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Abstract
Mello AP, Azevedo NR, Barbosa-Silva AM, Bezerra-Gusmão MA. 2016. Chemical composition and 
variability of the defensive secretion in Nasutitermes corniger (Motschulsky, 1885) in urban area in the Brazilian 
semiarid region. Entomotropica 31(11): 82-90.
We analyzed the composition and chemical variability of the defensive secretion in Nasutitermes corniger in an 
urban area. We selected two environments with characteristics of Caatinga, and two surrounded by a semideciduous 
forest, in northeastern Brazil. Eighteen compounds were identified by gas chromatography-mass spectrometry. 
Cluster analysis classified the populations into two main groups: group I, seasonal forest, with α-pinene, β-pinene, 
2-hexanol and 3-hexanol as major compounds, whereas group II, Caatinga, showed a lower percentage for 
α-pinene, β-pinene and limonene. It is suggested that climatic factors, geographical distance, and likely genetic 
differences between populations influence the chemical composition of the secretion of soldiers resulting in the 
possible formation of two ecotypes.
Additional key words: Brejo de altitude, chemical defense, monoterpenes, Nasutitermitinae, termite.

Resumo
Mello AP, Azevedo NR, Barbosa-Silva AM, Bezerra-Gusmão MA. 2016. Composição e variabilidade 
química da secreção defensiva de Nasutitermes corniger (Motschulsky, 1885) em área urbana na região semi-árida 
brasileira. Entomotropica 31(11): 82-90.
 Analisou-se a composição e a variabilidade química da secreção defensiva de Nasutitermes corniger em área urbana 
de dois ambientes com características de Caatinga, e dois ambientes circundados por uma Floresta estacional 
semidecidual no nordeste brasileiro. Dezoito compostos foram identificados por cromatografia gasosa acoplada a 
espectrometria de massas. A análise de agrupamento classificou as populações em dois grupos principais: grupo 
I, floresta estacional, com α-pineno, β-pineno, 2-hexanol e 3-hexanol como substâncias majoritárias, enquanto 
que o grupo II, Caatinga, mostrou menor percentual para α-pineno, β-pineno e limoneno. Sugere-se que os 
fatores climáticos, a distância geográfica, e as prováveis diferenças genéticas entre as populações influenciem na 
composição química da secreção dos soldados resultando na possível formação de dois ecótipos.
Palavras-chave adicionais: Brejo de altitude, cupins, defesa química, monoterpenos, Nasutitermitinae.



Melo AP et al. Chemical composition and variability of the defensive secretion in N. corniger in urban area in Brazil

83

Introduction

Termites are among the most abundant 
arthropods in the tropical ecosystems (Martius 
1994). Throughout their evolutionary history, 
they have developed techniques for collective 
defense, which become manifest in the elaborate 
constructions of their nests, in addition to the 
anatomical and behavioral adaptations for the 
defense of the colony (Deligne et al. 1981, 
Grasse 1982). Among the morphological 
and physiological adaptations of defense, the 
soldier caste shows a mandibular apparatus 
for mechanical defense, and a frontal gland, 
which produces various chemical compounds 
(Prestwich 1984, Quennedey 1984, Šobotník 
et al. 2010). These chemical defenses are 
found having efficient chemical weaponry, 
especially in Rhinotermitidae, Serritermitidae 
and Termitidae families (Quennedey 1984, 
Šobotník et al. 2010).
The diversity of chemical substances produced 
by the frontal gland of termites has been analized 
over the past four decades (Šobotník et al. 2010), 
and presents several synthesized substances of 
different chemical classes, including alcohols, 
mono-, di-, and sesquiterpenes, besides aromatic 
and heterocyclic compounds (Prestwich 1984, 
Šobotník et al. 2010, Krasulová et al. 2012). 
In soldiers with vestigial mandibles, this 
secretion is expelled by the nasute and has many 
functions, for example, a viscous and irritating 
solution for predators, blocking the movements 
of competitors, and as a repellent pheromone 
and alarm used to coordinate defensive activities 
(Prestwich et al. 1984, Roisin et al. 1990). 
However, based on the size of the soldier, there 
is a significant difference in the amount of 
secretion produced. Small soldiers (nasutoids) 
rely solely on the chemical weapons produced 
by their large front gland (reservoir), while 
large-jawed soldiers synthesize less defensive 
secretion (Prestwich et al. 1984, Roisin et al. 
1990). In addition, this secretion seems to act 
as an inhibitor of the growth of fungi, probably 

