EVALUACIÓN DEL IMPACTO EN LA CALIDAD DEL AGUA SUPERFICIAL DEL ÁREA DE INFLUENCIA DE LA REFINERÍA BATALLA DE SANTA INÉS, BARINAS, VENEZUELA

CARLOS ESPINOSA 1, KRETHEIS MÁRQUEZ 2
Centro Interamericano de Desarrollo e Investigación Ambiental y Territorial, Universidad de Los Andes (CIDIAT-ULA). Apartado Postal 219, 5101-A. Mérida, Venezuela
1e-mail: caesji@ula.ve, 2e-mail: kretheis@ula.ve

Recibido: junio 2012
Recibido en forma final revisado: octubre 2013

RESUMEN

Se presenta la evaluación del impacto en la calidad del agua superficial en el área de influencia de la Refinería Batalla de Santa Inés en el estado Barinas, Venezuela, basada en el desarrollo e implementación de un modelo empírico de primer orden en flujo de pistón y la definición de curvas de transformación ambiental e índices de calidad ambiental. Las simulaciones del modelo implementado permitieron determinar el índice de calidad ambiental para la condición “con proyecto” y “sin proyecto”, y la magnitud del impacto de la Refinería sobre los cuerpos de aguas superficiales receptores como la diferencia entre estas dos condiciones. Entre las conclusiones y recomendaciones destacan que la magnitud del impacto que generará la operación de la Refinería sobre la calidad de las aguas superficiales del cuerpo receptor, se puede definir como un “cambio ligero negativo” y la urgente necesidad de concluir y poner en marcha las plantas de tratamiento para remover cloruros en la Estación de Flujo Silván.

Palabras clave: Impacto ambiental, Calidad del agua, Modelo empírico, Curva de transformación ambiental, Índice de calidad ambiental.

WATER QUALITY IMPACT ASSESSMENT IN THE INFLUENCE AREA OF THE BATALLA DE SANTA INÉS REFINERY, BARINAS, VENEZUELA

ABSTRACT

This paper presents the evaluation of the impact on the surface water quality in the influence area of the refinery Batalla de Santa Inés, Barinas State, Venezuela, based on the development and implementation of an empirical model of first-order plug flow and the definition of environmental transformation curves and environmental quality indexes. The implemented model simulations allowed determine the environmental quality index for the conditions “with-project” and “without-project”, as well as the difference between these two conditions, i.e., the magnitude of the refinery’s impact on the receiving surface water bodies. The conclusions and recommendations highlight that the magnitude of impact that will be generated by the operation of the refinery on the water quality reaching the surface water receptor can be defined as a “lightly negative change” as established by Jensen in 1998, and the urgent needing to finish and put in operation the biolagoons to remove phenols in the Sivan Flow Station.

Keywords: Environmental impact, Water quality, Empirical model, Environmental transformation curve, Environmental quality index.

INTRODUCCIÓN

La zona sur-occidental del país, conformada por los estados Barinas, Apure, Mérida, Portuguesa y Táchira, tiene una logística de suministro de combustibles muy compleja, siendo quizás el área más proclive a padecer déficit de suministro en caso de contingencia operacional. Por esta razón, PDVSA planificó en el año 2005 la construcción de la Refinería Batalla de Santa Inés (RBSI), ubicada en el estado Barinas, con capacidad de 100 mil barriles por día (100 MBD), para garantizar efectivamente el suministro de combustibles en el sur occidente del país. El sitio de emplazamiento de la Refinería Batalla de Santa Inés fue seleccionado en el año 2006 mediante el “Estudio Socio Ambiental Específico para la Ubicación de la Refinería Batalla de Santa Inés y la Generación de un Polo de Desarrollo...
Regional Sustentable”, realizado por la Universidad de Los Andes (ULA), CIDIAT-ULA (2006). Como resultado, la ubicación político – territorial de la Refinería se localizó en el municipio Barinas, parroquia Torunos del estado Barinas, enmarcándose dentro de la poligonal del futuro Complejo Industrial Santa Inés (COMINSI).

