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RESUMEN

This paper presents a new approach to precondition linear systems of the saddle point kind. Specifically we consider block 
diagonal, block triangular and block indefinite preconditioning techniques on nonsymmetric systems. These preconditio-
ners require the computation of some inverses and we propose to use sparse approximate inverses (SPAI) to construct these 
approximations. The computation of these inverses involves solving a set of uncoupled least squares problems, which can 
be easily parallelized on a memory distributed machine. Comparison with other techniques suggests that block diagonal 
and block triangular preconditioning can be more effective if they are combined with SPAI techniques in the computation 
of approximate inverses. Results are promising and show the effectiveness of these preconditioners when improving the 
convergence of Krylov methods such as GMRES, which suggests the application of this approach in the large-scale setting.

Keywords: Saddle point linear systems, Block preconditioners, Sparse approximate inverses, SPAI techniques, Krylov 
methods, GMRES.

EVALUACIÓN DE PRECONDICIONADORES EN BLOQUE
EN LA SOLUCIÓN DE SISTEMAS DE PUNTO DE ENSILLADURA

ABSTRACT

Este artículo presenta una nueva técnica para precondicionar sistemas lineales conocidos en la literatura como sistemas 
de punto de ensilladura. Específicamente consideramos precondicionadores en bloque del tipo diagonal, triangular e inde-
finido, sobre sistemas de punto de ensilladura no simétricos. Estos precondicionadores requieren el cálculo de inversas y 
proponemos usar  la técnica de aproximación de inversa conocida como SPAI (Aproximación dispersa de la inversa) por 
sus siglas en inglés. La construcción o cálculo de estas inversas requiere de la resolución de un conjunto de problemas 
desacoplados de mínimos cuadrados, que puede fácilmente paralelizarse en máquinas con memoria distribuida o máqui-
nas vectoriales. Se presenta un análisis comparativo de tres precondicionadores propuestos. Los resultados numéricos 
muestran que los precondicionadores en bloque del tipo diagonal y triangular pueden ser más efectivos si se combinan con 
técnicas SPAI para el cálculo aproximado de las inversas, una vez que se mejoran sustancialmente las características de 
convergencia de métodos de Krylov como GMRES. Esto nos permite sugerir la aplicación de esta técnica en la resolución 
de sistemas de gran magnitud.

Palabras clave: Sistemas lineales de punto de ensilladura, Precondicionadores en bloque, Aproximación dispersa de in-
versas, Técnicas SPAI, Métodos de Krylov, GMRES.

INTRODUCCIÓN

The numerical solution of many important problems in 
sciences and engineering, such as computational fluid dyna-
mics, electromagnetism, nonlinear quadratic programming, 
constrained optimization and computer graphics is often 
obtained by solving saddle point linear systems (SPLS), see 

for example the works in (Glowinsky, 2003; Gould et al. 
2001; Wright, 1997). The general structure for these linear 
systems is: 
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where A   Rnxn, B   Rmxn and n ≥ m. This kind of linear sys-
tems are known as saddle point problems due to the equiva-
lence with the solution of the equality constrained quadratic 
programming problem:

						      (2)

In this problem, the vector y in the linear system (1) repre-
sents Lagrange multipliers and the solution of this system is 
a saddle point of the Lagrangian:

	 L(x,y) =      x T Ax - f Tx + (Bx - g)T y	 (3)               

In practical applications, system (1) comes from the dis-
cretization of partial differential equations (PDE), thus, 
the coeffient matrix A is large and sparse. For that reason, 
we are interested in a good approximation of the solution, 
which can give us important information about the modeled 
system. In these cases, non analytical or iterative methods 
are preferred, although direct methods like Gaussian elimi-
nation and its variants can be used if the size of the system 
is moderated (Benzi et al. 2005).

Spectral and symmetry properties of matrix A, the upper 
left block of A, play an important role when choosing a 
numerical method to solve the linear system (1). In particu-
lar, the case when A is symmetric and positive definite has 
been studied and developed widely by several authors; see 
for example the works in (Axelson et al. 2003; Sylvester et 
al. 2001; Elman et al. 1996).

