piroxenico	CLO : Clorita	HB : Hornbiendila
Z Matriz	GBHRPX y GBPXHB : Combinación	SEP : Sericita	CPHB y HBCP : Combinación de
ZALB : cmarzo-alditica	de los anter:ores.	(PD : Epidolo	las anteriores.
lO : Clorita		ACI : Actimolita	DU : Dunita
lt : Sericita		YAZ : Anfibol verde-azwi	VR : Yherlita
PD : Epidoto		HBL : Hornblenda	CPOL: Climopiroxemita olivinlfer
l7 : Clipozoisita		CPX : Clinopiroxeno	
CT : Actimolita		OLY : Olivino	
BL : Noratlenda		SRP : Serpentina	
AZ : Anfibol verde-azul		ESP : Espinela	
PX : Cliacpiroxeno		PRH : Prehaita	
10 : Biolita		PMP .: Pempellita	
th : Frehnita		CAL : Calcuta	
MP : Pumpellita		GRA : Gramate	
kP : Serpentina		fit : firita	
ST : [stripnomelano		Oli : Oxides de Litanio	
AL : Calcita		OFE : Oxidos de hierro	
li . Oxidos de titanio		MZNID : Matriz no identificada	
PC : Opacos		MEMIN : MOTILI NO INCULLICADO	•
RA : Gramate			
ka : bramate ZWID : Matriz mo identificad			
ZMID : MATEIZ NO IGENTITICAG CX : Leucoxeno	đ		

INDICE DE ABREVIATURAS Descripción petrográfica de metatoba y metabrecha

MINE BALOGIA	COMPOSICION	TIPOS DE FE	DN (DIAMETRO)	TEXTURAS	CLASIFICACION
CZ : Cuarzo PLG : Plagioclasa CLO : Clorita SER : Sericita EPB : Epidoto CLZ : Clinozoisita ACT : Actinolita HBL : Horablende VAZ : Anfibol verde-azul CPI : Clinopiroxeno PMP : Pumpellita PEM : Prehnita CAL : Calcita CSI : Estilpaonelano PIR : Pirita DFE : Oxidos de hierro DTI : Oxidos de titanio AZUI : Matriz no identificad	ICI: I de cristales IFR: I de fragmentos de rocas IRI: I de matriz IVI: I de vetas	LY: Lavas 10: Tobas CR: Chert ID: No identificades	CC: Ceniza LP: Lapilli BC: Bloques	FI : Foliación incipiente FB : Foliación boesa OM: Bandeamiento FLU: Flujo en los FE de lavas POE: Porfiritica en FE AFR: Afanttica	N-TRCI: Metatoba de cristales N-TRCI: Metatoba lítica N-TRCILI y N-TRCICI: combinació de las auteriores.

INDICE DE ABREVIATURAS

Descripción petrográfica de metalava

MINER	RALOGIA	COMPOSICION	TEXTURAS	IC	CLASIFICACION
PLG CLO SER EPD CLZ ACT HBE VAZ GLA CPX	: Cuarzo : Plagioclasa : Clorita : Sericita : Epidoto : Clinozoisita : Actinolita : Horoblenda : Anfibol verde-azul : Glaucofano : Clinopiroxeno	ZCX: Z de cristales ZMZ: Z de matriz ZAM: Z de amigdalas ZVT: Z de vetas	Fi : Foliación incipiente FB : Foliación buena BNO: Bandeamiento FLU: Flujo AFI: Afieltrada POR: Porfirlt:ca ANG: Amigdaloidez AFX: Afanttica YES: Yesicular PER: Perlitica	(IMDICE DE COLOR)	M-LYAD: Metalava añdésitica M-LYBS: Metalava basáltica M-LYADBS combinación de las anteriores.
PRH CAL EST PIR OTI OFE M2 CZFL D	: Pumpellita : Prehnita : Calcita : Estilpnomelano : Pirita : Oxidos de titanio : Oxidos de hierro Matriz D: cuarzo-albitica : Katriz no identificado				

2. GEOLOGÍA LOCAL

2.1 GENERALIDADES

En los excelentes mapas de geología de superficie a escala 1:50.000 producidos por la Creole Petrol. Corp. (hoy Lagovén S.A.), los contactos entre las rocas metamórficas y las sedimentarias de la Serranía del Interior aparecen bien delimitados, pero no contienen información de las rocas metamórficas, a excepción de señalar que corresponden al Grupo Villa de Cura, sin diferenciar (PATRICK, 1958; PEIRSON, 1965; PEIRSON *et al.*, 1966). Igual ocurre con el mapa de la zona de El Guapo de CAMPOS *et al.* (1980). Debe entenderse que no podía ser de otra manera, ya que esos autores no tenían como objetivo estudiar las rocas metamórficas.

En el área estudiada se han localizado dos asociaciones de rocas (Tabla 1):

En primer lugar, un cuerpo de rocas plutónicas máficas y ultramáficas, que hemos denominado Complejo de Apa.

En segundo lugar, abarcando la mayor parte del área, una provincia de rocas predominantemente metavolcánicas, que se pueden subdividir en base a criterios de campo en dos unidades diferentes:

- 1) Una faja septentrional con rocas metavolcánicas y metasedimentarias en donde es frecuente observar foliación en rocas como esquisto, granofel y metalava, así como estructuras planares primarias (bandeamiento y laminación) en las rocas volcaniclásticas. Esta faja la hemos considerado equivalente al Grupo Villa de Cura.
- 2) Una faja meridional de rocas metavolcánicas fundamentalmente masivas, que hemos asignado a la formación Las Hermanas.

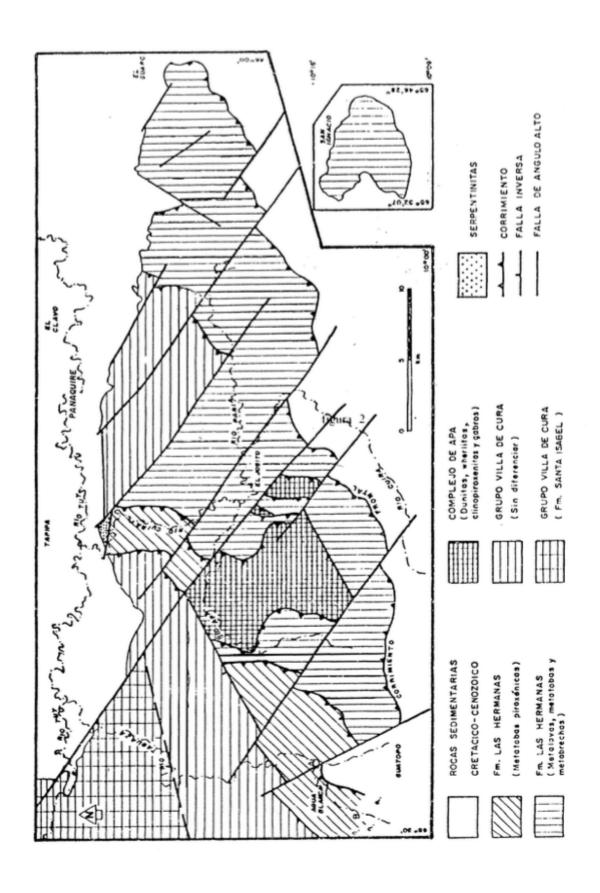
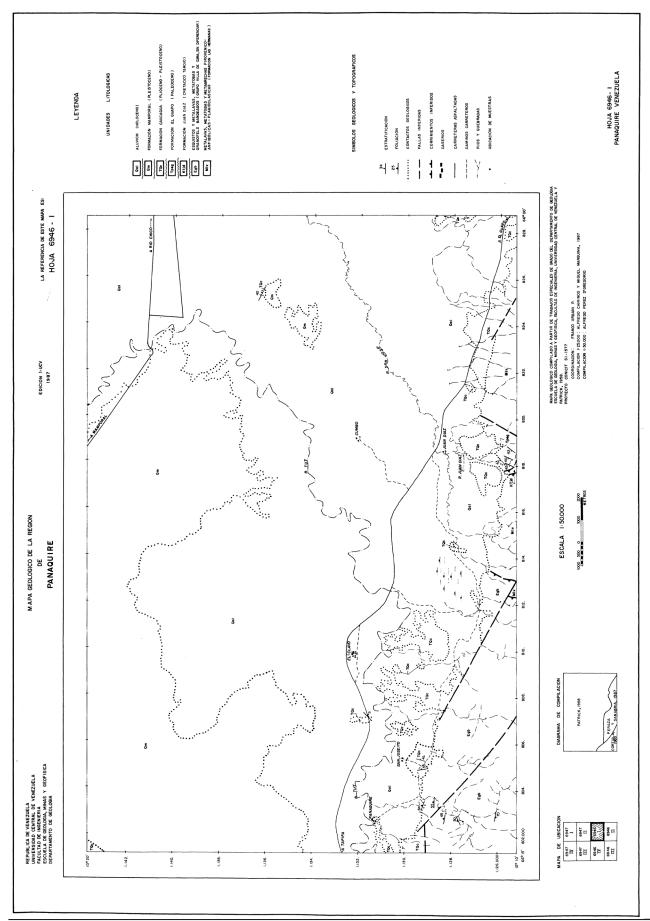



Figura 2. Mapa geológico simplificado del área Guatopo - El Guapo, Estados Miranda y Guárico