La red hidrográfica del área de influencia físico-natural de la RBSL, sigue una dirección hacia el Sur-Este y la constituyen numerosos ríos y caños de régimen permanente o estacional en algunos casos, tal como se muestra en la Figura 1 (CIDIAT-ULA, 2010).

Figura 1. Red hidrográfica, ubicación de los puntos de muestreo y calidad de las aguas superficiales en el área de influencia físico-natural de la Refinería (CIDIAT-ULA, 2010)
La gran mayoría de los caños existentes, se presentan como cursos sinuosos, de muy poca pendiente, lo que ocasiona un escurrimiento lento y una gran facilidad de desbordamiento, siendo los caños más importantes en la zona: Jaboncillo, El Barro, Morrocoy y Del Medio. Uno de los factores que influye en la calidad de los cursos de aguas superficiales en el área de influencia físico-natural de la futura Refinería, se relaciona con la existencia de actividad petrolera desde los primeros descubrimientos importantes de petróleo en el estado Barinas, que datan de 1948 y 1953, consolidándose como área productora de crudo en la década de los años sesenta hasta nuestros días. En la Figura 1 se puede observar que las aguas subtipo 1A representan una condición de “mínima afectación”, los subtipos 1B, 2A y 2B representan una condición de “mediana afectación”, y la condición de “alta afectación” se asocia con los subtipos 1C y aguas no apta para uso agropecuario. Los grados de afectación, definidos anteriormente y presentados “entre comillas”, permitieron establecer una escala tipo semáforo, la cual se aprecia en esta Figura. CIDDIAT-ULA (2010) diagnosticó que las aguas del caño Jaboncillo, aguas arriba de la descarga de la Estación de Flujo Silván y las del caño El Barro aguas arriba de su confluencia con el caño Jaboncillo, se clasifican como Sub-Tipo 1B (de moderada afectación) y Sub-Tipo 1C (de alta afectación) las aguas del caño Jaboncillo desde la zona de mezcla de la descarga de la Estación de Flujo Silván (Punto de Muestreo 2J) hasta su confluencia con el caño El Barro (Punto de Muestreo 1B), aguas abajo del puente vía San Silvestre (Punto de Muestreo 3J). En esta misma condición (Sub-Tipo 1C, alta afectación) fueron clasificadas las aguas del caño El Barro desde su confluencia con el caño Jaboncillo hasta su confluencia aguas abajo con el caño Del Medio y las cuales se corresponderían a las aguas sobre las que descargaría sus efluentes (ya tratados) la RBSI, una vez entre en operación.

El uso de las aguas del caño Jaboncillo, aguas abajo de la Estación de Flujo Silván y del caño El Barro a su paso por el COMINSI, están restringidas para usos agropecuarios debido a las concentraciones de cloruros encontradas, producto de la afectación del caño Jaboncillo por la descarga de la Estación de Flujo Silván (Figura 1). Dado que la operación de la Refinería contempla la puesta en marcha de una Planta de Tratamiento de sus aguas residuales, se espera que las descargas al cuerpo receptor cumplan la Normativa Legal vigente, en este caso, el Decreto No 883 de las “Normas para el Control de la Calidad de los Cuerpos de Agua” (República de Venezuela, 1995), razón por la cual se estima que la magnitud del impacto ambiental ocasionado por la presencia de estos contaminantes en el cuerpo receptor sea baja o ligera (según la clasificación de Pastakia & Jensen, 1998). Con el fin de ubicar el lugar más conveniente de la descarga de los efluentes líquidos tratados de la Refinería Batalla de Santa Inés sobre el caño El Barro y determinar la magnitud potencial del impacto ambiental sobre la calidad del cuerpo receptor de las aguas residuales industriales tratadas provenientes de la RBSI en su etapa de operación, se desarrolló y aplicó un modelo empírico basado en la información de calidad de agua existente y en estudios hidrológicos básicos realizados en la zona.