However, SPLS in which the matrix A is no symmetric are 
of great importance and solving them efficiently has been a 
topic of research in recent years. Numerical solution of this 
kind of systems will be considered in this work.

It is known that when the coefficient matrix A is large and 
ill conditioned an iterative preconditioned Krylov subspace 
solver such as preconditioned GMRES is the best choice to 
get a good approximation. Several preconditioners based 
on incomplete factorizations, sparse approximate inverses 
and algebraic multilevel methods have been proposed for 
SPLS (Benzi, 2002; Van der Vorst, 2003), some of which 
have turned out to be well-suited for general saddle point 
systems. In particular, considering the block structure of the 
coefficient matrix, some authors have independently propo-
sed block preconditioners to solve SPLS, see for example 
the references (Ipsen 2001; Murphy et al. 2000; Perugia et 
al. 2000; Rozloznk, 2002).

The main contribution of this work is to provide an evalua-
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tion of current block preconditioners when using a SPAI 
(Sparse Approximate Inverse) technique for the computa-
tion of the inverses involved. The construction of each one 
of these block preconditioners requires exact inverses of 
matrices which are smaller in magnitude than the matrix A, 
and we propose to replace those inverses by sparse approxi-
mations of them.

CURRENT APPROACHES

Algorithms for saddle point problems can be classified in 
segregated and coupled. Segregated methods take advan-
tage of the block structure of (1) and compute vectors x   
and y separately, by solving linear systems with coefficient 
matrices of smaller dimensions than A.

The main representations of these techniques are based on 
Schur complement reduction (Vavasis, 1994; McGuire et 
al. 1979) and null space methods (Arioli et al. 2002), which 
solve the equivalent problem:

                                                                                     (4)

Schur complement reduction is a technique commonly used 
in problems where the matrix A is symmetric positive defi-
nite and B has full column rank. Based on these considera-
tions, vector x in (4) can be eliminated, obtaining a symme-
tric positive definite linear system of m x m:

		        Sy = BA-1 f - g 		  (5)                                                

where the matrix S = BA-1BT is known as the Schur com-
plement.

When the inverse of A exists, the linear system (5) can be 
solved using conjugate gradient without explicitly cons-
tructing the matrix S, which is in general dense and its com-
putation is expensive. This technique is very effective when 
the order m is not large. The main disadvantage of Schur 
complement reductions is that the inverse of A is required, 
thus, when A is dense and large, null space methods are 
preferred.

Null space methods are used generally when matrix A is 
symmetric positive semidefinite (singular) and B has full 
column rank. These methods compute a particular solution 
x of  Bx = g  and a matrix Z     Rnx(n - m)  whose columns form 
a basis for the null space of B; then, the general solution of  
Bx = g  is given by  x = Zv + x, where the unknown vector 
v   is the solution of the reduced symmetric positive definite 
linear system:
		  (Z T AZ )x = Z T ( f - Ax)		  (6)                                            

Ax + BT y = f

Bx = g
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of dimension (n-m)x(n-m). The solution of (6) can be ob-
tained using a conjugate gradient method (Hestenes et al. 
1952; Saad, 2003), which is especially attractive when n - m  
is small.

On the other hand, coupled methods deal with the linear 
system as a whole, computing the unknown vectors x and y 
simultaneously.

Finally, for both kinds of methods, segregated and coupled, 
one could use iterative or direct solvers, however, it is 
known that in the large scale setting, iterative Krylov subs-
pace methods play an important role.

Krylov subspace methods

Iterative methods in Krylov subspaces consider an ini-
tial approximation u0   R

n + m of (1) and a residual vector 
r0 = b - Au0 to define an iteration that in i steps generates an 
approximated to the solution in the space:

	 Ki (A,r0) = span{r0,Ar0, A
2r0,...,A i - 1 r0}	 (7)	

                      		
which is called Krylov subspace generated by the matrix A   
and the initial vector r0 (Saad, 2003).

Conjugate gradient (CG) (Hestenes, 1952), minimum resi-
dual (MINRES) (Paige et al. 1975) and generalized mini-
mal residual (GMRES) (Saad,1986) are examples of Krylov 
subspace methods used frequently for solving large-scale 
SPLS. In particular, the CG method is used for symmetric 
positive definite systems, MINRES for symmetric and pos-
sibly indefinite systems, and GMRES for nonsymmetric 
systems. Additionally, CG and MINRES have been propo-
sed to solve saddle point problems in its segregated form 
when the matrix A is symmetric.