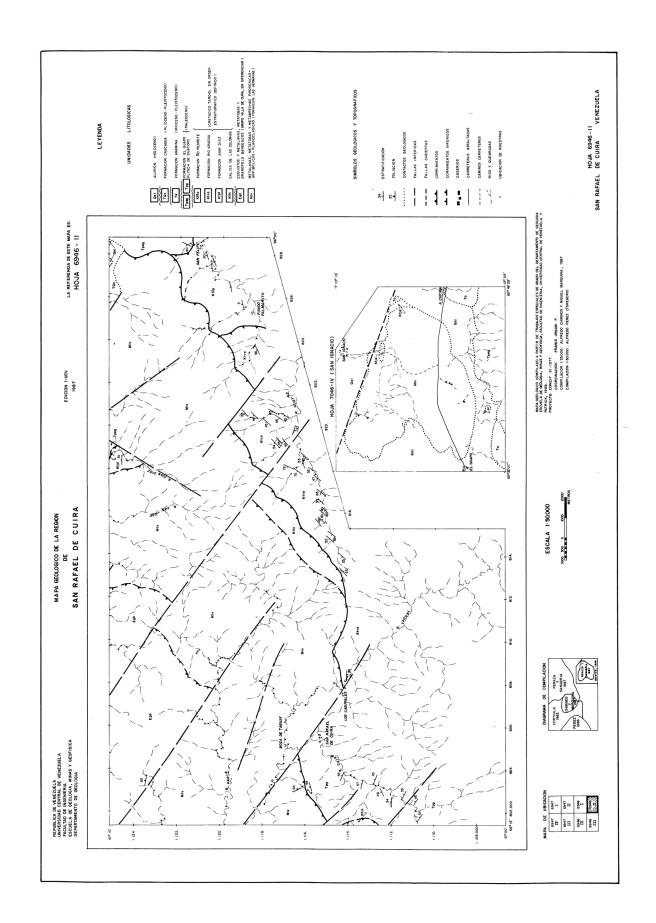


Tabla 1. Características Generales de las Unidades Metamórficas

OMIDAD	UBICACIÓN GENERAL	11100 06118	CONTACTOS	CORRELACION	ESTRUCTURAS PRESENTES	METAHORFI SHO
9	Aflora en la parte norte de la región en estudio, en form de faja con orientación [O.	Aftera en la parte En ella afteran esquistos norte de la región c2-f1d-clo, granofels en estado, en forma c2-f1d-clo, metalavas de faja con andesiticas y basálticas, orientación EO. metatopas predminantemente cristalinas y algunas metabrechas y metaftanitas.	Al norte està cubierta discordantemente por la Formación Cancagua. Al sur está en contacto de falla con la unidad Wit y 88p y de corrimiento con las unidades MIb y M.v.	La zena NO dende se reporta la Se observan dos periodos de presencia de glaucofano fu© plegamiento, tres sistemas correlacionada con la fallas con orientaciones Formación Santa Isabel y el N60-700, NSOE y EO y sus resto de la unidad con el contactos son de cogrimiento diferenciar.	Se observan dos periodos de plegamiento, tres sistemas de fallas con orientaciones MG-700, MSOE y EO y sus contactos son de cogrimientos.	Està afectada en la zona NO por facies de esquistes azules o transicional entre esquistos azules azules y esquistos verdes, mostrando avmento de temperatura a presión constante. El resto de la unidad presenta facies de esquistos verdes (zona de la clerita).
£	Se encrentra ubicada en la parte central de la región, en forma de franja alargada EO a ME.	Se encuentra ubicada Em esta unidad afloran en la parte central metatobas y metabrechas com de la región, en grandes cristales de piroxenos forma de franja fracturados y fragmentos de alargada EO a ME. metalavas con amigdalas rellenas de clorita, algunas metalávas andesiticas y escasos granofels.		Al norte está en contacto de Esta unidad fub correlacionada Está afectada por dos sistema corrimiento com la unidad EGD, com la Formación Volcánicas de de fallas con orientaciones al oeste y 80 está en contacto Tiara o Formación Dos Mermanas M60-700 T M70E y sus contact de falla con las rocas segán GIARD et al. (1902). con las unidades restantes si sedimentarias y al sur en contacto de corrimiento con las unidades MLV y ULL.	Al norte está en contacto de Esta unidad fub correlacionada Está afectada por dos sistemas Esta unidad está afectada por corrimiento com la unidad E6b, com la Formación Volcánicas de de fallas con orientaciones detamorfismo de my bajo al oeste y 80 está en contacto Tiana o Formación Dos Nermanas N60-700 Y N70E y sus contactos grado, facies de la prehnita de falla com las rocas según GIARD et al. (1902), com las unidades restantes son pumpellita y pempellita - según GIARD et al. (1902), en su mayoría de corrimientos, actinolita, contacto de corrimiento con	Esta unidad está afectada por metamorfismo de may bajo grado, facies de la prehnita - pumpellita y pempellita - actinolita,
ž	Aflera al sur de la región estudiada, en ferma de extensa faja con erientación EO a-NE.	Aflora al ser de la En ella se encuentran región estudiada, en predominantemente metalavas forma de extensa andesiticas y basálticas con faja con orientación cristales de anfiboles y/o fo a ME. proxenos; metabas y metabrechas con fragmentos de lavas amigdaloidens y escasas metaftanitas.	Al norte está en contacto de corrimiento con las unidades féb y NID y al oeste está en contacto de corrimiento con la unidad U.L. Al sur está en contacto con las unidades sedimentarias a travês del corrimiento frontal.		Estas unidad al igual que la Está afectada por los dos unidad NTD fue correlacionada sistemas de fallas que afectan com la Formación Volcánicas de a la anterior unidad NTD e Tiara o Formación Dos Nermanas igualmente sus contactos son según GIRARD et al (1982) en se majoría de corrimientos com las unidades restantes.	Fue afectada por metamorfismo de mey bajo grado, facies de la prehnita - pumpellita y pumpellita - actinolita en la región occidental y hacia el ME se observan evidencias de metamorfismo de bajo grado, facies de esquistos verdes

Tabla 2. Características Generales de las Unidades Metamórficas

	Apa .	
METANORE! SNO	Podria estar afectado por metamorfismo de muy bajo grado, facies de la prehaita pumpellita, pero la eridenci existente es muy poca para asegurarlo.	[sti asociado a una gran falla Probablemente est# afectado posiblemente transcurrente por el mismo metamorfismo de dextral. esquistos verdes, zona de la clorita].
ESTRUCTURAS PRESENTES	No se observaron estructuras importantes dentro de la unidad.	
CORRELACION	Nuestra cierta semejanza — No se observaron estructu litológica con el Complejo de importantes dentro de la Chacao. — unidad.	Solo se puede correlacionar con la serie de cuerpos de serpentinilas que afloran en toda la Faja de Yilla de Cura.
CONTACTOS	(sta compuesto por rocas (sta en contacto de maíricas (gabros) y corrimiento al oeste y estruiramaficas (dumitas, com la wnidad NLV y en annellitas, climopiroxemilas y contacto de falla al ND y hornblenditas), dispuestas en morte con las unidades NID y franjas que asemajan un EGD respectivamente. complejo estratificado o la sección inferior de una suite osíalistos.	Al sur está en contacto de falla com la mnidad EGb y al morte está cubierta por aluviones del Moloceno.
1110106145	Affora al oeste de Está compuesto por rocas Esta en contacto de la región estudiada, máricas (gabros) y corrimiento al oeste y est en forma de gran unitamáficas (dumitas, con la unidad NLV y en bloque emplazado wheriitas, clinopiroxenitas y contacto de falla al NO y entre las unidades hornblenditas), dispuestas en norte con las unidades NID netamórficas franjas que asemajan un EGD respectivamente. restantes, complejo estratificado o la sección inferior de una suite	
GENERAL	Aflora al oeste de la región estudiada, en forma de gran bloque emplasado entre las unidades metamórficas	Aflora al morte de la regign, en forma de prqueña cuña.
ONGINO	in in	es S

Complejo de

2.2 GRUPO VILLA DE CURA

2.2.1 GENERALIDADES

Las rocas de este grupo aparecen en la parte septentrional de la región estudiada (fig. 2), que como se indicó en la introducción, se caracteriza en el campo por la presencia de frecuentes superficies planares (foliación, bandeamiento y laminación), con lo cual se diferencia de las rocas masivas de la faja meridional. Al contrario de la zona de Aragua central, las estructuras planares de la zona de Guatopo predominantemente buzan al norte.

Al igual que en la zona de Villa de Cura (Aragua), las rocas predominantes son: metalava, metatoba, esquisto, granofel y metaftanita.

La metalava puede ser tanto basáltica como andesítica, con una proporción ligeramente superior para el primer tipo y una mineralogía de albita, clorita, cuarzo, epidoto, clinipiroxeno, clinozoicita, sericita, actinolita, hornblenda y otros.

La metatoba es principalmente de cenizas, con cantidades minoritarias de lapilli y bloques, así mismo hay casi la misma proporción de metatoba de cristales y lítica y pocas brechas.

El esquisto es de grano fino predominantemente cuarzoalbítico con sericita y clorita. Al microscopio se observa que predomina una matriz muy fina cuarzo-albítica sin diferenciar, con cantidades menores de cuarzo y albita en cristales discernibles, así como también ser\cita, clorita, epidoto, clinozoicita y accesorios como anfibol verde-azul y glaucofano.

El granofel presenta un predominio de cuarzo y albita, siguiendo en orden de abundancia la sericita, clorita, epidoto y estilpnomelana.

La metaftanita es escasa y aflora uniformemente en toda la zona, el mineral predominante es el cuarzo (>70 %), y cantidades menores de albita, clorita, sericita, apidoto, actinolita, pirita y óxidos de Fe y Ti. Algunas muestras presentan radiolarios y foraminíferos planctónicos no identificados por su mala preservación (M. Furrer, com. pers.)

Dentro de la zona cartografiada como Grupo Villa de Cura, las rocas del extremo noroeste (reticulado rectangular, fig. 2), presentan mayor abundancia de esquistos y granofels que el resto de la zona y por este motivo se ha asignado preliminarmente a la **Formación Santa Isabel**. Si se toman en cuenta los criterios diagnósticos propuestos por NAVARRO *et al.* (1987) para las formaciones del Grupo Villa de Cura, la equivalencia que hemos presentado no sería estrictamente correcta, ya que además de la rocas metasedimentarias (esquisto y granofel), también hay metatoba y metalava, por consiguiente de utilizar estos criterios, estas rocas podrían corresponder a una zona de transición bastante amplia entre las formaciones Santa Isabel y el Chino. Esta zona presenta una asociación mineralógica metamórfica de clorita clinozoicita actinolita ± glaucofano, la presencia de este último mineral sugiere que estas rocas hayan sufrido un régimen metamórfico de alta P/T.

Las rocas del resto de la zona, aparecen cartografiadas como Grupo Villa de Cura sin diferenciar (líneas horizontales, fig 2), que por la preponderancia de metatoba y metalava, y utilizando los criterios de NAVARRO *et al.* (1987) podrían equivaler litológicamente a la formaciones El Caño y El Chino. En la región de Guatopo no se ha encontrado lava basáltica almohadillada típica de la Formación El Carmen. Las rocas de esta parte de la zona de estudio, tienen una asociación mineralógica metamórfica de clorita clinozoicita actinolita (facies de los esquistos verdes).

Si bien en la región de Guatopo no se han efectuado estudios geoquímicos, las rocas se asemejan a las de la zona de Villa de Cura - San Casimiro (Aragua), estudiadas por NAVARRO (1983, 1985), y la asociación presente soporta la idea de que pertenecen a un complejo de subducción (OSTOS y NAVARRO, 1986).

2.2.2 LITOLOGÍA (CARACTERÍSTICAS DE CAMPO Y PETROGRAFÍA)

2.2.2.1 METATOBA

Esta litología aflora uniformemente en toda la unidad, aunque es más escasa al noroeste de la misma. Los mejores afloramientos están en las quebradas Cupata, Seca, El Loro, El Medio y Caño Rico, así como en el curso inferior del río Cuira, entre los caserios El Cambur y El Oro. Se localizan diversos tipos de metatoba, a saber: lítica, lítico-cristalina, cristalino-lítica y cristalina, siendo esta última la más abundante. La metatoba con fragmentos de rocas de tamaño de bloques (mayor de 64 mm), fue clasificada como metabrecha piroclástica. En todos los tipos de metatobas, la mayoría de los piroclastos son de tamaño de ceniza fina a gruesa, aunque dentro de la metatoba lítica hay piroclastos de hasta 25 cm de diámetro.

Tabla 2. Descripción Petrográfica Generalizada de los Tipos Litológicos Predominantes de la Zona Noreste (Formación Santa Isabel)

								1	1	1	1	:						1			,					1						
110001		CA LIG CIO SEG ESC. LA TANNE PAR POR CAL ESC CIO SEG ESC. CAL ESC.	5				5	= }	- 2		M - M - R A - O 6 - A	5	٤ ء	=	110	5	4	֓֞֞֞֞֞֞֞֞֞֞֞֜֞֞֓֓֓֓֞֜֞֜֞֜֞֓֓֓֞֜֞֜֓֓֓֞֡֓֞֡֓֞֡	COMPOSICION YCY YER YM7 YW1	į į			2	DI ARI	_	3	CLASIFICACION	2	_	DE MUTSTRAS	TO TOTAL	
		•	2				-	<u> </u>		•	•	5	2	•	•	•	:	•	•	į			(OCURRENCIAS)	ž	3	Š	(OCURRE MCIAS)	(S I S				
TOBAS	PROMEDIO: 6 HIMINO : 0 NAXINO : 36	× 5 ک	208	w 0 2	-0=	00~	-05	000	- 0 5	~ ~ ~		8	00-	-00	~ ~ 2	40.0	₹° ₽	205	508	305	~ o ~		# DE CE:	(=-0	* * *	# DE M-18CX : 7 # DE M-18L1 : 7 # DE M-8MECMAS: 0	X - S	0	~	≂	
11P0 DE 1 JT01061A		22 716 610 818	8	=	1 1	3	Ş	= =	¥ 28	125	RS VAZ GLA CLP PRP	- E	3 =	=		H : H E R A L O G I A CPD CLZ ACT HRB VAZ GLA CLP PHP PRH CAL EST PIR OFE OTI	=		11 =	2 9	00 X	COMPOSICION	COMPOSICION NZ ZCX ZNZ ZANG ZVI	=		CLASIFICACION (OCURRIMCIAS)	E CECE	1 2 3	5 8	WUNERO TOTAL DE MUESTRAS	1 3	
LAMAS	PROMEDIO: 6 HIBIDO: 0 HAXINO: 62	E 0 %	205	~ 0 ℃	-00	-02	~ 0 g	000	-05	002	• • •	000	- 0 č	- 0 8	- 0 0	~ ~ %	w o ₹	- o E	-	1	-05	E~ \$	- 0 2	~ o &	ļ	# DE N-1 VBS	-1 v8	==		<u>-</u>	1	
	11P0 PE	₩ ₹			11 5	2	#2 62F10	5	8 8		- X	- 35 - 35	1 5	N I N E R A L O 6 I A	= =	CZ PLG NZ CLO SER EPO VAZ GLA CPX PNP PRH CAL EST PIR OFE OTI	15	=	=	1 100000	3 =	5 8 8	ASI FICACIONI NAS CONUNES	S EES	1 2 2	CLASIFICACIONES; MUNERO 107AL	N S				1	
	[SQUISTOS	§	PROMEDI RINE NO RAXINO	PROMEDIO:	= 0 %	300	~	1 1	- 0 %	202	9 00	208	000	000	00-	000	~ 0 5	00-	~00	-00	2 2 2	222	ESQ CZFLDSER ESQ CZFLDCLO ESQ CZFLDGLA	w 0 <	<u> </u>	٤						
	1190 9E			27 16	3	NZ GZFLD	8	238	2	= ~	ACT HRB VAZ CPX PHP	\ \frac{1}{2} \frac{1}{2}	0 1 2	9 X	- Ē	N I WERALOGIA NZ CLOSEREPOCLZACTHRBYAZCPX PMP PRHCALESTGRA PIR OFE OTI	5	5	=	150		3 -	ASIFICACIONE NAS CONUNES	CACI	ONES	CLASIFICACIONES MUNERO 101AL NAS CONUNES : DE MUESTRAS	ERO TOTAL MUESTRAS	TEAS				
	CRANOFELS	PROMEBIO: NIMIMO : NAXIMO :	ë		≅ ~ ₹3	2 2	202	₹02	~66	000	00~	000	000	000			-0 m	000	000	-0 m	m 0 =	5 5	GR CZFLDPLG GR CZFLD	0		ļ	=	1 [

 Tabla 2. Descripción Petrográfica Generalizada de los Tipos Litológicos Predominantes del Área restante de la Unidad (Grupo Villa de Cura sin Diferenciar).