Se considera que la época de estiaje en los caños representa la condición más desfavorable para la calidad de las aguas, debido a que la época de lluvias produce el desbordamiento de los caños y la inundación de las sabanas que causan dilución y lavado de los contaminantes. Además el estiaje constituye en los caños una condición hidráulica que se asemeja al flujo de pistón. La Figura 2 presenta un reactor de flujo de pistón de volumen V, el cual tiene un flujo máximo entrando (FiCi), un flujo másico saliendo (FiCl) y una tasa de reacción interna R.

![Diagrama de un reactor de flujo de pistón](image)

Figura 2. Ilustración de un reactor de flujo de pistón

Haciendo un balance de materia se tiene:

$$\frac{d(VC)}{dt} = FiCi - FiCl \pm RV$$

(1)

donde: $d(VC)/dt$ representa la acumulación de masa en el reactor y RV la tasa de reacción. Los demás términos han sido definidos.

Las características principales de este reactor, las cuales definen su conceptualización en el caso que nos ocupa son (Bijlsma & Hooijmans, 1996; Tchobanoglous & Schroeder, 1986; Schnoor & Zehnder 1996):

- Reactor de flujo continuo.
- No hay mezcla a lo largo del eje del reactor en la dirección del flujo.
- En condiciones de flujo permanente la concentración de reactivos es función de su ubicación X en el reactor.
- No hay gradiente de concentración en una sección transversal del reactor (mezcla perfecta).
- El tiempo de residencia en el reactor es el mismo para todas las partículas.
Para la condición de flujo permanente la siguiente ecuación diferencial representa la disminución de la concentración que entra al reactor en la medida que las partículas se desplazan desde la entrada hasta la salida en el sentido del flujo:

\[
-\frac{dC}{dx} = KC
\] \hspace{1cm} (2)

Separando variables e integrando esta ecuación diferencial se obtiene la ecuación para cinética de primer orden para un modelo de flujo de pistón:

\[
C = Ci \cdot e^{-Kx}
\] \hspace{1cm} (3)

donde:
- \(C \): Concentración a distancia \(x \) de la entrada (mg L\(^{-1}\))
- \(Ci \): Concentración que entra al reactor (mg L\(^{-1}\))
- \(K \): constante cinética de primer orden (m\(^{-1}\))
- \(X \): distancia desde la entrada en el sentido del flujo y del eje del reactor (m)

La ecuación anterior constituye un modelo exponencial decreciente donde la constante cinética \(K \) engloba, para el caso que nos ocupa, el efecto de la mezcla en la zona de descarga así como los fenómenos físicos y químicos responsables de la disminución de la concentración de un determinado contaminante (parámetro de calidad de agua) en la medida de que el flujo se desplaza aguas abajo en los caños. Lo anterior demuestra la importancia de la constante cinética en el modelo.

El modelo cinético de primer orden planteado es un modelo empírico, desarrollado sobre la base de una información tomada en la misma zona donde se hace su implementación. La información anterior se refiere a muestreos de calidad de aguas realizados cada tres meses en los caños Jaboncillo y El Barro, durante un período de unos 10 años. Sobre la base de las hipótesis asumidas para el modelo, solo se contemplaron los datos de estiaje, o sea cuando el cauce no está desbordado. Las constantes cinéticas evaluadas contemplan fundamentalmente los procesos de dispersión y físico-químicos de los contaminantes considerados.