by the action of the monoterpenes α-pinene 
and limonene (Rosengaus et al. 2000, Zhao et 
al. 2004, Fuller 2007).
The soldiers of the subfamily Nasutitermitinae 
(Termitidae) analyzed in this study differ 
from those of other subfamilies by their 
complete dependence on chemicals for 
defense. Nasutitermes is one of the most diverse 
genera, with 74 species described only in the 
Neotropical region (Constantino 2002). In 
Brazil, Nasutitermes is represented by about 
47 species, distributed in different biomes 
as tropical forests, Cerrado and Caatinga 
(Zorzenon e Potenza 1998, Constantino 1999). 
Chemical defense has been analised in 15 genera 
and 74 species of termites, 43 of them belonging 
to Nasutitermes (Gush et al. 1985, Valterova et 
al. 1993). Nasutitermes corniger (Motschulsky, 
1885) is one of the main species of the genus 
and lives in nests constructed of chewed wood 
and other materials, such as cemented sand, 
saliva and feces. The nests are built on trees or 
inside houses (Fontes 1995), and the species is 
well known because of the economic damage 
it causes (Mello et al. 2014, Vasconcellos et al. 
2002). The defensive secretion of N. corniger 
has been analyzed in populations from Costa 
Rica and Panama, where 19 monoterpenes and 
12 diterpenes were detected (Gush et al. 1985). 
However, there is no record of the chemical 
composition of the secretion from populations 
of this species from urban areas of South 
America.
Studies discuss the variations between species 
and even inter-settlers in the composition of these 
substances, both in terms of chemical diversity 
such as percentage concentration, attributing 
these variations in some cases to oscillations of 
abiotic factors, such as temperature, precipitation 
and soil composition (Quintana et al. 2003, 
Azevedo et al. 2006, Perdereau et al. 2010). 
The characterization of the chemical profile 
and the factors that influence the variations in 
the composition of the defensive secretion of 
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termites provide an interesting tool for studies 
in taxonomy, biogeography, population ecology 
and in defensive strategies of these insects 
(Nelson et al. 2001).
The objective of this study was to analyze the 
chemical composition of the defensive secretion 
in soldiers of N. corniger located in urban 
environments in order to assess the existence of 
inter-colonial variation in the chemical profile 
of populations in two areas with different 
climatic characteristics.

Material and Methods

Study area
The study was conducted in two urban areas, one 
with typically semiarid Caatinga characteristics, 
and two environments surrounded by a 
semideciduous forest, known locally as “Brejo 
de altitude”. Samples of 50 soldiers N. corniger 
were collected from five nests located in the four 
cities: Areia (lat 06° 57’ 42” S, long 35° 41’ 43” 
W) and Bananeiras (lat 06° 45’ 00” S, long 35° 
37’ 58” O), with a distance of 45 km between 
them, and Campina Grande (lat 7° 13’ 50” S, 
long 35° 52’ 52” S) and Pocinhos (lat 07° 04’ 37” 
S, long 36° 03’ 39” O), separated by a distance 
of 35 km , for a total sample of 20 nests. The 
Areia and Bananeiras cities are located in a 
region of Brejo de altitude, with almost as wet 
characteristics as the areas of the forest zone, 
at an altitude between 650 - 1 000 m, annual 
average temperature between 18 °C to 28 °C 
and average annual rainfall of 1 194 mm. These 
regions are more humid than the other areas 
of the semiarid Brazilian region, due to the 
orographic effect on precipitation and in the 
reduction of thermal indices (Vivo 1997, Santos 
et al. 2007). The cities Pocinhos and Campina 
Grande are located in a region with semiarid 
characteristics, with high temperatures and a 
pattern of irregular rainfall, characterized as 
Caatinga environments, at an altitude between 
500 - 640 meters, a temperature of 21 to 30 °C, 

and an annual precipitation between 382 and 
802 mm (Sudene 1990).