 Continuación

NID (COURTEMINS); (COURTEMINS)
16 22 55 7 # DE CE: 13 # 0 0 2 0 # DE LP: 3 # 170 98 98 32 # DE BR: 2 #
C2 PLG CLO SER EPO CLZ ACT HRB VAZ GLA CLP PMP PRH CAL EST PIR OFE OTI NZ NZ ZANG ZANG ZVT : (OCURRENCIAS) :
1 0 0 1 0 4 0 1 1 5 24 5 13 75 5 7 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AZ CLO SER EPD WAZ GLA CPT PAP PEH CAL EST PLE OFE OTI : MAS COMUNES : DE NUESTRAS 42FLD 32 8 30 4 0 0 0 0 0 6 1 1 3 2 ESQ CZFLOSER : 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ESQ CZFLOSER : 26 81 35 72 40 0 0 1 1 2 50 14 3 20 10 ESQ SERCAL :
CZ PLG- NZ CLO SER EPD CLZ ACT HRB TAZ CPX PMP PRH CAL EST GRA PIR DFE OTI : MAS COMUNES ; DE MUNESTRAS QZFLD
7 3 7 1 2 0 0 0 0 2 1 1 0 1 3 1 6R CZFLDKCT 20 0 0 0 0 0 0 0 0 0 6R CZFLDCL0 13 15 25 5 15 3 0 0 2 20 15 8 8 10 15 5

En el campo presentan colores verde grisáceo a verde oliva azulado y meteorizan a verde claro y oscuro. Los piroclastos de gran tamafio mencionados dentro de la metatoba lítica, son por lo general de color verde más claro que la matriz. Es frecuente encontrar metatoba bandeada, donde las bandas exhiben colores que varian de gris oscuro a gris verdoso claro y otras muestran verde oscuro y verde claro. Estas bandas alcanzan hasta 3 cm de espesor.

La foliación y/o bandearniento esta bien expuesta en la metatoba cristalina de grano muy fino (afloramiento Mi89) y disminuye a medida que aumenta la cantidad y el tamaño de los piroclastos dentro de la roca (afloramiento Mi47C). Los afloramientos en general están fracturados y moderadamente meteorizados.

En el río Taguaza (afloramiento Mil24A), se observó un contacto transicional entre metatoba laminada y esquisto. La metatoba foliada se intercala con la metatoba masiva y en general se encuentra intercalada con los demás tipos litológicos de la unidad.

Al microscopio los piroclastos son de lava y escasamente de ftanita y metatoba (muestra Mi4253). La lava es afanitica o tienen microlitos de plagioclasa que muestran textura afieltrada y más escasamente traquitica. Hay pocas amigdalas y están rellenas de cuarzo, pumpellita, clorita, calcita y epidoto. La matriz de la lava esta muy alterada a leucoxeno y material no identificado (muestras Mi164 y Mi4253).

Los fenocristales de la metatoba es de cuarzo, plagioclasa, actinolita, hornblenda y/o piroxenos. La matriz es de grano fino y está compuesta de cuarzo, plagioclasa, epidoto, clorita, leucoxeno y matriz cuarzo-albítica microcristalina (muestras Mi53C y Mi130T). En la metatoba bandeada se presentan lentes de matriz cuarzo-albítica y una alternancia de bandas de plagioclasa cuarzo y matriz cuarzo-albítica con bandas de clorita, epidoto, sericita, óxidos de hierro y óxidos de titanio.

Las vetas estan rellenas de clorita, cuarzo, calcita y epidoto. Son frecuentes y pueden alcanzar hasta un 35% del volumen total de la roca (muestra Mi142). Las tablas 2 y 3, presentan los datos petrográficos. A continuación se describe la mineralogía:

Cuarzo: se presenta en cristales incoloros, anhedrales, aislados o en bandas policristalinas con textura de mosaico, paralelas a la foliación. También es común rellenando vetas.

Plagioclasa: cristales tabulares, subhedrales a anhedrales

de hasta 3 mm de diámetro, maclado polisintético tipo carlsbad y albita con un porcentaje de anortita de 10-17%, siendo del tipo oligoclasa. Ocasionalmente los cristales de plagioclasas muestran textual intersectal (muestra (Mi216). Presenta alteración a clorita, sericita, epidoto, actinolita (afloramientos Mi55B y Mi196), calcita y a veces están recristalizadas.

Matriz cuarzo-albítica: se presenta como un agregado microcristalino granoblástico, incoloro, compuesto de cuarzo y albita. Es de grano muy fino lo que evidencia que el grano de la matriz original era fino también. Está envolviendo los cristales o en forma de parches diseminados en la roca.

Clorita: incolora a verde pálido, hábito fibroso o tabular con pleocroismo débil. Los colores de interferencia se caracterizan por el azul anómalo y marrón verdoso. Es abundante en la matriz. Se encuentra también rellenando amígdalas dentro de los fragmentos de lavas, mostrando hábito fibroso radial.

Sericita: incolora, con hábito fibroso, se presenta orientada definiendo la foliación. A veces es producto de alteración de la plagioclasa.

Epidoto: de incoloro a verde amarillento con pleocroismo débil, cristales anhedrales de hábito granular y escasamente prismático corto. Se encuentra rellenando amígdalas en los fragmentos de lavas, en la matriz en forma de parches y rellenando vetas y puede ser producto de alteración de plagioclasas.

Clinozoisita: incolora, hábito granular o escasamente columnar, colores de interferencia azul tinta anómalo y amarillo verdoso, ocasionalmente rellenando amígdalas en los fragmentos de lavas y en la matriz en forma de masas granulares dispersas (muestra Mi47C).

Actinolita: se encuentra como fragmentos en la matriz de las metatobas, hábito fibroso, acicular y a veces prismático, de hasta 0,5 mm de diámetro, incolora a verde pálido con oleocroismo débil, subhedral a anhedral. Es un producto común de la alteración de las plagioclasas.

Hornblenda: hábito prismático corto, color verde oliva claro, pleocroísmo débil, tamaño máximo de 0,3 mm. Se presenta como fenocristales.

Glaucofano: hábito prismático largo, pleocroismo fuerte de azul pálido a azul- violeta fuerte. Es muy poco abundante dentro de las metatobas y a veces parece ser producto de

alteración de piroxeno. Puede presentarse formando haces orientados paralelamente a la foliación (muestra Mi89).

Anfibol verde-azul: hábito prismático largo, pleocroismo fuerte de verde pálido a verde azulado, diámetro máximo de 2 mm, en cristales dispersos dentro de la matriz.

Clinopiroxenos: hábito prismático corto, incoloro, cristales subhedrales a anhedrales, maclado simple. Se presentan cristales dentro de la matriz, a veces orientados paralelamente a la foliación. Son del tipo diópsido y augitadiopsídica. El diámetro máximo es de 0,9 mm y se encuentra uralitizado a actinolita.

Estilpnomelano: hábito fibroso, color marrón a marrón rojizo con pleocroismo moderado. Es poco abundante y está orientado paralelamente a la foliación.

Pumpellita y Prehnita: a veces rellenando vetas.

Calcita: incolora, usualmente se presenta rellenando cavidades y vetas. También es producto de alteración de plagiclasa.

Pirita: cristales subhedrales a anhedrales aislados, ocasionalmente se observan sombras de presión con la sericita y se altera a limonita.

Esfena: hábito granular, en masas de color marrón, translúcida y alterada a leucoxeno. Se encuentra dispersa en toda la muestra dentro de la matriz.

Opacos: se presentan los siguientes minerales opacos: leocoxeno, hematita, magnetita y limonita, en cristales pequeños formando masas granulares dispersas dentro la matriz. La limonita es producto de la alteración de la magnetita y hematita y tiene la matriz con colores anaranjados; el leucoxeno es producto de la alteración de la esfena.

Tabla 3. Descripción Petrográfica de las Metatobas y Metabrechas Formación Santa Isabel

MUESTRA	CZ	PL6	CLO	SE R	EPI	CL	Z A		HBL						AL E	ST !	12	OFE	011	HZ.	WI			IC ION				MINERALES EN MATRIZ	MINERALES EN VETAS	MINERALES EN ANIGO.	DA	TEXTURAS	CLASIFICACION DE LA ROCA
·					_						_		_	_				_	_	_						_				QE FE			
381001H	0	10	30	0		0	0	5	0	0	0	2	2	8	0	0	0	0		5 2	0	20	20	60	0) (LV	PRP.CLO	PEH		CE		M-TBCXL!
M10055	30	33	0	15		1	0	0	0	0	0)	0	0	0	0	0	1		2	D	70	0	15	15	6	CH	EPD					M-18CX
M10055B	1	41	0	2	11	0	2	19	0	1	0)	0	0	8	0	9	1		5 1	0	5	80	14	1	1	LY.ID	CLZ.ACT.YAZ			CE		M-18L1
H10057	0	1	14	0		0	0	0	0	0	0)	0	0	0	0	0	0	. 11	0 1	5	0	15	85	0) (LV	CLO			CE	FI	M-TBL I
M10082	11	50	0	2		2	0	0	0	0	0	2	0	0	0	8	0	7	-	0	0	10	20	69	1	1	LY	PMP.EST		PMP	CE	FI	M-18LICI
M10083	7	43	30	3		2	1	0	0	0	0)	2	0	Ū	0	0	1		3	8	- 10	2	88	0)	10	PMP.CLO.CLZ	!		CE		M-TBCI
#100#	10	10	8	0	1	0	0	0	0	15	0)	2	0	0	0	5	0	1	0 3	10	5	. 0	95	0)		GLA. VAZ.EPO)				M-TBCX
N101301	0	5	30	8		0	0	0	0	0	0)	0	0	1	0	0	0		1 (3	5	15	80	0)	LV	CLO			CE	FB	M-TBLICX
M10150	6	2	0	5		9 .	0	0	0	0	0)	0	1	0	0	1	0		0 1	16	5	0	93	2	2						FI	M-18CI
M10154	3	0	1	1		0	0	0	0	0	0)	3	0	0	0	0	12		5	5	0	0	97	3	3		PRP				FB	M-18
M10154B	1	0	10	1		5	0	0	0	0	0)	0	0	20	0	0	3		2 5		2	48	50	0)	LY. ID				CE	FI	R-1811
N10158	5	10	0	2		3	0	0	0	0	0)		0	6	0	0	3		5 5	8	10	5	82	3	3	19	PRP.EPD	787		CE		N-TBCILL
M10160	36	25	10	5		3	0	0	0	0	0)	0	0	0	0	0	1		5 1	15	5	10	85	0) (LY. 18. 19	CLO.EPD			CE	FB	M-TBLICE
M10160C	1	55	15	()	3	1	0	0	0	1	١	0	0	,	0	0	1		4	10	65	19	15				CLZ.CLO.EPE)		CE		A-18CI
#10164	1	30	10	()	١	0	0	0	0		0	0	0	0	0	1	0	1	0 4	17	20	40	40			LV.CH. IB				LP	FI	M-TBLICE
M10166	0	0	25	(1	0	0	0	0	0		0	0	0	50	0	0	0	1	5	0	60	40	0			LV.ID	CLO.PHP			CE	FB	A-18CILI
B10168	15	45	10	(1	5	0	0	0	0	1	1	0	0	0	0	1	0	1	1	2	2	10	84			LY	CLO. PMP			CE	FI	8-1811
R10173	0	5	5		1	0	2	0	0	0		0 1	5	0	0	0	1	1		6	0	2	0	' #				PAP.CLO				FB. BND	N-18CI
M10213	5	49	15			5	0	0	0	0	1	2	0	0	0	0	6	2		0	15	5	30	65		0	LV			CLO	CE	BMD	M-18L1
B10214	0	47	25	10)	8	0	0	0	0		0	8	0	0	0	0	2		0	0	20	30	40		0		PMP.EPD	CLO	CLO	CE	BMD	N-18LICX
M10215	5	25	50		3	3	0	0	0	0) (0	4	0	0	0	0	5		0	5	20	0	80	-			PEP.CLO.EP				FLU	A-18CI
#10216	0	50	5		3	4	0	0	0	0	, ;	5	0	0	0	0	1	0		0	0	0	30	55			17.10	EPD.CLO	EPD		CE	•••	H-18L1
N10217	6	50	12		2	0	0	0	0	3		0	0	0	,	0	ò	0		0	0	0	20	75			LY.10	EPD.CLO			CE		M-18L1
#10217#	Ġ	16	0		, -	5	0	0	0) (0	0	٥	0	0	Š	5			60	10	5	83		2		[PD			CE	BND	M-TBCXLI