Las concentraciones simuladas obtenidas por la aplicación del modelo, permitirán estimar el Índice de Calidad Ambiental (ICA) de caño El Barro, para las situaciones Sin y Con Proyecto. Los índices de calidad son herramientas que permiten asignar un valor de calidad al medio a partir del análisis de diferentes parámetros. Su combinación da una visión más precisa del estado ecológico y el estado del medio biológico, puesto que su determinación permite mostrar la variación espacial y temporal de la calidad de agua de un cuerpo en un momento y punto específico (Programa de Formación Iberoamericano en Materia de Aguas, 2010). En el caso en estudio este índice vendrá dado por la sumaatoria de siete (7) parámetros que se consideran de igual importancia y de los cuales se tienen registros históricos:

\[
ICA_{cb} = P_1 + P_2 + P_3 + P_4 + P_5 + P_6 + P_7
\] \hspace{1cm} (4)

donde:
- \(ICA_{cb} \): Índice de Calidad Ambiental de caño El Barro
- \(P_1 \): Parámetro Aceites e Hidrocarburos (mg L\(^{-1}\))
- \(P_2 \): Parámetro Cloruros (mg L\(^{-1}\))
- \(P_3 \): Parámetro Hierro Total (mg L\(^{-1}\))
- \(P_4 \): Parámetro Bario (mg L\(^{-1}\))
- \(P_5 \): Parámetro Fenoles (mg L\(^{-1}\))
- \(P_6 \): Parámetro Sulfatos (mg L\(^{-1}\))
- \(P_7 \): Parámetro Sólidos Suspendidos Totales (mg L\(^{-1}\))

Considerando el espectro de calidad de caño El Barro (subtipo 2B), un \(ICA \) de 642,203 (mg L\(^{-1}\)), representaría una máxima afectación sobre la calidad de este cuerpo de agua (Tabla 1).

<table>
<thead>
<tr>
<th>PARÁMETROS</th>
<th>Espectro calidad Tipo 2B [mg L(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceites e Hidrocarburos</td>
<td>0,5</td>
</tr>
<tr>
<td>Cloruros</td>
<td>250</td>
</tr>
<tr>
<td>Hierro Total</td>
<td>1</td>
</tr>
<tr>
<td>Bario</td>
<td>0,7</td>
</tr>
<tr>
<td>Fenoles</td>
<td>0,003</td>
</tr>
<tr>
<td>Sulfatos</td>
<td>340</td>
</tr>
<tr>
<td>Sólidos Suspendidos Totales</td>
<td>50</td>
</tr>
<tr>
<td>Índice de Calidad Ambiental</td>
<td>642,203</td>
</tr>
</tbody>
</table>

PARTE EXPERIMENTAL

A partir de los datos de calidad de agua medidos en el caño Jaboncillo, en el canal de descarga de la Estación de Flujo Silván, en la zona de mezcla aguas abajo y en el Puente de la vía a San Silvestre, se ajustó un modelo exponencial decreciente a siete (7) de los parámetros de calidad de agua del Decreto Nº 883, a saber: Aceites e Hidrocarburos, Cloruros, Fe-Total, Bario, Fenoles Totales, Sólidos Suspendidos y Sulfatos. Se consideraron parámetros de calidad de agua que implican sustancias conservativas, los cuales a su vez servirán para definir el Índice de Calidad Ambiental (ICA). Las sustancias conservativas son aquellas
que su concentración no se afecta significativamente por fenómenos bioquímicos de degradación (biodegradación). El ajuste del modelo empírico en flujo de pistón y cinética de primer orden fue realizado con información medida en el mismo lugar de su implementación.

![Diagrama](image)

Figura 3. Conceptualización del modelo empírico de calidad de aguas desarrollado e implementado para el estudio (CIDiat-ULA, 2010)

Para el caso de la Refinería Batalla de Santa Inés, el planteamiento del modelo, referido en la Figura 3, implica la siguiente secuencia lógica:

I. Se inicia en la descarga de la Estación de Flujo Silván sobre el caño Jaboncillo. Es importante tomar en cuenta que la descarga de Silván sobre el caño Jaboncillo es responsable de la disminución del espectro de calidad aguas abajo, restringiendo en la actualidad el uso de sus aguas para fines agropecuarios, especialmente por las altas concentraciones de cloruros. La concentración de descarga de cada parámetro del Decreto N° 883 considerado, en la Estación de Flujo Silván fue el máximo de los valores históricos reportados.