Since we are interested in analyzing the behavior of block 
preconditioners for nonsymmetric saddle point linear sys-
tems, we solve the coupled linear system (1) using the me-
thod of generalized residuals GMRES.

Generally, iterative Krylov solvers require the application 
of preconditioning techniques to accelerate the convergen-
ce. This work considers block diagonal, block triangular 
and block indefinite preconditioners, which will be presen-
ted in details in the next section.

PRECONDITIONING SPLS

Preconditioning a linear system means to convert it into an 
equivalent and more tractable system with a better condi-
tion. This can be done by premultiplicating and (or) post-

,  n n m nA B× ×∈ ∈R R

multiplicating by some suitable preconditioner matrix P. 
Preconditioning (1) by the left results in the following li-
near system:
 
		         PAu = Pb			   (8)	
		
and by the right:

		     APy = b, x = Py			  (9)	
		              			 
One should take P as an inexpensive approximation of the 
inverse of A, such that the preconditioned system has a low 
degree minimum polynomial, i.e., the coefficient matrix of 
the new system should have a few distinct eigenvalues; in 
this case, iterative methods like GMRES generally present 
faster convergence.

In the present work, we apply block preconditioned 
GMRES to the coupled system (1). This approach can be 
superior to others for very large matrices since the cost of 
computing several matrix-vector products with matrices A 
and B simultaneously is comparable to the computation of 
one matrix-vector product with matrix A, considering me-
mory references. In particular, block methods enable the 
use of level 3-BLAS, which usually results in a better per-
formance on high level computer architectures supporting 
vector and parallel processing.

Block diagonal preconditioner 

For saddle point problems, Murphy, Golub and Wathen in 
2000 proposed an efficient preconditioner, which has the 
following structure when A is nonsingular:

	 PD =				           	 (10)

In this case, the right preconditioned linear system has a 
coefficient matrix given by:

						      (11)

			 
It has been proved in (Murphy et al. 2000) that Q is diago-
nalizable having just four distinct eigenvalues:    
          
						      (12)

therefore, for any arbitrary r    Rn+m, the Krylov subspace:
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Table 1. Inverses required by preconditioners.

Preconditioner Required Inverses

Block Diagonal A, S

Block Triangular A, S

Block Indefinite G, BG-1BT

		  span{r , Qr , Q2r , Q3r ,...}		 (13)

has at most dimension three if  Q is nonsingular, and dimen-
sion four if Q is singular. In particular, one could expect that 
iterative methods like GMRES applied to the preconditio-
ned linear system will terminate in at most 3 or 4 iterations 
in exact arithmetic.

Block triangular preconditioner

This kind of preconditioners, introduced by Bramble & 
Pasciak in 1998, has the following structure:

						      (14)

Thus, the coefficient matrix of the right preconditioned li-
near system is:

						      (15)

and the spectrum of Q is {1}, which implies faster conver-
gence for Krylov methods like GMRES.

Indefinite preconditioner

In this case, the preconditioner has the same block structure 
than the original problem (1):

						      (16)

where G ≠ A is some approximation of A, chosen in such 
a way that the preconditioned linear system is significantly 
easier to solve than the original problem (1). Some imple-
mentations of this preconditioner can be found in (Berga-
maschi et al. 2004; Keller et al. 2000).

The construction of each block preconditioner involves the 
inverses of some matrices. This requirement per precondi-
tioner is summarized in Table 1. 

(              )In O

BA-1 Im

Q = APT =

(           )A BT

-SO

-1 (                   )A-1 A-1 BT S -1

-S -1O
=PT = =

(            )A-1 O

O Im

= (            )In BT

O -Im
(            )In O

O S -1

(           )G BT

B O
PI =

This paper proposes to replace these exact inverses by SPAI 
approximations, using the methodology studied by Grote 
and Huckle in 1997. The general idea of this technique will 
be described in the next section.