Tabla 3. Descripción Petrográfica de las Metatobas y Metabrechas Formación Santa Isabel Grupo Villa de Cura sin Diferenciar (Continuación)

MIDO19	U(STRA											0 6									CO	MPOS	ICION		TIPOS DE	MINERALES	MINERALES	MINERALES	DM	TEXTURAS	CLASIFICACIO
MIDO19A		CZ	PLG	C10	SERI	[PD	CLZ	ACT	HBL	٧٨	CPX	PMP	PRH	CAL	[\$1	PIR	OFE	011	MZI	# 1	ZCX	ZFR	ZHZ	ZVT	FR	EN MATRIZ	EN VETAS	EN ANIGD.			DE LA ROC
MIOD214	110019	10	20	0	0	1	0	0	0) 0	0	20	30	0	4	0	0) ;;	5	70	0	20	10		PRH CPD					N-TOCX
MIDO22A 15 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	20	10	0	0	0	0	0	-	0	0	0	25	0	0	0	0											CE		H-TOCKLI
MIDO21 15 0 6 0 3 0 0 0 0 0 0 0 0 0 0 0 0 1 15 60 0 98 2 0 CL0 BQ FIU MIDO21 10 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 84 2 0 98 0 FIU MIDO22 15 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0		15	0	0	0	4	0	0	0	(0 0	0	0	40	0	0	١	0	41	0						•••	CAL		••	FIII	M-10CX
MIDO22		15	0	6	0	3	0	0	0	(0	0	0	0	0	0	١	15	61	0	0	98		0		CLO	•		RO		M-BRECHA
		10	0	2	2	1	0	0	0		0	0	0	0	0	0	1	0	8	4	2			-		***			•		M-TBCX
	1100470	5	3	15	0	5	20	10	G))	0	0	0	ō	0	0	7	3	5	10	40	-	0	LV. 1D	C17.C10.ACT			CE		M-TBLI
	110052	15	0	0	0	1	0	0	0		0 0	0	0	0	0	0	10	0	7.	4						VILIULUINUI			••		M-18CX
11003	1100528	25	0	1	0	١	0	0	0		0 0	0	0	0	0	0	5	0	6	8	-	-			41				CE		M-TBLI
	110053C	4	8	2	0	0	0	0	0		0 60	3	2	0	0	0	1	0)	0	5					PRH PHP		***	u		A-TBCX
	110054	5	18	10	0	4	30	0	0		25	1	0	ż	0	0	C	5	5	0							C10 C17	****			H-TBCX
110054C 2	1100548	15	1	5	76	2	0	0	0		0 0	0	0	0	0	0	1	0)	0							CLUICLE				H-18CX
	1100540	2	0	3	0	2	10	10	0		0 0	0	3	0	0	0	1	1	6	8	ž	•	-	-			CIA PE				M-TBCX
	10066	22	45	0	0	2	8	3	0		0	0	0	0	0	0	0	3	1	7	40				14.10		CLU.IA.		12	DAD	H-TBCX
10142 2 63 0 2 0 0 0 0 0 0 0 0 0 0 1 30 C 0 0 0 2 30 0 38 32 PRH	10140	0	15	9	U	4	Ü	0	0		35	5	0	0	0	0	0	0				ò		-		CL2.110	DAD CIV CO	0.010	u	DWA	A-TB
10186	10142	2	63	0	2	0	0	0	0		0 0	0	1	30	0	0	0	0)	2		•				PPH	1 m .c.v	V (10		DAD	N-TOCX
	10186	10	20	0	5	0	0	0	0		30	0	0	10	0	0	0	0	2	5					10.17				r.		
	10189	0	5	36	50	1	0	0	0) 4	0	2	1	0	۵	1	0	-						10.01	100	010 010		u		H-TBCXLI
10191	10190	15	25	0	5	3	0	0	0		0	0	0	0	0	0	5	0		7					CH TR		FRE.CLV		11		M-TOCX
	10191	2	10	0	0	0	5	20	0		0 0	0	1	7	0	0	0	5									991				N-TOCKL1
10195	10192	15	25	1	10	0	0	0	0		0	0	1	0	0	1	5	0		-						CILINCI					H-TBL I
10196	10195	1	70	3	0	0	0	0	0		0 0	0	2	0	0	0	0	. 1		-					.,		ran.clv		C		M-TBLICX
10203	110196	2	48	10	10	5	15	1	0		1 0	0	1	1	i	0	0	0	_			-		-	LV.TR	FP0 C10 C17	POU CCT		22		M-18CX
115028	10203	1	0	5	10	2	10	0	θ) 1	0	0	0	0	1	1	9	61	0							ran.cor		u	r.	M-TBL1
11666 5 22 4 5 0 0 20 0 30 0 0 12 0 0 0 0 2 0 0 57 0 20 23 CLO PRH.CLO FB 11670 5 20 0 0 15 20 0 0 0 0 0 0 8 0 0 5 0 27 5 0 85 10 EPD 11725 0 0 0 0 0 8 0 5 0 0 0 0 0 0 0 1 0 86 5 0 91 4 EPD 11727 0 0 15 15 0 0 0 0 4 0 0 0 5 0 0 0 0 0 61 9 0 91 0 CLO CLO FI.BHD 11731 2 20 15 10 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 15 50 35 0 LY.TB EPD CLO C	115028	2	51	0	0	10	0	15	0		2 4	0	0	15	0	1	0	0							1.0				7.7	11	H-TBCX
11670 5 20 0 0 15 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11666	5	22	4	5	0	0	20	0	30	0	0	12	0	0	0	,	0		n					.,		DON CIO		u	**	H-TBCXL1
11725 0 0 0 0 8 0 5 0 0 0 0 0 0 0 0 0 1 0 86 5 0 91 4 EPD 11727 0 0 15 15 0 0 0 0 0 4 0 0 0 5 0 0 0 0 61 9 0 91 0 CLO CLO FI.BMD 11731 2 20 15 10 20 0 0 0 0 0 0 0 0 0 0 0 0 0 33 15 50 35 0 LY.TB EPD CLO CLO CL	11670	5	20	0	0	15	20	0	0		0	0	0	8	0	D	5	Ů		•							I KIII.CLV			1.0	H-TBCX
111727 0 0 15 15 0 0 0 0 4 0 0 0 5 0 0 0 0 61 9 0 91 0 CLO CLO FI.BMD	11725	0	0	0	0	8	0	5	0		0	0	0	0	0	0	i	0			•										H-TBCX
111731 2 20 15 10 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 15 50 35 0 LV.TB EPD CLO CLO CL	111727	0	0	15	15	0	0	0	0		0	0	0	5	0	0	0	0		-	*							CIA		C1 040	B-TOCX
11/732 15 0 15 5 5 0 0 0 0 0 0 2 25 0 0 1 0 2 25 0 0 1	11731	2	20	15	10	20	0	0	0	1	0 0	0	0	0	0	Ô	0	0		•				•	IV TR		CIA		cc	r I . BMD	H-TBCX
	11732	15	0	15	5	5	0	0	0) 0	0	3	25			5				62	0	30			CLO.EPD	CLV	PRH	u		H-1911
113165 0 10 10 0 15 0 3 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	13165	0	10	10	0	15	0	3	0). ()	,	n	3	0	ņ	n						-	_				rkn	00		H-TBCX H-BRECHA

Tabla 3. Descripción Petrográfica de las Metatobas y Metabrechas Formación Santa Isabel Grupo Villa de Cura sin Diferenciar (Continuación)

MUESTRA	ĊZ	PLG	CLO	SE R	EPD (CLZ		HBL V				A RH CAL	[8]	PIR)FE (оті	HZHI	-	OMPOS ZFR		29 T	TIPOS I FR	DE	HINERALES EN MATRIZ	MINERALES EN VETAS	MINERALES EN AMIGD. DE FR	DM	TEXTURAS	CLASIFICACION DE LA ROCA
								,										- 1											
M13166	10	14	0	0	50	1	0	0	0	0	0	1 . 20	0	0	0	0	0	0	80	20	0			CLZ	PRH	•	CE		M-TBL I
H13174	-10	15	20	0	15	22	0	0	0	0	0	0 15	0	0	0	3	0	5	5	03	10	LY		CLZ.CLO			CE	FB	M-TBCXLI
M13179	0	5	37	5	10	5	20	0	0	0	0	0 3	0	0	0	15	0	5	20	. 75	0	LY		CLZ.CLO		CLZ			M-TBLI
M13233	0	60	0	0	0	8	3	•	0	0	0	0 0	0	1	0	10	18	30	50	17	3	LV		CLZ			CE		M-TBLICX
M14249	2	48	2	5	0	0	. 0	0	0	0	0	0 10	0	3	0	10	20	10	80	5		LV		CLO			18	FB	M-TBL I
H14253	10	5	1	5	0	0	0	0	0	0	0	0. 10	0	2	0	15	52	2	94	2	i	LV.TB	.ID	CLO		9	LP	FB	M-TBL I

2.2.2.2 METALAVA

Esta litología aflora en toda el área, pero es más abundante al NO de la misma. Los mejores afloramientos están en los ríos Taguaza, Macaira, Panaquirito y Casupito y en las quebradas Caño Rico, Seca, La Danta, El Loro y El Medio. La metalava puede ser tanto andesítica como basáltica, con abundancia aproximadamente igual de cada tipo.

En el campo, la metalava andesítica presenta color verde oliva claro y la basáltica verde oliva oscuro. Meteorizan a verde oliva grisáceo. En algunos afloramientos se pueden observar bombas volcánicas plagioclásicas de color verde más claro (afloramiento Mi1510), cuyos bordes presentan una zonación en su coloración más clara, debido a la concentración de plagioclasa.

Generalmente la lava se presenta masiva aunque puede observarse gruesamente foliada. Esta poco fracturada y menos meteorizada que la metatoba. Esta intercalada con todos los demás tipos litológicos de la unidad.

Al microscopio, los fenocristales son de cuarzo, plagioclasa, actinolita y piroxeno. A veces es amigadaloide con rellenos

de epidoto, clinozoisita, clorita y pumpellita. La matriz es el componente más abundante, siendo de grano fino y compuesta por microlitos de plagioclasa o como una masa cuarzo-albítica, además hay cantidades menores de clorita, epidoto, esfena y actinolita. Se puede observar textura afieltrada y escasamente traquítica (muestra Mi64). Sin embargo la textura predominante es la porfirítica. Algunas metalavas están claramente bandeadas (afloramiento Mi24, Mi176 y Mi221).

Las vetas son comunes, aunque se presentan en bajos porcentajes. Son delgadas y se disponen en todas direcciones. Están rellenas de cuarzo, epidoto, clorita, prehnita, pumpellita y escasamente de plagioclasa (afloramiento Mi94A).

Las tablas 2 y 4 presentan los datos petrográficos y la descripción mineralógica detallada es la siguiente:

Cuarzo: incoloro, se presenta en la matriz como cristales anhedrales o a veces relleno vetas. Presenta textura de mosaico.

Plagioclasa: se presenta como microlitos y como fenocristales. Los microlitos son abundantes y forman textura afieltrada y más escasamente traquítica. Los fenocristales son incoloros, tabulares, con maclado polisintético carlsbad y albita y alcanzan hasta 3 mm de diámetro. Ocasionalmente muestran textura intersectal. El porcentaje de anortita varía entre 14-18% y son de tipo oligiclasa. Altera a actinolita fibrosa, epidoto con fuerte pleocorismo amarillo verdoso, clorita y calcita (muestra Mi65).

Matriz cuarzo-albítica: es un agregado microcristalino granoblástico de cuarzo y albita. Parece ser producto de la recristalización parcial de la matriz original (o vidrio) de la lava y a veces se presenta como parches dentro de la matriz de microlitos de plagioclasa.

Clorita: incolora a verde pálido con pleocroismo débil, hábito tabular a fibroso y se presenta en la matriz o

rellenando vetas. También se observa orientada en bandas que definen la incipiente foliación.

Sericita: hábito fibroso formando masas de filamentosas que definen junto con la clorita la incipiente foliación.

Epidoto: hábito granular en masas dispersas en la matriz, color verde pálido, débilmente pleocroico.

Actinolita: incolora a verde pálido con plecroismo débil, hábito prismático corto a acicular, cristales subhedrales. A veces se presenta como producto de alteración de las plagioclasas.

Hornblenda: hábito prismático corto, pleocroismo débil verde claro a verde oliva claro. Se presenta como pequeños cristales dentro de la matriz.

Anfibol verde azul: hábito prismático corto, verde pálido a verde azulado con pleocroismo moderado (muestra Mi52E).