II. Mediante el modelo exponencial decreciente y considerando para cada parámetro el valor de su constante cinética K se transita el contaminante (el parámetro de calidad de agua) hasta la confluencia del caño Jaboncillo con el caño El Barro.

III. En la confluencia de los caños Jaboncillo y El Barro la concentración del contaminante que viene por el Caño Jaboncillo es afectada por un factor de dilución. Este factor de dilución es la razón de los caudales de estiaje de los dos caños, en este caso 1,29.

IV. La concentración del contaminante resultante en la confluencia (afectada por el factor de dilución) es transitada aguas abajo mediante el modelo y su respectiva constante cinética, hasta una distancia en la cual se ubicaría hipotéticamente la descarga de efluentes líquidos de la Refinería.

V. En el punto hipotético de descarga se realiza un balance de masas, considerando los flujos máscaros del contaminante que descarga la Refinería, los flujos máscaros del contaminante que vienen aguas arriba y el flujo másico que continúa aguas abajo del punto hipotético de descarga. De este balance de masas se obtiene la concentración del contaminante aguas abajo del punto hipotético de descarga en la zona de mezcla. La concentración de descarga de los efluentes líquidos tratados en la Refinería para los parámetros considerados, se asume como el valor máximo permitido por el Decreto N° 883.

VI. La concentración resultante del contaminante aguas abajo del punto hipotético de descarga de la Refinería en la zona de mezcla, se transita aguas abajo hasta la confluencia del caño Jaboncillo con el caño del Medio. Esta confluencia (el punto inmediatamente aguas arriba sobre el caño El Barro), constituye el límite aguas abajo del modelo y de la simulación realizada.

VII. Se consideró a caño El Barro como el cuerpo receptor de los efluentes tratados de la Refinería. La localización del punto de descarga sobre el mismo, tomó en consideración la ubicación del sistema de tratamiento de efluentes líquidos y la conveniencia de un desnivel de unos 4 m entre la cota del sistema de tratamiento y el punto de descarga, tal como se muestra en la Figura 4. Este punto, denominado Punto 0, se ubicó a 5.043 m aguas abajo de la confluencia de los caños Jaboncillo y El Barro. A partir de este primer punto hipotético de descarga fueron considerados doce más, a intervalos de 250 m hasta una distancia de 3.000 m aguas abajo en la progresiva 8.043 m (Punto 12), como se observa en la Figura 4.

Las concentraciones simuladas obtenidas por la aplicación del modelo, permiten estimar el Índice de Calidad Ambiental tanto para la Situación Sin Proyecto como Con Proyecto, debe aclararse que un índice es una relación entre dos (2) o más indicadores ambientales y que a su vez los indicadores se corresponden con una expresión medible que refleja el estado específico (para un momento dado) de una variable natural. Considerando los límites máximos permisibles
para un Espectro calidad de caño El Barro de Tipo 2B, se ejecutó la relación de los indicadores (sobre los cuales se esté trabajando el modelo), a objeto de obtener el Índice de Calidad Ambiental que el caño debería presentar (según su uso potencial) con el objeto de mantener al margen su degradación.

Figura 4. Aplicación del Modelo para los diferentes puntos de descarga de la RBSI considerados en el estudio (CIDIAT-ULA, 2010)

La diferencia entre los Índices permite así estimar la magnitud del impacto de la Refinería sobre el cuerpo receptor, siendo la magnitud la escala o intensidad del impacto en función de su beneficio o no beneficio (Pastakia & Jensen, 1998), medida de +1 a +3 en el caso de impactos beneficiosos y de -1 a -3 en el caso de los no beneficiosos o negativos. Para el cálculo de este criterio, se procedió al uso de una función de transformación también llamada función de calidad, la cual relaciona las unidades propias del Indicador y la magnitud de impacto ambiental expresada ya en unidades comparables (Márquez & Pérez, 2013).