SPARSE APPROXIMATE INVERSE (SPAI)

Given a nonsingular matrix A    Rnxn, the basic idea of this 
technique (Grote & Huckle, 1997), is to compute a sparse 
matrix P ≈ A-1 which minimizes the Frobenius norm of the 
residual matrix In - AP, denoted by   AP - In  F . By definition:

		  AP - In  F   =       Apk - ek    2		  (17)

where ek y pk are the k-th column of the identity and P ma-
trices respectively. Thus, one could minimize globally the 
Frobenius norm   AP - In F  as a function of P. Another 
possibility is to minimize the function  fk  for each k = 1,...,n   
defined by:
		  fk( pk ) =  Apk - ek  2		  (18)

This last strategy is very suitable when working in parallel 
architectures, since the problem of minimizing   AP - In    can 
be separated into  n  independent least squares problems:

	            mínpk
   Apk - ek  2  , k = 1,...,n		 (19)

The preconditioner P should be a sparse matrix; this condi-
tion allows the reduction of (19) to n least squares problems 
of small dimension that can be solved easily using traditio-
nal methods based on QR factorizations.

The main difficulty of this preconditioning technique is the 
selection of a sparsity structure of P that results in an effec-
tive preconditioner. The sparsity pattern should retain the 
sparse structure of A in P, dropping those entries that do not 
contribute to the quality of the preconditioner. For example, 
it is desirable to ignore those entries that are small in abso-
lute value with respect to some tolerance, and retain those 
with greater values. Nevertheless, the location of the entries 
in A-1 with greater values is not normally known, thus, the 
choosing of a sparsity pattern could be a very difficult task.

To determine the sparsity pattern of P one could use adap-
tive strategies in which nonzero elements are dynamically 
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Table 2. Parameter values for test problems.

NS1 NS2 NS3 NS4

n 0.001 0.002 0.001 0.002

N 8450 10562 8450 8450

M 1089 1361 1089 1089

nnzA 124550 155214 122506 122418

nnzB 44942 56751 43389 44914

K2 3.03x105 3,53x105 2,21x1019 1,76x106

defined, or one can select static strategies where the struc-
ture of P is fixed a priori.

Once the sparsity pattern is defined, the number of non-
zero entries in P increases until the Euclidean norm of 
the residual vector rk = Apk - ek satisfies a criterion of the 
type   rk  2 < e  for a given tolerance e, or when a maximum 
number of nonzero elements in the column  pk  is reached. 
Examples of successful implementations of this technique 
can be found in (Castillo, 2009; Baggag et al. 2004;  Broker 
et al. 2002; Elman et al. 2002).

NUMERICAL EXPERIMENTS 

This section presents numerical results obtained after the 
application of the three block preconditioners described 
previously, on some interesting test problems. The packa-
ge IFISS, developed by Elman, Ramage et al. 1996, was 
used to produce our test problems. This package allow us to 
define linear systems arising in the discretization of steady 
state Navier Stokes equations governing a incompressible 
viscous flows:

		  -vD2u + u . Du +   p = f
						      (20)
			   div u = 0

Here, v > 0 is the viscosity of the fluid, u is the velocity 
in the point x on the domain, p is the pressure in x, and f  
represents the action of gravity and the interaction between 
the fluid forces.

Specifically, we consider the following Navier Stokes test 
problems generated by IFISS:

1. Channel domain (NS1).

2. Flow over a backward facing step (NS2).

3. Lid driven cavity (NS3).

4. Flow over a plate (NS4).

Each one of these problems is discretized using the Taylor-
Hood method (Elman et al. 2005) with uniform grids for 
NS1, NS2 and NS4 and stretched grid for NS3 (with grid 
parameter equal to six and horizontal parameter equal to 
two). After discretization, linear systems with the saddle 
point structure (1) are obtained. In all cases, A is nonsingu-
lar and nonsymmetric, and B is a full column rank matrix. 
Viscosity and characteristics of matrices A and B for all test 
problems were chosen by default. Table 2 shows the values 
of these parameters.

D

n: viscosity.
n,m: dimensions of A and B ( Anxn, Bmxn).
nnz: nonzero elements.
K2: condition number of matrix A.

Since the block A is nonsymmetric in all test cases, a Schur 
complement reduction combined with conjugate gradient 
method is discarded. In addition, due to the size of the sys-
tems, null space methods are not attractive, thus, a precon-
ditioned GMRES was used to get an approximated solution 
for the whole system A u = b .