Glaucofano: sólo se observó en la muestra Mi94A, con hábito prismático y pleocroismo fuerte entre incoloro y azul tinta oscuro. Parece ser producto de la trasformación de piroxenos.

Clinopiroxeno: se presenta como fenocristales, anhedrales a subhedrales, incoloros, alterados a clorita y uralitizados a actinolita y glaucofano. El tamafio promedio es de 0,4 mm.

Estilpnomelano: hábito fibroso, medianamente pleocroica de marrón a marrón rojizo. Se presenta orientado según la foliación incipiente.

Pumpellita y Prehnita: A veces se presenta rellenando vetas.

Calcita: se presenta como un mosaico de cristales anhedrales, rellenando vetas y cavidades.

Esfena: hábito granular, color marrón, translúcida, alterada a leucoxeno. A veces se presenta como cristales aislados, anhedrales a subhedrales.

Tabla 4. Descripción Petrográfica de las Metalavas Formación Santa Isabel

100																																	
IC CLASIFICACION			S	-138	Ĭ			Ĭ	1	1	-138	-138	E	138	21	E	1	3	3	3	3	133	2	2	3	Ę	1	11	Ę	1	17	¥	¥
3			I	=	-		[]		1	=	Ξ	Ξ	I	I	I	I	I	I	I	Ξ	Ξ	I	I	I	I	I	I	I	I	₹	I	I	≖
≥			3	S	=	2 5	3 5	: 5	: =	: 2	S	=	5	S	≈	9	S	~	~	~	-	=	=	2	ຄ	÷	~	_	F	3	5	R	æ
2							_			_											_								3		_	9	
TEXTURAS			9				=		•	7		_	_	_		2		_	_	-	7	_	_		7	Ž	_	_	1. POR. FLU		POR. FLU	B. POR. FLU	F.F.U
			=	Ξ	-		2		-	2	Ξ	2	=	2	Ξ	Œ	Œ	2	2	≖	2	2	۳	Œ	2	=	5 5	=	Œ	Ξ	2	=	=
MINERALES EN YETAS																												_					
==	-										FP.CL0								=					=	213		E	PRN. EPO					
1	1										=								5					Ξ	ಪ		Ξ	=					
169	- 1																																
MINERALES EN ANIGDA	1																																
ł	1		0		_						٥							7						_	7					٥			
MINERALES EN NATRIZ	- 1		ੜ	2.0	0.55	-	9			0	=	=	2.0	=	2	=		5	2	2	2	=	=	2	<u>ت</u>	=			٥	7.5	0		==
MINERALES EN NATRIZ	1		CLZ. PMP.CL0	ACT. FPD.CLO	PD.C10.SF	010 10	CIO	017 L7	HBI . EP	6 PB.CL0	10.61A. FPD	CLO.ACT	WAZ.EPB.CLO	61A.EST	C10.E3	C10.AC	93	GLA. PMP. YA?	C10.EP0	C10. [PB	[51.[7]	CLO. ACT. EPO	CLO. SER	C10.EPD.PM	C10.EPD.C12	C10.ACT	2		C10.EP	EST.C12.EPO	FP.C10	9	CL 0. EST
E	1		٠ -	_	_					_	_	۵	_	9	~	_		•	_	_	_	<u>د</u>			_			_				_	-
	ł		_	_	_	_		_	. ~	_	=	_	_	_	_	_	_	_	_	_	_	_	_	<u>=</u>	<u>=</u>	_	<u>=</u>	≈	_	~	0	_	_
SIC 10M	-		~	-	0					20	-	2		_	<u>د</u>		s	2	_	_	_	s	_		0	_	s		6	_	0	0	•
COMPOSICION C ZNZ ZAN	1				•						_	~			æ			-	~	_											8		
ä									8																						2		
MZNID	1		0	0	0	0		0	0	0	0	8	0	0	0	0	2	0	0	0	0	0	0	0	0	0	2	9	0	0	0	33	0
12	1		0	=	27	2	0	0	0	0	0	0	2	0	37	2	0	0	0	0	0	0	99	2	0	0	0	0	0	-	0	0	0
	1		0	0	~	_	-	~	0	0	m	0	~	0	_	0	2	~	_	-	_	-	~	0	_	~	0	_	0	0	0	0	0
=	1		2	S	0	-	-	~	9	0								-	2	9	-	-	0	0	m	•	0	0	0	~	0	0	~
=	-		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	m	2	0	0	0	0
I A Peh cal est pir oti ofe	-		0	~	0	0	0	0	0	0	0	0	0	8	0	0	0	0	-	0	-	0	0	0	0	0	0	0	0	2	0	0	-
3	1		0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	•	0	0	5	2	0	0	0	S	0	0	0	0	0	0	c)
_ = =	i		-	0	0	0	0	0	0	5	0	0	-	0	0	0	0	0	0	0	0	0	0	2	0	0	-	~	0	0	0	0	0
9 2			2	0	0	0	-	0	0	0	0	0	0	0	0	0	0	_	0	0	0	_	0	~	0	0	0	0	_	0	0	0	0
I N E R A L O	1								0																								
M F R	1								0																								
# - # 31 *A2	-								~																								
=	1								0																						0		
¥ 21			2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	9	0	0	0
2	ı	,	_	52	2	ij	9	0	15	S	2	0	2	9	~	0	~	0	-	-	-	2	-	•	2	0	-	-	0	Q	S	0	0
23	1	•	0	~	\$	-	9	2	0	2	0	0	2	9	2	0	0	2	-	-	0	0	2	0	2	0	0	0	e	0	2	S	~
9		:	2	3	2	15	S	~	0	6	23	2	S	0	2	-	2	~	2	2	0	m	2	Ω.	2	15	0	0	69	-	2	9	S
M C2 P16 C10 SER EPD C12 ACT HB1									2																								
23		•	7	-	0	7	2	0	2	2	8	~	~	0	-	0	2	_	9	-	~	-	0	~ '	2	0	2			25	0	0	0
NUE STRA			VC0	906	9	115	38	98	M100938	76	4 Y	M100968	~	23	24	MI01248	M101268	30 A	M10131	328	33	<u> </u>	354	2 ;	= :	2/	28	83	MI021881	A 102 19 M	2	N102201N	2
JOE S			VC00011	N 19006	M 100	N10015	M 10018	M10085	00 H	100 K	N10094A	2	M10122	M10123	M10124A	0	0	M10130A	0	<u> </u>	M 0133	M1013	M10135A	2 6	1014	M10172	M10182	N10183	20	20	M10220	0 E	AI 0221

Tabla 4. Descripción Petrográfica de las Metalavas Grupo Villa de Cura sin Diferenciar (Continuación)

IC CLASIFICACION																		_		_	_	_			_		_			
ASIE							7		NA -	Ä	-1 48	1-1 V8S	-1 VA	Ē	GV.	A-1 VBS	1-1 VBS	B-LYA	8-1 VBS	1-1 V	14.1V	0VA]-H	1-1 VBS	-LVBS	148	1-1 VBS	H-LYA	1-1 VBS	I-1 YBS	H-1 Y8S
2	-		2 4	2 :	2	2 4	9	2 6	9	9	9	9		E		~	=	_		=	2	2	_	92	=	~	-	99	=	
	١.								9								_		_	_	,		_	_	•	=			_	
TEXTURAS		1 1 1 1		,		78. TOR	20 60	5 a	8. POR. FIU	F1. PDR	FI.AFI			=	FI.AFW	FI.AM6	FP. FLU	POR.AFW	FB. POR	FB. AMG		_	5	_		FB. POR. FLU	VES	N6	POR. YES	FB. P09
	-					~ `			_	_	-			_	-	·	_	_	_	-		_	_	_		-	_	_	60	_
NINERALES En yetas							200		ES1					213			213	CZ.C10						23						
2.5																														
NINERALES En anigda		DND C17	777.111	c													213			643				663			6.69		012.510	
112		603	2	5	3									2						913										VC1
MINERALES En natriz		Ud S Had dwd	į	47 69 510	617 519	VI VI VI	71. TAK.	3		CLO. EPD	ACT.CL0	EPD.CLZ	CLO. FPD	CLO.ACT. [PD			C12.C10		CLO.ACT	SER. FPD.CLO	C10.EPD	EPD.CLO		PD.CLO	FPD.CLO	C12.C10			C12.C10	YAZ.C10.ACT
₹ ₹		d H	5	;	2	2 5	5 5	3 2	5	5	JC.	2	3	3	9	213	213	3	9	35	3	2	3	2	2	3	3	릁	3	YAZ
TWZ	2	~	۰ =	2	2 ^	, 5	2 "	۰ ~	9	2	0	ల	0	•	c	•	9	9	0	0	0	0	0	2	0	~	15	35	15	0
CION XAN	0	-	- 0	٠.	> <	> <	> <	0	0	0	0	0	0	0	0	~	0	c	0	-	02	0	0	-	0	0	30	S	42	0
COMPOSICION	0	8		3 8	8 3	3 8	2 2	26	35	9	R	S	8	84	8	88	88	87	95	96	8	88	6	2	8	89	22	2	ജ	86
00 XX	80	1		, ,	٠ ۾	3 <	. 4	- :	2	35	22	22	2	•	0	~	~	m	2	0	0	~	_	•	2	33	0	9	9	~
Z GINZN	0	0	0	• <	o c			9	0	0	G	6	57	0	0	٥	0	0	15	0	0	0	0	0	0	0	0	0	0	0
NZ NZ	5	0	0		9	2	٥	0	0	0	0	0	0	15	4	0	2	0	0	38	20	99	32	0	57	92	2	S	15	47
	~	0	۰ ~	. ~	, ,	• •		~	~	S	0	0	0	0	~	0	0	0	-	0	0	0	0	S	0	0	0	0	6	<>
=	0	0	0		. ^	, ,		0	~	6	c	a	5	5	9	2	2	9	2	2	5	v.	~	0	m	0	0	2	S	¢>
~ =	0	Ģ,	0	•	9 0		, 0	2	0	0	۲	0	3	2	0	~	m	~	0	0	-	-	0	0	0	0	0	0	0	¢5
2	0	ت	0	0	· ~	• •	-	0	-	0	œ	0	3	0	0	0	0	0	0	0	0	C	0	0	0	c	0	0	0	-
I A PRH CAL EST PIR OTI OFE	0	0	20	9	0	9	2	0	0	٥	0	•	0	0	c	2	9	0	C	0	c	0	0	0	0	C	80	.W76	~	0
- 2	0	10	0	-	0	•	•	0	0	0	0	Ü	3	~			0		0		0	6	0	0	0	0	0	0	0	0
9 & E	0	2	0	-				0	0	2	0	0	0	0			0				0	0	0	0	0	0	0	_	-	c
E R A L								0																						
19 Z																														
N I N E R A L HBL YAZ GLA CPX								0																						
=					-			0																						
~	0	~	0	0	0	-	0	0	0	0	c	S	0	œ	0	0	9	c	c	0	0	0	0	0	0	-	~	0	2	0
CZ PIG CLO SER EPD CLZ ACT	0	دء	∞	-	0	~	2	9	0	C	0	52	~	2	-	30	5		2	9	8	2	33	2	ç	æ	22	32	28	
35	0	0	0	0	5	-	. "	1	\$	12	0	ပ	9	0	0	2	0	m	7	20	0	0 !	9	0	0	0	0	0	0	حت
97	0	50	0	-	9	~	-	0	35	\$	ı,	c:	93	s	5	s	9	~	2	~ :	9	9 00 9	5	20	02	30	0	2	c ;	32
2	~	52	92	0	\$2	~	3	C	9	9	ŝ	3	S	<u>\$</u>	ల్ల	8	ş	72	٠	0	0 '	m (0	י כיי	2 :	35	0	≈	= '	(2)
23	15	5	5	10	2	89	ç	35	0	0	Ü	w	0	m	S	~	~	0	~	0 (ය .	- (9	32	0	0	200	5	S .	0
MUESTRA	N10021	N10024	M10049	M10050	N10052A	N10052C	N10052E	N10052F	N10064	M10065	MI0139	N10143	M F 0206	N11516	N11517	M11522	N11523	M11525	MI 1540	813156	F13161	A13163	11316/	113166	813175	1131/6	N131 / DA	MI3176	#13178B	3:00

Tabla 4. Descripción Petrográfica de las Metalavas de La Unidad EGb Grupo Villa de Cura sin Diferenciar (Continuación)