En el caso sujeto a evaluación, se consideró la formulación de una función de transformación de tipo lineal creciente, que expresa que a medida de que el Índice de Calidad Ambiental Sin Proyecto aumente, entonces la magnitud del
impacto sobre el cuerpo receptor será mayor; tomando en cuenta que la máxima afectación (-3) se dará una vez se supere el Índice determinado para el Espectro de Calidad tipo 2B (en este caso 642,203).

RESULTADOS Y DISCUSIÓN

El ajuste del modelo exponencial decreciente permitió en primer lugar obtener los valores de las constantes cinéticas de primer orden de los siete parámetros de calidad de agua del Decreto Nº 883, tal como se presenta en la Tabla 2.

<table>
<thead>
<tr>
<th>PARÁMETRO DE CALIDAD DE AGUA</th>
<th>VALOR DE LA CONSTANTE CINÉTICA K [m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceites minerales e hidrocarburos</td>
<td>0,0003</td>
</tr>
<tr>
<td>Cloruros</td>
<td>0,00007</td>
</tr>
<tr>
<td>Fe-Total</td>
<td>0,001</td>
</tr>
<tr>
<td>Bario</td>
<td>0,00008</td>
</tr>
<tr>
<td>Fenoles Totales</td>
<td>0,00008</td>
</tr>
<tr>
<td>Sólidos Suspensidos</td>
<td>0,0001</td>
</tr>
<tr>
<td>Sulfato</td>
<td>0,00007</td>
</tr>
</tbody>
</table>

En la Tabla 2 se puede observar que los valores de K obtenidos son extremadamente bajos, lo cual corrobora el supuesto práctico de hacer K=0 y desarrollar el procedimiento como un modelo de dilución.

El valor de las constantes cinéticas K, permitió determinar entonces, las concentraciones en cada uno de los puntos evaluados para los diez contaminantes establecidos, tanto para la “Situación Sin Proyecto” como para la “Situación Con Proyecto”, tal como se presenta en la Tabla 3. Sobre la base de los resultados de esta Tabla, se tiene que:

Las concentraciones de Cloruros son superiores a 900 g m⁻³, para las condiciones Sin y Con Refineria, valor que supera el límite permisible para las aguas naturales subtipos 1A y 1B. Esto puede explicarse por las altas concentraciones de Cloruros que descarga la Estación de Flujo Silván. Las concentraciones de Bario y Fenoles Totales son altas incluso superiores al límite establecido para aguas subtipos 1A y 1B, tanto para las condiciones Con y Sin Refineria.

Para los Sulfatos la condición Con Refinería puede incrementar unas cinco veces las concentraciones de este parámetro, si las descargas de la Refineria tienen concentración de Sulfatos en el limite que establece el Decreto No 883 para descargas a cuerpos receptores de 1.000 g m⁻³. Los valores simulados, no obstante, no superan los límites permisibles de las aguas naturales subtipos 1A y 1B.

Las concentraciones de Bario (Ba) obtenidas para la condición Con y Sin Refineria, supera el límite máximo establecido por la legislación venezolana de 1,00 g m⁻³ en aguas Subtipos 2A y 2B. Debido a su solubilidad los compuestos de Bario pueden alcanzar grandes distancias aguas abajo desde su punto de emisión. Se corre el riesgo de que peces y otros organismos acuáticos absorban los compuestos de Bario y los acumulen en sus cuerpos. No obstante se advierte que es muy escasa la información disponible sobre el riesgo del Bario en aguas para riego de vegetales.

No se observa una tendencia de mejoras en el espectro de calidad de las aguas sobre el caño El Barro, a medida de que la descarga de efluentes líquidos de la Refineria se desplaza desde el Punto 0 (progresiva 5.043 m aguas abajo de la confluencia con el caño Jaboncillo) hasta el Punto 12 ubicado 3.000 m aguas abajo (progresiva 8.043 m desde la confluencia con el caño Jaboncillo). Un análisis de varianza realizado para un 95% de confianza a estos valores concluye que no existen diferencias estadísticamente significativas.