Versions of block diagonal, block triangular and block in-
definite preconditioned GMRES were constructed to solve 
each linear system numerically. In the construction of block 
diagonal and block triangular preconditioners the inverse of 
A was replaced by its SPAI approximation. 

The inverse of the Schur complement was also replaced by 
a SPAI approximation of BDA BT , where DA is a diago-
nal matrix whose elements are the same as the diagonal of 
A. This last approximation was also used to construct the 
block indefinite preconditioner, choosing G = DA .

It is important to point out that numerical experiments 
using full inverses to construct each preconditioner were 
done, but this strategy was not feasible, due to the memory 
requirements for these calculations and the prohibitive 
computational cost.

The construction of SPAI approximations for the required 
inverses for each preconditioner ( table 1 ) is based on the 
Grote and Huckle strategy with a static pattern for the pre-
conditioner M. A dynamic pattern was also attempted, but it 
was not effective and its construction was time consuming.

In all cases, e = 0.35 was used as level of tolerance for 
the residual in the construction of each column of SPAI 
approximation. This value of e was enough to produce 
approximations of the inverses with the same nonzero den-
sity of the respective matrices, which is desirable since it 
does not increase the computational cost by iteration of the 

-1
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Table 3. Number of Iterations.

Table 4. CPU time for set-up.

Table 5. CPU time solver.

NP_GMRES DP_GMRES TP_GMRES IP_GMRES

NS1 1429 360 225 226

NS2 >1500 444 282 333

NS3 >1500 245 177 259

NS4 >1500 364 255 337

NP_GMRES DP_GMRES TP_GMRES IP_GMRES

NS1 N/A 297.07 301.37 305.47

NS2 N/A 368.10 372.36 377.41

NS3 N/A 334.26 338.23 344.01

NS4 N/A 322.26 326.26 331.36

N/A: Not applicable

NP_GMRES DP_GMRES TP_GMRES IP_GMRES

NS1 741.57 30.51 14.42 29.60

NS2 *** 69.71 35.32 69.62

NS3 *** 20.78 15.04 40.73

NS4 *** 30.43 18.29 56.53

***: No convergence

iterative method.

Sparse inverse approximations were constructed by the 
right, thus, the system was preconditioned by the same side. 
Full GMRES was applied, with zero as initial guess, a tole-
rance of  10-8 for the relative error and a maximum of 1500 
iterations. All experiments were performed using Matlab 
7.0 on a Toshiba computer with a Core Duo T2400 1.83 
Ghz processor, with 3.25 GB RAM memory.

In each case, the linear system was solved with and without 
preconditioning. Table 3 presents, for each test problem, 
the number of iterations required for each solver. GMRES 

block preconditioned versions were named as:

NP_GMRES: No preconditioned GMRES.

DP_GMRES: Diagonal preconditioned GMRES.

TP_GMRES: Triangular preconditioned GMRES.

IP_GMRES: Indefinite preconditioned GMRES.

Table 4 reports set-up time (preconditioner construction 
and preconditioner application), while table 5 shows CPU 
time consumed by GMRES when it reaches convergence.

12



On the other hand, figures 1-4 below illustrate the reduction 
of the residual norm when using GMRES without precondi-
tioning and GMRES with the inexact versions of block dia-
gonal, block triangular and indefinite preconditioners, de-
noted in the figures as GMRES, DP_GMRES, TP_GMRES 
and IP_GMRES respectively.

Figure 1. NS1 problem.

Figure 2. NS2 problem.

For all test problems, preconditioned GMRES converged 
in less than 400 iterations. Nevertheless, GMRES without 
preconditioning only reached convergence for the NS1 pro-
blem with a number of iterations close to the maximum, 
which clearly suggest the need of a preconditioner to solve 
these problems.

Figure 3. NS3 problem.

Figure 4. NS4 problem.

With respect to the block preconditioned versions of 
GMRES, in all cases, the best results, considering time and 
number of iterations, were obtained with block triangular 
preconditioners. Additionally, although the construction 
and application of block diagonal preconditioner consume 
the smaller amount of time (table 4), GMRES with this pre-
conditioner requires more iterations to converge than the 
others (table 3).