MUESTRA	2	18	ខឹ		2	617	CZ PLG CLO SER EPD CLZ ACT	里	# ZY	2 19	-5	9 &	7 2	3	2	I A PRH CAL EST PIR 011	=	N 340	NZ NZ	MZKID	COMPOS ZCX ZMZ	COMPOSICION ZNZ ZAN	Z#W Z#W	142	NIMERALES Em matriz	MINERALES EN ANIEDA	MINERALES EN YETAS	TEXTURAS	2	IC CLASIFICACION
M13181	0						*	0		0	0				0	0	2	0	9	0	0	2	0	20	CLO.ACT		170.03	æ	2	M-1 VBS
M13183	2						~	0								0	_	0	=	0	0	75	23	0	ACT.CL0	PHP		FI.AM	\$	M-LVBS
M13184	2	0	2	0	e -	0	0	0	0	0	0	0	0	0	0	0	2	0	51	9	0	87	•	2	5 CLO. FPD			FB. AMG	88	A-LYBS
M13185	\$2						0	0								0	0	0	42	0	0	9	9	0	C10.EPD	C10. EPD		FI.AFI	82	GAY1-R
M13190A	-					-	5									0	-	0	0	0	9	9	0	0	213				3	R-1 YBS
M13192	2						-	-								0	-	0	0	0	02	20	0	9	213				63	M-1 VBS
M13193A	2	-				_	0	-								~	∞	0	19	0	0	3	-	S	C10.EPD			Œ.	72	N-LYAD
M13197B	S					-	0	_								m	9	~	37	0	30	9	0	9	PKP			Ξ	\$2	B-LYAD
M13199B	2					0	0	_								~	9	0	20	0	2	82	0	2	013		CAL	2	17	W-LYAD
M13199C	80						-	_								2	~	0	3	0	2	95	0	m	C10.EPD		CAI		ũ	OYA 1-W
M132338	60	c			-	_	~	_								0	~	-	ಹ	c	0	9	9	0	ACT.CLO.EPD	013		YES	82	W-I AVD
N14252	0				_	, .	-	_							0	O	0	9	0	2	9	65	c	2				æ	9	A-LYBS
N142548	-	99	_		~	6	0	_	_	_				~	0	-	0	m	0	27	20	20	0	30	013			£	₹.	GYA1-S
N14255	m	7	~	2		6	-	_	6	-	0	0	0		0	0	m	0	0	30	₩,	20	0	1	013.510				16	H-LYAD
M14251	?	,	<u>-</u>	~	8	5		-	0	0	0	-	0	0	0	0	15	0	57	0	က	88	0	00	213		PMP	Œ	33	GYA1-W

2.2.2.3 ESQUISTO

Esta litología es más abundante en el sector noroeste. Los mejores afloramientos están en la carretera Aragüita-Los Alpes, y en los ríos Taguaza, Macaira, Panaquirito y Casupito.

En el campo el color es variable verde oliva, claro y oscuro y tonos grisáceos. Ocasionalmente tienen tonalidad azulada y bandas blanquecinas. La meteorización es de colores amarillento y rojizo.

La foliación está mediana a fuertemente desarrollada y parece aumentar hacia el norte de la unidad. Pueden observarse bandas se sericita de hasta 1 mm de espesor, muy alteradas y poco plegadas.

En el campo se observan contactos transicionales entre esquisto y granofel o metatoba. Sin embargo se encuentra intercalado con todos los demás tipos litológicos de la unidad.

La matriz es de grano fino a muy fino. Ocasionalmente hay microboudines de calcita, cuarzo o matriz microcristalina cuarzo-albítica. Los fenocristales son de plagioclasa o cuarzo. La foliación está definida por bandas de cuarzo, plagioclasa, piroxeno y/o matriz microcristalina cuarzo-albítica, alternando con bandas de sericita, clorita, esfena y epidoto (muestras Mi12 y Mi167). Ocasionalmente se observa glaucofano orientado definiendo la foliación.

Son abundantes las vetas con formas discontinuas dispuestas en todas direcciones y rellenas de cuarzo, calcita y raramente plagioclasa o epidoto. Pueden alcanzar hasta 7 mm de espesor.

En las tablas 2 y 5 aparecen los datos petrográficos. La mineralogía detallada es la siguiente:

Cuarzo; incoloro, en cristales anhedrales. A veces se presenta en bandas paralelas a la foliación.

Plagioclasa: como cristales subhedrales a anhedrales, incolora, con maclado polisintético tipo carlsbad y albita. El porcentaje de anortita varía entre 20-27% (oligoclasa-andesina). El tamaño promedio es de 0,3-0,5 mm y alteran a sericita y clorita. Pueden ser de origen volcánico por su similitud con los cristales de la metalavas (muestra Mi53B).

Matriz cuarzo-albítica: bajo esta denominación se presenta un agregado microcristalino granoblástico con textura de mosaico constituido por ambos minerales pero sin diferenciar. Forma bandas plegadas intercaladas con bandas de sericita y clorita.

Clorita: incolora a verde pálido con pleocroismo débil, hábito fibroso a tabular. Se presenta en la matriz y muestra birrefringencia azul anómalo y marrón verdoso.

Sericita: incolora, hábito fibroso, se presenta en bandas con textura lepidoblástica, paralelas a la foliación (muestra Mi8).

Epidoto: hábito granular, color verde pálido amarillento. Se presenta en la matriz.

Anfibol verde azul: medianamente pleocroico de incoloro a verde azulado, hábito prismático en cristales en subhedrales. Es poco abundante.

Glaucofano: hábito prismático corto a fibroso, pleocroísmo fuerte que va desde azul claro a azul violeta oscuro. Se presenta en haces paralelos a la foliación (muestras Mi121 y Mi174).

Estilpnomelano: incoloro a marrón rojizo con pleocroismo fuerte, hábito fibroso y se presentan en haces paralelos a la foliación.

Calcita: solo se presenta como agregado microcristalino o en parches o bandas aisladas y a veces rellenando vetas.

Esfena: color marrón, translúcida, hábito granular y alteración a leucoxeno. Se presenta como parches en la matriz y se puede observar, aunque muy escasamente, algunas sombras de presión con la sericita.

2.2.2.4 GRANOFEL

Esta litología aflora uniformemente en la zona que hemos asignado al Grupo Villa de Cura pero son más abundantes en la parte norcentral de la unidad. Los mejores afloramientos están en los ríos Taguaza, Macaira, Panaquirito y Casupito, y en las quebradas La Cupata, Caimán Grande y Gamelote. En el campo presenta color verde claro a verde oliva y gris verdoso a lechoso. Meteoriza a gris oscuro.

Generalmente es masivo, aunque puede observarse gruesamente foliado o bandeado. Estas bandas están definidas por la variación de color que genera el mayor o menor contenido de cuarzo en las mismas y estan ligeramente plegadas. Se encuentra intercalado con todos los demás tipos litológicos de la unidad y mayormente con el esquisto.

Tabla 5. Descripción Petrográfica de las Esquitos Formación Santa Isabel

MUE STRA	CZ	PLG	CZALB	CLO	SER				L O CPX			PMP	CAL	PIR	011	OŕE	MIMERALES EN MATRIZ	MINERALES EN VETAS	CLASIFICACION
H10001	5	32	. 0	0	60	2	0	0	0	0	0	0	0	0	1	0	EPD		ESQ SERPLE
M10003	7	5		0	7	14	0	0	0	7	0	0	0	3	0	3	GLA.EPD.EST	EPD	ES& CZFLDSERES
N10008	2	1	20	0	70	1	0	0	0	0	0	0	0	0	5	1	\${ R		ES& SERCZFLD
M10009	17	0	53	15	10	1	0	0	0	1	0	0	0	0	1	2	CLO		ES& CZFLOCLOSE
H10012	10	0	35	7	35	12	0	0	0	0	0	0	0	0	0	1	EPD.CLO.SER		ESE CZFLDSEREP
M10013	0	0	60	0	36	0	0	0	0	0	0	0	0	0	0	4	SER		ESE CZFLDSER
H10017A	66	0	0	0	25	0	0	0	0	0	0	0	0	4	0	5	\$ { !		ESQ CZSER
H10018G	43	5	0	15	1	1	2	15	0	15	0	0	0	2	0	1	GLA.EST.CLO	[\$]	ESQ CZGLACLOES
H10063	40	34	0	5	10	0	0	. 0	0	1	0	0	0	0	0	10	CLO.SER		ESE CZPLGSER
808001K	0	0	20	0	74	0	0	0	0	0	0	0	0	0	4	5	\${\$		ES& SERCZFLD
H10086	15	0	45	9	6	15	0	6	0	0	1	0	3	0	0	0	6LA.CLO.EPD		ESR CZFLDEPD6L
M10088	27	39	0	5	15	5	6	0	0	2	0	0	1	0	0	0	VAZ.CLO.EPD		ESQ "PLGCZSERYA
M10038A	7	. 0	60	. 0	. 30	0	0	0	0	0	0	0	0	0	2	1	SER		ESR CZFLDSER
H10092B	1	0	75	. 0	15	C	0	0	0	5	0	0	0	0	2	2	[\$1.\$ER		FIL CZFLDSER
410121	0	0		5			0	50	0	0	0	0	0	0	2	1	GLA. [PD.CLO		ESE GLACZFLDEP
H10125	4	0	50	0	39	5	1	0	-1	0	0	0	0	0	0	0	EPD.CPX.VAZ		ESR CZFLDSER
M10127	5	0		5	3	0	0	0	0	5	0	0	0	0	0	3	EST.CLO		ESE CZFELD
110126	0	.0		5			0	0	0	0	0	0	0	0	4	6	CLO		ESQ SERCZFLD
H10129B	0	0		20		()	0	0	0	0	0	0	0	0	5	0	CLO		FIL CZFLOCLOSE
H10152	6	0		3			0	C	0	0	0	0	0	0	2	2	SER		ES& CZFLDSER
110159	15	1	66	8	5	1	0	0	0	1	0	0	0	0	1	1	CLZ.CLO.SER		ESE CZFLDCLO
H10167	0	0		5			0	9	0	0	0	0	0	0	0	1	GLA.EPD.CLO		ESE CZFLDEPD6L
H10174	5	15		5			0	20	5	5	0	0	0	0	4	1	GLA.CLO.EPD		ESE CZFLDGLAEP
MID176	3	27		3				0	0	0	0	0	0	0	0	2	EPD.CLO. VAZ		ESE EPOPLEYAZ
M10177	35	4		32			0	10	0	0	0	0	0	0	0	1	CLO.GLA.EPD		ES& CZCLOREPD6
M10178	5	0		17			0	0	0	12	0	0	0	0	Ð	2	[\$1.CLO.[PD	CLO	ES& CZFLOCLORE
H10179	0	0		20			0	0	0	0	0	0	0	0	3	0	C10.EPD		ES& SERCZFLDCL
M10180	1	0	•	12			0	0	0	0	0	0	0	0	2	1	CAO. [PD		FIL CZFLOSERCI
M102168	,	20		5			0	8	0	0	0	0	0	0	5	1	CLD. SER. GLA		ESE PLESERGLA

Es de grano fino con cristales de plagioclasa dispuestos en arreglos policristalinos mostrando texturas de intercrecimiento (muestra Mi16) y más escasamente cristales de cuarzo. La matriz es un agregado microcristalino de cuarzo-albita similar a del esquisto y tiene cantidades menores de epidoto, clorita y leucoxeno. En algunas muestras hay cantidades menores de sericita que definen una foliación incipiente. Las vetas alcanzan hasta 1 cm de espesor, son moderadamente abundantes y están rellenas de cuarzo, plagioclasa y menos frecuentemente de epitodo, estilpnomelano, clorita y prehnita (muestras Mi53D y Mi2075).

En la tabla 2 y 6 se presenta la mineralogía y características petrográfica, la mineralogía detallada es la siguiente:

Cuarzo: incoloro y anhedral. Es común también en vetas.

Plagioclasa: incolora, tabular, cristales subhedrales de hasta 2,3 mm de diámetro, maclado polisintético tipo carlsbad y albita. El porcentaje de anortita es de 13-18% y son del tipo oligoclasa-andesina. Muestran alteración a sericita y más escasamente a epidoto y clorita. Algunos de los cristales muestran zonación.

Matriz cuarzo-albítica: es un agregado microcristalino granoblástico, incoloro, mostrando textura de mosaico.