Las concentraciones obtenidas por la aplicación del modelo, permiten estimar sobre la base de los siete parámetros de calidad de agua, el Índice de Calidad Ambiental tanto para la Situación Sin Proyecto como Con Proyecto. La diferencia entre los Índices permite así cuantificar la magnitud del impacto de la Refineria sobre el cuerpo receptor, lo cual se muestra en la Tabla 4.

La Figura 5 muestra la sustitución en la curva de transformación de los índices de calidad ambiental de caño El Barro para la condición “Con y Sin Proyecto”. Se observa que el Índice de Calidad Ambiental Sin Proyecto (I=973) supera el determinado para el Espectro de Calidad tipo 2B (I=642), por lo que se considera que a la fecha del estudio la magnitud de las descargas sobre el caño El Barro ya presenta una máxima afectación (-3). Se observa que para la Situación Con Proyecto el Índice de Calidad Ambiental (I=1,02) supera en mínima medida al ya existente (se establece que la magnitud del impacto que generará la operación de la Refineria sobre la calidad de las aguas superficiales no afectará significativamente el cuerpo receptor ya afectado), por lo que este criterio se clasifica como un “cambio negativo del status quo” y se le asigna un valor de -1.
Tabla 3. Resumen de los resultados de la simulación de la calidad del agua en el caño El Barro. Concentraciones aguas arriba de la confluencia del caño El Barro en el caño Del Medio para distintas ubicaciones del punto de descarga de la Refinería

<table>
<thead>
<tr>
<th>PARAMETRO</th>
<th>Concentraciones límites para las aguas subtipos 2A y 2B del N° 883, Capítulo 3 para descargas a cuerpos receptores</th>
<th>Descarga a 5043 m</th>
<th>Descarga a 5543 m</th>
<th>Descarga a 6043 m</th>
<th>Descarga a 6543 m</th>
<th>Descarga a 7043 m</th>
<th>Descarga a 7543 m</th>
<th>Descarga a 8043 m</th>
<th>Concentración aguas arriba de la confluencia del caño El Barro con el Caño Del Medio. Con Refinería</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceites minerales e hidrocarburos</td>
<td>0,3 0,32 0,35 0,39 0,43 0,48 0,53 0,6 0,14</td>
<td>909,23</td>
<td>911,1</td>
<td>913,04</td>
<td>915,05</td>
<td>917,13</td>
<td>919,28</td>
<td>921,51</td>
<td>939,95</td>
</tr>
<tr>
<td>Cloruros</td>
<td>600 1.000,00</td>
<td>909,23</td>
<td>911,1</td>
<td>913,04</td>
<td>915,05</td>
<td>917,13</td>
<td>919,28</td>
<td>921,51</td>
<td>939,95</td>
</tr>
<tr>
<td>Fe-Total</td>
<td>1 10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,01</td>
<td>0,01</td>
<td>0</td>
</tr>
<tr>
<td>Bario</td>
<td>1 5</td>
<td>5,55</td>
<td>5,56</td>
<td>5,57</td>
<td>5,58</td>
<td>5,59</td>
<td>5,6</td>
<td>5,61</td>
<td>5,82</td>
</tr>
<tr>
<td>Fenoles Totales</td>
<td>0,002 0,5</td>
<td>2,25</td>
<td>2,25</td>
<td>2,25</td>
<td>2,25</td>
<td>2,26</td>
<td>2,26</td>
<td>2,26</td>
<td>2,44</td>
</tr>
<tr>
<td>Sólidos Suspendidos</td>
<td>1.000,00 80</td>
<td>17,78</td>
<td>17,95</td>
<td>18,13</td>
<td>18,33</td>
<td>18,53</td>
<td>18,74</td>
<td>18,96</td>
<td>15,81</td>
</tr>
<tr>
<td>Sulfato</td>
<td>400 1.000,00</td>
<td>60,59</td>
<td>62,46</td>
<td>64,4</td>
<td>66,41</td>
<td>68,49</td>
<td>70,64</td>
<td>72,87</td>
<td>8,6</td>
</tr>
</tbody>
</table>