Collecting procedures and chemical analysis 
of the defensive secretions
The 50 soldiers of termites were kept under 
refrigeration (-18 °C) to the processing of 
chemical analysis, in order to minimize the loss 
of volatile components present in the defensive 
secretion. The samples were deposited in the 
Laboratory of Ecology of Termites, State 
University of Paraíba, Brazil.
The heads of each sample of soldiers were 
immersed in 0.5 ml of n-hexane (grade ultra-
residue, BAKER, USA) and subjected to 
ultrasound (Bransonic, USA) for 15 seconds. 
Subsequently, this solution was filtered and 
analyzed on a gas chromatograph coupled 
to a quadruple mass spectrometer (GC-MS) 
QP5050A Shimadzu (Kyoto, Japan) in the 
following operating conditions: fused silica 
capillary column, model CBP-5 (30 m × 0.25 
mm internal diameter × 0.25 mm thick film of 
a 5 % phenyl-methyl polysiloxane) (Shimadzu, 
Japan) a flow rate of 1 mL.min-1 helium as the 
carrier gas; heating set temperature (60 oC with 
a gradient of 1 to 3 oC.min-1 to 240 oC and 
then with a gradient of 10 oC.min-1 to 270 °C, 
maintaining an isothermal 7 min with a total 
run time of 70 min). The ionization energy of 
the detector was 70 V, with the injection volume 
of the sample 0.5 μl and a split ratio of 1:20 
injection. The temperature of the injector and 
detector were maintained at 220 °C and 240 
°C, respectively. The analysis was conducted in 
the scan mode at a speed of 1.0 varredura.s-1, 
with a mass range 40-400 m/z. Quantitative 
analysis was obtained by integrating the total 
ion chromatogram (TIC) and expressed as 
mean values ​​of two percentage replicates. 
The identification of the components was 
performed by automatic comparison and 
Manual mass spectra with those of the NIST 
/ EPA / NIH (1998) libraries by comparison 
of mass spectra and retention indices (RI) with 
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those in the literature (Adams 1995, 2001) and 
co-injection with standards. Retention Indices 
were calculated by co-injection with a mixture 
of hydrocarbons, C8-C32 (Sigma, USA), and 
application of Dool and Kratz equation (Dool 
e Kratz 1963). The major constituents were also 
identified by carbon nuclear magnetic resonance 
(13C-NMR), recorded on a Varian Gemini 
spectrometer operating at 75 MHz using 
deuterated benzene as internal standard (128 
ppm). The identification was done by comparing 
the signals of the 13C NMR spectrum of the 
extract of the secretion of defense, with the 
literature (Kubeczka and Formáček 2002). The 
procedures were performed at the Institute of 
Chemistry, Federal University of Goiás, Brazil, 
in the laboratories of Gas Chromatography and 
Nuclear Magnetic Resonance.

Edaphic-climatic factors
The climatic data’s were obtained from the 
monthly agroclimatic journal, and from 
the Bulletin of the National Institute of 
Meteorology (Inmet 2012, 2013). Mixed 
samples of soil around the trees that sheltered 
the nests were obtained, each containing 
about 200 g, measuring up to 20 inches deep, 
and divided into three equidistant points of 
the host plant of the nest. The granulometric 
analyses were performed by the hydrometer 
method proposed by Bouyoucos (1951), and 
later modified by Forsyth (1975). The physical 
composition (granulometric), moisture, pH and 
percentage of organic matter in soil (OM) were 
all analyzed in the Laboratory of Soil Physics 
and Chemistry of the Federal University of 
Paraíba, Campus II, Areia, PB.

Statistical analysis
In order to verify the similarity in chemical 
composition of the defensive secretion of the 
populations, a MDS ordination diagram (non-
metric multidimensional scaling) was built 
based on Euclidean Distance. For comparison 
between the groups formed a nonparametric 

permutation procedure the ANOSIM was 
made . These tests were performed using the 
Primer6 program.
Using a matrix of the chemicals, environmental 
data (temperature, humidity, precipitation) and 
soil composition (granulometric, humidity, 
pH and percentage of organic matter in soil), 
a canonical correlation analysis was performed 
(using the program R) to verify the influence of 
the environment on the chemical composition 
of the defensive secretion.

Results and Discussion

Despite reports in the literature about the 
presence of diterpenes and sesquiterpenes in the 
defensive secretion of some Nasutitermitinae 
(Constrictotermes, Curvitermes, Syntermes, 
Subulitermes and Nasutitermes , viz. N. corniger, 
N. infuscatus, N. octopilis) (Prestwich 1984, Gush 
et al. 1985, Azevedo et al. 2006), these classes 
of terpenes were not observed in populations 
of N. corniger analyzed in this study. This could 
be a reflection of the spatial conditions of the 
urban environment in which the populations 
analyzed are inserted, such as availability and 
kind of offered food resources. It is known 
that the biosynthesis of these substances in 
the defensive secretion of endogenous origin 
termites is subject to interference from external 
environmental factors.
The composition of the defensive secretion 
in N. corniger had 18 volatile components, 
observing the qualitative and quantitative 
dissimilarity among the populations studied. 
Fourteen components were monoterpenes, with 
significant amounts of α-pinene and β-pinene 
in the bulk composition of the secretions tested 
in both study areas (Table 1). The 2-hexanol 
and 3-hexanol were identified only for the 
populations of Brejo de altitude (Table 1).
The high percentage of α-pinene observed in the 
defensive secretion of N. corniger populations in 
the study areas (Table 1) corroborates the study 
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Table 1. Average percentage composition (± standard deviation) of chemicals identified in the defensive secretion of 
soldiers of Nasutitermes corniger in urban areas of the Northeast of Brazil.