Block indefinite preconditioners were in general denser 
than the others preconditioners; thus, its construction and 
application consumed more time.

CONCLUSIONS AND FUTURE WORK

Sparse approximations of inverses were used to construct 
versions of block diagonal, block triangular and block in-
definite preconditioners for the solution of saddle point 
problems. The application of these blocks preconditioners 
along with GMRES on nonsymmetric saddle point linear 
systems (SPLS) is promising. The proposed technique of 
constructing block preconditioners using sparse approxi-
mation of inverses reduced time and the number of itera-
tions, leading a faster convergence of GMRES in each test 
problem.

It is important to recognize that others preconditioners, such 
as ILU and its variants, have been more effective in the so-
lution of the test problems when sequential codes are used. 
However, it is well known that ILU preconditioners do not 
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technique for indefinite systems resulting from mixed 
approximations of elliptic problems, Math. Comp., 50, 
pp. 1–17.

Broker, O., Grote, M., Mayer, C., Reusken, A. (2001). 
Sparse approximate inverse smoothers for geometric 
and algebraic multigrid, Appl. Numer. Math., 41, pp. 
61–80.

Castillo, Z., Xui, X., Sorensen, D., Embree, M., Pasquali, 
M. (2009). Parallel solution of large-scale free surface 
viscoelastic flows via sparse approximate inverse pre-
conditioning. Journal of Non-Newtonian Fluid Mecha-
nics. Vol 157, Nos. 1-2, pp. 44-54.

Elman, H. C., Ramage, A. R., Silvester, D. J. (1996). In-
compressible Flow   Iterative Solution Software Packa-
ge, http://www.cs.umd.edu/~elman/ifiss/.

Elman, H. C. & Silvester, D. J. (1996). Fast nonsymmetric 
iterations and preconditioning for Navier-Stokes equa-
tions, SIAM J. Sci. Comput., 17, pp. 33–46.

Elman, H. C., Silvester, D. J., Wathen, A.J. (1997). Itera-
tive methods for problems in computational fluid dyna-
mics, Iterative Methods in Scientific Computing, Chan 
R., Chan T. and Golub G. (Eds), Springer-Verlag, pp. 
271–327.

Elman, H. C., Silvester, D. J., Wathen, A.J. (2002). Block 
preconditioners for the discrete incompressible Navier-
Stokes equations, Internat. J. Numer. Methods Fluids, 
40, pp. 333–344. 

Elman, H. C., Silvester, D. J., Wathen, A.J. (2005). Finite 
Elements and Fast Iterative Solvers, Oxford University 
Press.

Glowinsky, R. (2003). Finite element methods for incom-
pressible viscous flow. Vol. IX of Handbook  	   of 
Numerical Analysis, part 3: Numerical methods for 
fluids, North-Holland, Amsterdam.

Gould, N. I. M., Hribar, M. E., Nocedal, J. (2001). On the 
solution of equality constrained quadratic programming 
problems arising in optimization, SIAM J. Sci. Com-
put., 23, pp. 1376–1395.

Grote, M. J., & Huckle, T. (1997). Parallel preconditioning 
with sparse approximate inverses, SIAM J. Sci. Com-
put., 10, pp. 838–853.

Hestenes, M. R. & Stiefel, E. (1952). Methods of conju-

perform well and suffer from breakdowns over ill-conditio-
ned systems, and it is very difficult to implement ILU type 
preconditioners on distributed memory parallel computers, 
where the communication overhead is significantly large. 
On other hand, SPAI preconditioners are highly paralleli-
zable and it does not suffer from the usual drawbacks of 
incomplete factorization methods.

In this article we evaluated and compared a non-precon-
ditioned version of GMRES and three block preconditio-
ned versions of GMRES on a sequential machine. Results 
show the reliability of these approaches for different test 
problems, and suggest that they can be competitive for sol-
ving large-scale saddle point linear systems. Due to these 
results, and taking into account that the SPAI constructions 
are highly parallelizable, the next step in this direction 
should be to evaluate the scalability of this approach in the 
solution of very large saddle point systems in a parallel en-
vironment.
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