Nota: Concentraciones en g m\(^{-3}\)
superficiales no afectará significativamente el cuerpo receptor ya afectado), por lo que este criterio se clasifica como un “cambio negativo del status quo” y se le asigna un valor de -1.

![Figura 5. Curva de transformación ambiental e índice de calidad ambiental para la condición “con y sin proyecto de Refinería”](image)

En resumen la magnitud del impacto que generará la operación de la Refinería, aguas abajo de su descarga de efluentes, sobre la calidad de las aguas superficiales se puede definir como un “cambio negativo ligero sobre la calidad del agua de caño El Barro”, es decir, de baja significancia. Este cambio ligero obedece a que 1) el Proyecto de Refinería contempla la construcción y puesta en marcha de la Planta de Tratamiento de Efluentes, las tecnologías de tratamiento de aguas residuales de procesos industriales en el sector de refinación de petróleo incluyen la separación de las fuentes y el pretratamiento de corrientes concentradas de aguas residuales y contempla además la desecación y la eliminación de residuos en instalaciones destinadas al manejo de residuos peligrosos y II) el impacto se considera importante sólo para las condiciones locales y reversible, pues la capacidad de autodepuración del cuerpo permitiría que los contaminantes presentes reduzcan de manera significativa sus concentraciones en diversos periodos del año.

CONCLUSIONES Y RECOMENDACIONES

Luego de desarrollar e implementar el modelo empírico de calidad de agua, y de analizar e interpretar los resultados, se formulan las siguientes conclusiones y recomendaciones:

- El modelo empírico desarrollado e implementado arrojó resultados considerados coherentes y constituye una herramienta válida a nivel de planificación. Durante su implementación fue manifiesta la carencia de información de calidad de aguas superficiales.

- Se recomienda que la descarga de efluentes líquidos de la Refinería debe ubicarse sobre el caño El Barro, en un punto situado al menos 5.043 m aguas abajo de la confluencia de los caños El Barro y Jaboncillo (Punto 0 de la Figura 4). En las simulaciones realizadas no se observó una tendencia en la mejora del espectro de calidad de las aguas superficiales, al desplazar la descarga 3.000 m aguas abajo hasta la progresiva 8.043 m desde la confluencia con el caño Jaboncillo (Punto 12 de la Figura 4). Lo anterior se corroboró con un análisis de varianza para un 95% de confianza.

- La magnitud del impacto que generará la operación de la Refinería sobre la calidad de las aguas superficiales se puede definir como un “cambio negativo del status quo”, conforme al criterio de Pastakia & Jensen (1998). En otras palabras, la operación de la Refinería disminuirá ligeramente el espectro de la calidad del agua en el caño El Barro, el cual para la fecha del estudio ya se encontraba afectado por las descargas de la Estación de Flujo Silván, principalmente por altas concentraciones de cloruros y fenoles. Sobre la base de lo anterior y de la discusión de resultados se concluye que el mapa de Calidad de Aguas Superficiales de la Figura 1, que refleja la condición actual, se mantiene con la implementación de la Refinería.

- A objeto de mejorar la calidad ambiental de los caños
Jaboncillo y El Barro, se recomienda: a) la terminación y puesta en marcha de las cuatro biolagunas para remoción de Fenoles que se encuentran en etapa de construcción, así como la planta de remoción de cloruros, en la Estación de Flujo Silván y b) la implementación de un programa de seguimiento de calidad de agua en los caños, tal como está previsto en los planes ambientales de PDVSA.

REFERENCIAS BIBLIOGRÁFICAS