Substances
Brejo de altitude Caatinga

Areia Bananeiras Pocinhos Campina Grande
2-Methyl-3-heptanone - 1.60±1.15 1.08±1.50 0.11±0.07 0.10±0.11
α-Pinene* 30.36± 24.02 49.94±11.30 39.91±12.87 37.54±10.46
3-Hexanol- 21.13±11.30 6.18±8.30 - -
2-Hexanol- 11.15±15.20 6.48±1.80 - -
Unknown- 2.37±1.60 1.08±4.50 - -
β-Pinene* 12.71±6.50 24.68±12.60 45.24±15.48 33.85±6.03
β –Myrcene* 0.25±0.33 0.43±0.23 0.84±0.26 0.45±0.72
Limonene* 3.18±1.66 6.12±2.17 8.38±1.23 6.49±1.81
Ocimene* 1.14±1.08 1.66±0.34 0.1±0.01 0.1±0.0
3-Carene* 0.1±0.0 0.1±0.26 0.1±0.50 0.1±0.0
3-Carene-2-ol* 0.1±1.90 0.1±0.75 0.1±0.24 0.1±0.03
Verbenone+ 0.1±0.29 0.1±0.08 0.13±0.35 2.97±0.78
Canphene* - - 0.22±1.09 0.1±0.38
4-Carene* - - 0.1±0.06 0.1±1.05
Octatriene-3,7-dimethyl* - - 2.34±0.87 1.47±1.26
Terpinolene* - - 0.1±0.06 0.1±0.06
Pinocarveol* - - 0.1±0.65 1.93±1.12
L-carveol* - - 0.1±1.2 5.17±1.7

(*)Monoterpenes; (+)Oxygenated monoterpene; (-) Other.

of Gush et al. (1985) and is common among the 
Termitidae (Roisin et al. 1990, Valterová et al. 
1993, Azevedo et al. 2006). This monoterpene 
can be found both in many essential oils of 
plants such as conifers (Pinaceae) as well as in 
insects, such as termites and beetles (Geron et 
al. 2000). Large part of the analyzed nests (80 
%) were fixed on trees of Terminalia catappa 
L., a species commonly used for urban forestry 
in the region. The representatives of the genus 
Terminalia are widely distributed in tropical 
areas of the world, and are known as a rich source 
of secondary metabolites such as triterpenoids 
and other aromatic compounds (Katerere et al. 
2003). However, in this study it was not possible 
to compare the percentage of this compound, 
in the plant with defensive secretion of the 
termites analyzed, to determine if a relationship 
exists. In the ecology of termites, this compound 

exhibits high toxicity for insect predators and 
competitors such as ants and beetles (Simões 
et al. 1999). Moreover, antifungal, antibacterial 
and antiseptic features, which act to reduce the 
imminent risk of disease within the colony, may 
also be expected (Rosengaus et al. 2000, Stow e 
Beattie 2008).
The MDS analysis showed a pattern of spatial 
separation in the distribution of the N. corniger 
populations in the areas of study (Figure 1): 
Group I, formed by populations of Brejo de 
altitude, perhaps by high amounts of α-pinene 
(43.83 ± 18.4), β-pinene (15.09 ± 9.8), 2-hexanol 
(8.9 ± 12.21) and 3-hexanol (7.7 ± 10.31), 
whereas Group II, formed by the populations 
of the Caatinga, by high amounts of α-pinene 
(39.34 ± 11.8), β-pinene (34.94 ± 11.1) and 
limonene (7.55 ± 1.82) (Table 1).  The difference 
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Figure 1. Non-metric multidimensional scaling (n-MDS) between the Nasutitermes corniger populations regarding their 
chemical composition of the defensive secretion in urban areas of Brejo de altitude (A1, A2, A3, A4, A5, B1, B2, B3, B4, 
and B5) and Caatinga (P1, P2, P3, P4, P5, CG1, CG2, CG2, CG3, CG4 and CG5) in a region of Northeast Brazil.