Tabla 5. Descripción Petrográfica de las Esquitos (Continuación)

MUE STRA	cz	PLG	CZALB	Cto	\${ }		N E VAZ	-	_	-		PRP	CAL	fit	011	0FE	BINCEALES EN MATRIZ	NIMERALES EN VETAS	CLASIFICACION
H100258	0	0	0	35	45	0	0	0	0	0		0	0	0	0	20	SEE.CLO		(SE SERCIO
#10050A	6	0	81	0	2	Ž	0	0	0	5	0	0	0	0	3	1	[\$1.[PD		ISE CZFLD
M100538	30	46	0	0	20	1	0	0	0	0	0	0	0	1	0	2	\${{		ESE PLECZSEE
M10061	5	4	40	10	20	0	0	0	0	14	0	0	0	2	0	5	[\$1.CLO		ESA CZFLOSEREST
H10062	20	0	17	15	0	40	0	0	0	5	2	0	0	0	0	1	CLO.EPD.EST	PER	ESE EPECZFLOCIO
M10200	1	0	80	1	12	2	0	0	0	0	0	0	0	0	1	3	CLO.[PD		EIL CZFLOSER
M11500	10	0	40	20	30	0	0	0	0	0	0	0	0	0	0	0	CLO.SER		ESE CZFLOSERCLO
M11503A	15	0	50	5	20	0	0	0	0	0	0	0	0	1	4	5	CLO.SER		ESE CZFLDSER
911505A	6	0	30	30	10	10	0	0	0	0	0	0	4	0	10	0	CLO.EPD		ESE CZFLOCLORSEI
#11508A	20	0	0	15	32	0	0	0	9	0	0	0	30	0	0	3	CLO.SER	CLO	ESE SERCALCICLO
M11508B	20	0	55	10	0	0	0	0	0	0	0	0	5	0	10	0	CLO		ESE CZFLECLO
H11509	5	0	7	10	65	0	0	0	0	0	0	0	4	0	1	8	CLO		ESE SERCLOCZFLD
H11514B	7	0	63	3	20	0	9	0	0	0	0	0	0	1	1	5	CLO		ESE CZFLDSER
M11529	5	8	20	0	45	15	0	0	0	0	0	0	0	2	5	0	EPD. SER		ESA SERCZFLDEPD
M11537	20	0	0	3	60	0	0	0	0	0	0	0	0	0	0	17	\$[1	CLO	ESE SERCZ
N11538	40	0	0	0	52	1	0	0	0	0	0	0	2	1	0	4	\$88	[7]	ESA SERCZ
M11667	20	0	64	0	10	0	0	0	0	0	0	0	3	0	3	0	\$12		ESE CZFLOSEE
M13154	5	0	67	0	20	0	0	0	0	0	0	0	0	3	5	0	\$88		ESE CZFLOSER
M13155A	2	0	20	5	70	2	0	0	0	0	0	0	0	0	0	1	EPD.CLO		FIL SERCZFLD
M13160	0	0	65	10	15	5	0	0	0	0	0	0	0	0	5	0	EPD.CL		ESE CZFLOSERCLO
M13173A	0	0	8	10	60	8	0	C	0	0	0	ì	10	0	3	0	CLO.EPD.SER	PMP	ESE. SE ECYTCTOELD
113193C	5	0	75	2	10	0	0	0	0	0	0	0	3	3	2	0	CLO.SER		ESE CZFLOSEE
113194	0	5	30	15	30	0	0	0	0	0	0	0	10	2	8	0	CLO. SER		ESE CZFLOSERCLO
113197	3	2	13	10	30	5	0	0	0	0	0	0	30	2	0	5	CLO. SER. CAL		ESE SERCALCZELD
113198	10	0	0	3	72	0	0	0	0	0	0	0	15	0	0	0	SER.CAL	CLO	ESA SERCALCZ
113199A	1	0	14	0	30	1	0	0	1	0	0	0	50	0	0	3	EPD.CAL.SER		ESE CALSERCZFLD

Algunas veces forman gruesas bandas alternas con bandas de sericita, epidoto y leucoxeno.

Clorita: incolora a verde pálido con pleocroismo débil, es frecuente encontrarla teñida por óxidos de hierro, hábito fibroso a tabular, se presenta en la matriz en forma de pequeños cristales dispersos y en bandas que definen la foliación incipiente. En menor proporción es producto de alteración de la plagioclasa.

Sericita: incolora, hábito fibroso, se presenta en haces paralelos que definen la foliación incipiente. También es producto de alteración de la plagioclasa.

Epidoto: hábito granular y a veces prismático corto, color verde amarillento débilmente pleocroico, se presenta en la

matriz en forma de masas pequeñas dispersas y también se encuentra en las vetas.

Pirita: se presenta en forma de cristales aislados, subhedrales, dispersos en la matriz y alcanzan hasta 0,2 mm de diámetro.

Esfena: hábito granular formando pequeñas masas dentro de la matriz, color marrón, translúcido y está alterada a leucoxeno.

Leucoxeno: se presenta dentro de la matriz en forma de haces o fibras que están orientadas paralelamente a la foliación. Color marrón oscuro.

Tabla 6. Descripción Petrográfica de los Granofels Formación Santa Isabel

MUESTRA	CZ	Pl6	CZAĹB	CLO	SER	{PD		ACT	-		-	-		[\$1	C	AL 6	RA	PIR	011	OF	{		MINERALES EN VETAS	CLASIFICACION
M10016	2	27	50	0	20	0	0	0	0) () ()	0 () ()	0	0	0	1		0			GR CZFLDPLGSER
M10092	20	5	72	0	0	0	0	0	0) () ()	0 () ()	0	0	0	1		2			GR CZFLD
M10092C	10	5	84	0	0	0	0	0	() () ()	0 () ()	U	0	0	1		0			GR CZFLD
M10096A	15	5	51	5	10	4	0	2	() () ()	0 () 2	?	0	0	0	6		0	CLO.EPD.ACT		GR CZFLOSER
M10154A	20	8	53	6	0	10	0	0	() () ()	0	1 8	2	0	0	0	0		0	CLO.PMP.EPD		GR CZFLDEPDPLG
M10155	10	20	54	1	5	5	0	0	() () ()	0 () (0	0	0	0	2	!	3	SER.EPD		GR CZFLDPLG
M10156	2	19	55	10	7	2	0	0	() () ()	0) (0	0	0	0	3	}	2	CLO.EPD		GR CZFLDPLGCLO
M10157	15	15	49	8	3	1	0	0	() () ()	0) (0	0	0	0		}	1	CLO. SER. EPD		GR CZFLDPLG
H10161	2	20	55	12	5	0	0	0	()) ()	0)	1	0	0	0	4	i	1	CLO		SE CZFLDPLSCLOR
M10218N	0	25	70	3	0	0	0	0	()	0)	0) (0	0	0	0	2		0	CLO		SE CZFLDPLS
M10126A	10	65	5	15	0	5	0	0	()	0)	0	0 (0	0	0	0	0)	0	CLO.EPD		SE PLECLOCZ
H10129	50	5	30	2	0	5	0	0)	0)	0)	3	0	0	0	4	ı	1	EPD.EST.CLO		GE CZFLD
M10135	20	10	59	3	0	0	0	0)	0	0	0	0	0	0	0	0	•	,	2	CLO		GR CZFLDPLG

Tabla 6. Descripción Petrográfica de los Granofels Grupo Villa de Cura sin Diferenciar (Continuación)

MUESTRA	CZ	PLG	CZALB	CLO	SEI	E E P D		ACT					PMP	[\$]	CAL	GRA	PIR	011	OFE	HINEKALES EN HATRIZ	MINERALES EN VETAS	CLASIFICACION
H10051	20	0	64	0	() 1	0	0	0	0	0	15	0	0	0	0	0	0	0		PRH	GR CZFLD
M10053	5	0	78	0	. () 2	0	10	0	0	0	5	0	0	0	0	0	0	0		PRH	GR CZFLDACT
M10053D	10	0	32	15	ä	2 5	0	5	0	1	0	20	0	1	0	8	0	0	9	GRA.CLO.ACT	PRH	GR CZFLDCLOGRA
M10202	17	0	74	0		3	0	0	9	0	0	0	0	2	0	0	0	0	3	SER.EPD.EST		GR QZFELD
M10204	20	2	41	0	1	25	0	0	0	0	0	0	0	1	. 0	0	1	0	2	SER.EPD		GR CZFLDEPDSER
M10205	6	10	64	0		3 10	5	0	0	0	0	0	0	0	0	0	0	1	1	CLZ.EPD.SER		GR CZFLDEPDPLG
M11506	55	0	20	5	15	5 (0	0	0	0	0	0	0	0	0	0	0	. 3	. 2	SER.CLO		GR CZFLDSER
H11526	10	0	64	10	,	5 2	0	0	0	0	0	0	0	0	2	0	3	0		CLO.SER.EPD	CLO	GR CZFLDCLO
H11531	5	63	0	15	10) (0	0	0	0	0	0	0	0	0	0	2	0	5	CLO. SER	CLO	GR PLGCLOSER
M11532	42	0	30	2	() (0	0	0	3	0	0	0	8	0	0	10	2	3	CLO	EST. HBL	GR CZFLD
M11533	30	0	50	0	() (0	0	0	0	0	0	0	0	15	0	0	0	5	CAL		GR CZFLDCAL
H11534	8	30	37	5	;	10	0	0	0	0	0	0	0	0	0	0	0	5	0	EPD.SER.CLO		GR CZFLDPLGEPD
M11536	82	0	0	5		. 3	0	0	0	0	0	3	. 0	0	. 0	0	0	0	0	EPD. SER	CLO.EST	GR CZSER
M11539	83	0	5	0	,	5 4	0	0	0	0	0	0	2	0	0	0	1	0	0	EPD. SER	EPD.CLO	GR CZ
M12075	15	10	46	5	() (0	:5	0	0	0	1	1	0	0	0	4	3	0	CLO.PHP.ACT	CLO. PRH	GR CZFLDACIPLE
M13150	25	25	0	25	() 15	0	5	0	0	0	0	0	0	0	0	0	0	5	EPD. ACT	EPD	GR CZPLGCLOEPB
M13152	50	10	0	0	,	20	0	0	0	0	0	0	0	0	0	0	0	0	15	EPD. SER		GR CZEPDPLG
H13163A	30	0	0	43	(25	0	0	0	0	0	2	0	0	0	0	0	0	0	EPD		GR CLORCZEPD
M13176B	15	25	36	0	(15	5	3	0	0	0	0	0	0	0	0	0	1	0	CLZ.ACT	ACT	GR CZFLDPLGEPD
N13231	5	25	51	0		2	0	10	0	0	0	3	0	0	0	0	0	3	0	ACT.EPD	PRH	GR CZPLGACT

2.2.2.5 METAFTANITA

Los mejores afloramientos están en los ríos Taguaza en el sitio conocido como La Corona, Panaquiriro y Casupito y en la quebrada Cupata.

En el campo presenta color gris oscuro a negro y gris verdoso. En el río Panaquirito hay intervalos bandeados y masivos de hasta 30 m de espesor. Las bandas son de colores verde claro y gris azulado. La de color verde claro tienen poca clorita y más cuarzo microgranular, mientras que las oscuras tienen más clorita.

Es de grano fino a muy fino y al microscopio se observa que predomina una matriz microcristalina de cuarzo con textura de mosaico. Hay algunos pocos fragmentos de plagioclasa y piroclastos indeterminados. Algunas muestras contienen radiolarios así como escasos foraminíferos planctónicos, pero no identificables por la mala preservación debido al grado de recristalización (M. FURRER, com. pers.). Hay pirita, epidoto, esfena y sericita en cantidades menores (muestra Mi59).

La tabla 7 presenta los datos mineralógicos, y la descripción detallada es la siguiente:

Cuarzo: se presenta en forma de agregado microcristalino, incoloro, a veces como parches y cristales aislados y es el componente principal. También se encuentra rellenando vetas y como producto de recristalización de fósiles.

Plagioclasa: se presenta en forma de pequeños cristales tabulares, incoloros, con maclado polisintético tipo albita y el porcentaje de anortita es de 11-14% por lo que son de tipo oligoclasa.

Sericita: se presenta como fibras aisladas incoloras.

Epidoto: hábito granular, incoloro, se presenta en forma de pequeños cristales dentro de la matriz. Es poco abundante.

Calcita: hábito granular, incoloro, se presenta en forma de parches o rellenando cavidades y escasamente como recristalización de fósiles.

Esfena: hábito granular, color marrón, alterada a leucoxeno.

Tabla 7. Descripción Petrográfica de las Metaftanitas Grupo Villa de Cura sin Diferenciar

MUESTRA	Pl6	¢2	CLO	SER	EPD	ACT	CAL	MAG	HEN	LIM	PIR	110	HZNID	FOS	FR			YT PRH	VT CLO	• • •	YT PMP	CLASIFICACION
N10018F	0	81	3	2	1	0	0	1	0	1	1	0	0	0	0	10	0	0	0	0	0	N-FT
M10023	1	54	15	2	5	,	0	2	0	0	1	0	2	0	5	4	0	0	0	0	0	N-F1
#10051C	10	60	5	2	2	0	0	1	0	1	0	0	0	0	0	19	0	0	0	0	0	H-FI
H10059	10	25	5	4	5	0	0	3	0	0	0	1	15	29	3	0	0	0	0	0	0	N-F1
H10090	0	78	6	1	4	0	0	0	0	0	1	1	3	0	1	5	0	0	0	0	0	#-FT
H10145	0	50	3	0	1	1	0	3	1	0	0	0	6	20	0	15	0	0	0	0	0	N-FT
10162	15	49	10	8	3	0	0	1	0	0	0	4	0	0	0	10	0	0	0	0	0	N-FT
H10163	12	60	10	2	3	0	0	1	0	0	1	1	. 5	1	0	5	0	0	0	0	0	N-FT
H10165	0	63	5	0	0	0	5	2	0	1	1	1	0	6	0	15	0	1	0	0	0	N-FT
M101838	10	55	5	0	5	0	0	3	0	0	0	2	4	14	0	2	0	0	0	0	0	H-FT
H10308	5	61	1	0	1	0	0	0	0	0	0	0	0	20	0	10	1	0	1	0	0	N-FT
M13158	2	87	5	0	0	0	0	0	0	0	0	4	0	0	0	1	0	0	0	1	0	#-FT
H13194A	3	82	8	0	0	0	0	0	0	0	0	5	0	0	0	1	0	0	0,	1	0	#-FT
M13233	2	90	0	0	0	0	0	0	0	0	0	5	0	0	0	3	0	0	0	0	0	#-FT
M13233A	1	84	0	.0	0	0	0	0	1	0	0	4	2	2	1	3	0	0	0	0	0	N-FT

2.2.3 METAMORFISMO

A continuación se describen las asociaciones mineralógicas del Grupo Villa de Cura.