Figure 2. Canonical correlation between the principal volatile components of the defensive secretion in soldiers of popu-
lations of Nasutitermes corniger (Brejo de altitude: A1, A2, A3, A4, A5, B1, B2, B3, B4 and B5; Caatinga: P1, P2, P3, P4, 
P5 , CG1, CG2, CG3, CG4 and CG5) and environmental variables (Temperature: T; Precipitation: Pmm; Humidity of 
the soil: Soil Humidity; Humidity of the air: U; Sand percentage: Sand total; Clay; Silt; Organic matter: OM; Carbon of 
soil: C; pH of soil: Ph) in a region of Northeast Brazil.
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between the chemical composition of the 
defensive secretion of the studied populations 
was confirmed through the permutation test 
ANOSIM (R=0.941; p=0.1 %).
The clusters of populations occur possibly 
because of the distance between the collection 
points, suggesting the existence of a relation with 
the genetic expression of the populations in the 
analyzed areas. There may be the formation of 
two distinct ecotypes in the populations. Perhaps 
the populations that are located in geographically 
close regions and subjected to similar ecosystem 
conditions present a homogeneous pattern 
qualitatively and quantitatively in the chemical 
composition of the defensive secretion. This 
pattern corroborates Azevedo et al. (2006) 
who studied populations of C. cyphergaster 
(Termitidae) and Krasulová et al. (2012) 
who evaluated populations of Psammotermes 
hybostoma (Rhinotermitidae).
Still referring to the formation of population 
groups based on chemical composition, it was 
found that the main components responsible 
for clustering the population group I, 2-hexanol 
and 3-hexanol, in the first canonical variable 
dependent was positively correlated with 
climatic variable independent (rainfall, relative 
humidity, soil moisture and clay in the soil), while 
the α-pinene showed an inverse correlation with 
these variables. But the main components of 
group II, the α-pinene, β-pinene and limonene 
in the first dependent variable was correlated 
positively with climate independent variables 
(temperature, sand and silt percentage, electrical 
conductivity and soil pH). The first correlation 
accounted for 66 % of the cumulative variance 
(Figure 2).
One of the populations of Pocinhos (P1) had 
the highest percentage of α-pinene observed 
(64.9 %), which can be attributed to the fact 
that this sampling point had lowest rainfall 
rate and highestthermal index among sampling 
sites. The opposite was observed for 2-hexanol 
and 3-hexanol, present only in populations 

of Brejo de altitude, perhaps due to the 
occurrence of higher rainfall and low thermal 
indices. Azevedo et al. (2006) found a positive 
correlation between the 3-hexanol and climate 
variables to C. cyphergaster as α-pinene was 
negatively correlated.
These factors may encourage populations 
of termites to regulate the concentration of 
each chemical, if not directly, than indirectly, 
because these factors significantly influence the 
availability of food resources, diet, frequency of 
foraging and biomass increment of termites in 
the study areas (Moura et al. 2006, Vasconcellos 
et al. 2007). This regulation could explain 
the occurrence of unique compounds in the 
populations of each ecoregion. This hypothesis 
is based on the fact that the areas studied have 
different environmental characteristics and 
variations in abiotic factors, resulting in different 
plant communities adapted to the limitations 
and heterogeneity of each environment. 
However, it is possible that these variations 
are the product of a seasonal effect or even 
the needs of the colony in relation to defense 
activities, recruitment or alarm pheromones 
(Vrkoč et al. 1978). The results of this study 
contrast with studies by Prestwich et al. (1984) 
and Gush et al. (1985), which concluded that 
environmental factors did not influence the 
chemical composition of the defense secretion 
of N. corniger, but corroborate Azevedo et al. 
(2006) and Krasulová et al. (2012).

Conclusion

The present study demonstrated that the 
chemical composition of the defensive 
secretion of N. corniger varies depending on 
the characteristics of the ecosystem where the 
termites live. Populations located in areas that 
have similar ecosystems and are geographically 
close tend to have higher chemical similarity in 
terms of both concentration and composition 
of substances. As expected, the populations 
from urban areas of Brejo de Altitude presented 
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chemical differences compared to the areas 
of Caatinga, which is probably the result of 
environmental pressures and climatic factors 
that influence the proportions and chemical 
composition in each ecoregion. In addition, 
it is likely that genetic variations, due to the 
geographic isolation of populations combined 
with the low capacity of dispersion of the 
termites, promote variations in the phenotypic 
patterns of the defense secretion, which has 
resulted in the formation of two possible 
ecotypes.
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