- Asociaciones en la zona noroeste (Formación Santa Isabel)

Esquisto:

cuarzo - albita - clorita \pm sericita \pm epidoto \pm glaucofano \pm actinolita verde azulada \pm estilpnomelano.

Metalava:

Albita - cuarzo - clorita \pm epidoto \pm sericita \pm actinolita verde azulada \pm glaucofano \pm estilpnomelano.

Metatoba:

Albita - cuarzo - clorita \pm epidoto \pm sericita \pm actinolita \pm actinolita verde azulada \pm glaucofano (?).

Granofel:

Cuarzo - albita - clorita \pm sericita \pm epidoto \pm actinolita \pm estilpnomelano.

Esta zona podría haber sido afectada por un metamorfismo de una relación P/T alta de la facies de los esquitos azules, basados en la presencia de glaucofano y epidoto, o podría representar una zona transcisional entre las facies de los esquistos verdes y azules.

-Asociación del resto del área (Grupo Villa de Cura, sin diferenciar)

Esquisto:

Cuarzo - albita - clorita - sericita \pm epidoto \pm estilpnomelano \pm clinozoisita.

Metalava andesítica:

Albita - cuarzo - epidoto - clorita \pm sericita \pm actinolita verde azulada.

Metalava basáltica:

Albita - clorita - cuarzo ± epidoto ± sencua ± clinozoisita ± actinolita ± actinolita verde azulada ± clinozoisita.

Metatoba lítica y metabrecha:

Albita - cuarzo - clorita \pm epidoto \pm sericita \pm clinozoisita \pm actinolita \pm actinolita verde azulada.

Metatoba cristalina:

Cuarzo - albita - clorita \pm epidoto \pm sericita \pm actinolita \pm actinolita verde azulada.

Granofel:

Cuarzo - albita - clorita \pm sericita \pm epidoto \pm estilpnolemano \pm actinolita \pm clinozoisita.

Las asociaciones metamórficas de esta área sugieren que estas rocas fueron afectadas por un metamorfismo de bajo grado, facies de los esquistos verdes (zona de la clorita) en una relación P/T baja a intermedia, basados en la asociación generalizada de clorita - clinozoisita - actinolita, notándose claramente la diferencia con respecto a la zona NO anteriormente descrita y que presenta metamorfismo de una relación P/T más alta.

3. BIBLIOGRAFÍA

BAUDUHIN, P. (1983) "Estudio geológico de la cuenca del río Taguaza, Parque Nacional Guatopo, estado Miranda". U.C.V. Fac. Ingeniería, Dpto. Geología, Trabajo Especial de Grado, 303 p.

BECK, C. (1977) "Geología de la faja piemontina y del frente de montañas en el noreste del estado Guárico, Venezuela septentrional". Cong. Geol. Venez. V, Caracas, Noviembre 1977, Memoria Min. Energía y Minas-Soc. Venez. Geol., II: 759-787.

- ---- (1985) "La chaine Caraibe au meridien de Caracas: geologie, tectogenese, place dans l'evolution geodynamique Mezosoique, Cenezoique des Caribes meridionales". These de doctorat d'etat e's sciences naturalles. L'universite des sciences et techniques de Lille, 462 p.
- ---- (1986) Geologie de la chaine Caralbe su meridien de Caracas (Venezuela). Societe Geologique de Nord (Villenueve d'Ascq, Francia), Public. no. 14, 462 p. (Edition facsimilar de BECK, 1985).
- ---- y M. Furrer, (1977) "Sobre la existencia de sedimentos marinos no metamorfizados del Neocomiense en el noreste del estado Guárico, Venezuela septentrional".

- Cong. Geol. Venezolano V, Caracas, Noviembre 1977, Memoria, I:135-148.
- CAMPOS, V.; S. OSUNA, Y V. VIVAS (1980) "Geología del borde oriental del frente de montañas de la Serranía del Interior, estados Miranda, Guárico y Anzoátegui, Venezuela". Bol. Geol., Caracas, 14(23): 137-196.
- CHIRINOS, A. Y M. MARQUINA (1987) Estudio geológico de la región oriental de la faja de Villa de Cura. U.C.V., Fac. Ingeniería, Dept. Geología, Trabajo Especial de Grado. 153 p.
- ----, Y F. Urbani (1987) Cartografía geológica del área de Guatopo-El Guapo, estados Miranda y Guárico. Bol. Geociencias (U.C.V., Caracas), (10), 13 mapas a escala 1:25.000.
- CORTIULA, B. (1983) Estudio geológico de un área ubicada al sur de Panaquire y este del río Cuira, estado Miranda. U.C.V., Fac. de Ingeniería, Dpto. Geología, Trabajo Especial de Grado, 196 p.
- Evanoff, J. (1951) "Geología de la región de Altagracia de Orituco" Bol. Geol., Caracas, 1(3):264-327.
- GEOTERREX LTD. (1983) Levantamiento aeromagnético 1981-82. Mapa de contornos de intensidad total. Meneven S.A., Caracas. (La zona de Guatopo aparece a esc. 1:500.000 (Hoja 2) y a esc. 1:100.000 (Hoja 29)).
- GIRARD, D. (1981) Petrologie de quelques series spilitiques mesozoiques du domaine Caraibe et des ensembles magmatiques de I'ile de Tobago. Univ. Bretagne Occidentale, Brest, These Doct. 31: Cycle. 229 p. (fide GIRARD et al., 1982).
- ----, BECK, C. STEPHAN, J., BLANCHET, R. Y MAURY, R. (1982) "Petrologie, geochimie eta signification geodynamique de quelques formations volcaniques cretacees pericaraibes". Bnll. Societe Geologique France, T. XXIV, 3(7): 535-544.
- GONZALEZ DE JUANA, C.; ITURRALDE DE AROZENA, J.M. Y PICARD, X. (1980) Geología de Venezuela y de sus cuencas petrolíferas. Ed. Foninves, Caracas, 1001 p.
- Kancey, I. (1986) La zona piemontaise des formations Ño Predote et El Guapo, Venezuela: Petrografie, minarelogie et geochimie des phyllosilicates. Univ. de Potiers, France, Dr. 3er. cicle, inédito.

- ---- (1987) Cloritización de biotita, observación del mecanismo por microscopio electrónico de transmisión y alta resolución AsoVAC, 37a. Convención anual, Maracaibo, Resúmenes, p. 76.
- ---- Y F. Urbani (1987) Los filosilicatos de la Formación Río Aragua, Faja Piemontina, Edo. Miranda. lbidem., p.76
- LAFOREST, R. (1952) Informe geológico de las muestras de la carretera de Santa Lucía Altagracia de Orituco, estados Miranda y Guárico. Ministerio de Energía y Minas, CAIGEOMIN, informe inédito.
- LOUBET, M.; B. LAMBERT; C. MARTIN Y R. MAURY (1980) Estudio petroquímico y geoquímico de las rocas volcánicas del Grupo Villa de Cura y Tiara en el sistema montañoso del Caribe Venezuela. 9a Conf. Gcol. Caribe, Santo Domingo. Resúmenes, p. 41-42.
- -·---; R. MONTIGNY, B. CHACHATI, N. DUARTE, B. LAMBERT, C. MARTIN Y M. THUIZAT (1985) Geochemical and geochronological constraints on the development of the Caribbean chain of Venezuela. En: A. Masce (Ed.) Symposium Geodynamique des Caraibes, Edit, Technip, París, vol. 1:553-566.
- MURRAY, C. (1972) Zoned ultramafic complexes of Alaskian Type: feeder pipes of andesitic volcanoes. Geol. Soc. Amer., Mem. 132:313-335.
- ----(1973) "Estudios petrográficos de complejos ultramáficos zonados en Venezuela y Alaska". Bol. Geol., Caracas, 12(22): 173-279.
- NALDRETT, A.J. Y L.J. CABRI (1976) Ultramatic and related rocks: their classification and genesis with special reference to the concentracion of nickel sulphides and platinium group elements. Economy Geology, 71: 1131-1158.
- NAVARRO, E. (1983) "Petrología y petrogénesis de las rocas metavolcánicas del Grupo Villa de Cura" Geos., Caracas, 28: 170-317.
- ---- (1985) Geoquímica de las lavas piroxénicas del grupo de Villa de Cura. Mem. VI. Congr. Geol. Venz., III: 1944-1964.
- ----; M. Ostos Y F. Yoris (1987) Revisión y redefinición de las formaciones El Carmen, Santa Isabel, Tiara, El Chino, El Caño, Escorzonera y Garrapata, Venezuela

- Norte Central. 1ras Jornadas Invest, Ingeniería (U.C.V., Fac. Ingeniería Caracas), Memorias, p. 64-70.
- OSTOS, M. Y E. NAVARRO (1986) Faja de Villa de Cura. realmente un complejo de arco de islas alóctno?. Mem. VI Congr. Geol. Venez., X: 6615-6637 (También en Bol. Geociencias (UCV), (1): 1-22, 1985).
- PATRICK, H. (1958) The geology of the Cariaco Basin, Venezuela. Lagoven S.A., Archivo Geología, Informe 2000. 11-2
- Peirson, A.L. (1965) Geology of North Central de Venezuela. Lagoven S.A., Archivo geología, Informe 3000. 11-5
- ----; SALVADOR, A. Y STAINFORTH, R. (1966) The Guárico Formation of north-central Venezuela". Asoc. Venez. Geol. Min. Pet., Bol. Inf., 9(7):183-224.
- Peraza, J Y Sanabria, M. (1989) Geología del área Panaquire - Guayas - El Guapo - Barlovento, estado Miranda". U.C.V., Fac. Ingeniería, Dpto. Geología, Trabajo Especial de Grado.
- Perez, A. (1986) "Estudio geológico de la cuenca del río Cuira, estado Miranda". U.C.V., Fac. Ingeniería, Dpto. Geología, Trabajo Especial de Grado, 128 p.
- Urbani, F.; Chirinos, A. Y Marquina, M. (1986a) "El contacto volcánico-sedimentario en la zona de Guatopo, Miranda y Guárico". Asovac. 36 Conv. anual, Valencia, 1986, Resúmenes, p. 127.

- ----, ---- y ----- (1988) "Reconocimiento geológico de la región de Guatopo - EL Guapo. Miranda y Guárico". Mem. Jornadas 50 aniv. Escuela Geología (U.C.V., Caracas), en prensa.
- ----; J. SILVA, R. SANCHEZ, A. CHIRINOS Y M. MARQUINA (1987a) Cartografía geológica del área de La Sabana-Guatopo. D.F. y estados Miranda y Guárico. Bol. Geociencias (UCV, Caracas), (11), 8 mapas 1:50.000.
- ----, ----, ----, Y ---- (1987b) Cartografía geológica de las hojas de Higuerote y Caucagua, D.F. y estados Miranda y Guárico. Ibídem., (12): 8-10, 2 mapas 1:100.000.
- ----; P. VIZCARRET Y A. PEREZ (1986A) El Complejo Apa. Miranda. Acta Científ. venezolana, 37 (supl. 1): 127.
- VIZCARRET, P. (1982) "Geología de la cuenca de los ríos Apa y Macaira del Parque Nac. Guatopo, estado Miranda" U.C.V., Fac. de Ingeniería, Dpto. Geología, Trabajo Especial de Grado, 203 p.
- ----; P. BAUDUHIN Y A. PEREZ (1981) Geología de la parte oriental del Parque Nacional Guatopo, estado Miranda. Asovac, 31 a Convención Anual, Maracaibo, Resúmenes, p. 223.
- ZERPA, L. (1982) Prospección geoquímica de los ríos Cuira, Macaira y Taguaza, afluentes del río Tuy. U.C.V., Fac. de Ciencias, Inst. geoquímica, Trabajo Especial de Grado,128 p.