Nanopartículas de metal como antidiabéticos indirectos: ¿Una nueva solución?

Autores/as

  • Andrea Pinzón
  • Alicia Morocho
  • Cristóbal Espinoza
  • Ronal Aldaz
  • María Paula Calderón
  • Melina Goyes
  • Zoila del Cisne Espinoza

Palabras clave:

Diabetes mellitus, nanotecnología, nanopartículas, metales, fármacos antidiabéticos

Resumen

La diabetes mellitus (DM) es, probablemente, una de las condiciones que ha recibido más atención en relación a la aplicación de la nanotecnología. Se ha propuesto la posibilidad de utilizar las nanopartículas (NP), no sólo como medio de transporte para fármacos antidiabéticos, sino como un agente terapéutico independiente. Diferentes minerales han sido asociados con la homeostasis de la glucosa, incluyendo al zinc, el vanadio, el selenio, y el litio. Estos metales actúan como cofactores en muchas reacciones enzimáticas y diferentes estudios han señalado su impacto en los trastornos del metabolismo de la glucosa. En este sentido, se ha investigado la posibilidad de agregar los metales antes mencionados en las NP, además de las drogas convencionalmente utilizadas, con la intención de verificar si su impacto en el perfil glucometabólico es lo suficiente bueno como para volver esta práctica algo rutinario. El objetivo de esta revisión es evaluar el papel de las NP con aditivos metálicos en el curso natural de la DM y la mejoría del perfil glicémico.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Mg K, V K, F H. History and Possible Uses of Nanomedicine Based on Nanoparticles and Nanotechnological Progress. J Nanomedicine Nanotechnol [Internet]. 2015 [cited 2022 May 27]; 06(06). Available from: https://www.omicsonline.org/open-access/history-and-possible-uses-of-nanomedicine-based-on-nanoparticles-and-nanotechnological-progress-2157-7439-1000336.php?aid=63383

Owen A, Dufès C, Moscatelli D, Mayes E, Lovell JF, Katti KV, et al. The application of nanotechnology in medicine: treatment and diagnostics. Nanomed. 2014 Jul; 9(9):1291–4.

Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther. 2019 Aug 30;4:33.

Cash KJ, Clark HA. Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med. 2010 Sep 23; 16(12):584–93.

Volpatti LR, Matranga MA, Cortinas AB, Delcassian D, Daniel KB, Langer R, et al. Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery. ACS Nano. 2020 Jan 28; 14(1):488–97.

Fonte P, Araújo F, Reis S, Sarmento B. Oral Insulin Delivery: How Far Are We? J Diabetes Sci Technol. 2013 Mar 1; 7(2):520–31.

Araújo F, Fonte P, Santos HA, Sarmento B. Oral Delivery of Glucagon-Like Peptide-1 and Analogs: Alternatives for Diabetes Control? J Diabetes Sci Technol. 2012 Nov 1; 6(6):1486–97.

Wiernsperger N, Rapin J. Trace elements in glucometabolic disorders: an update. Diabetol Metab Syndr. 2010 Dec 19;2:70.

Simos YV, Spyrou K, Patila M, Karouta N, Stamatis H, Gournis D, et al. Trends of nanotechnology in type 2 diabetes mellitus treatment. Asian J Pharm Sci. 2021 Jan; 16(1):62–76.

Dubey P, Thakur V, Chattopadhyay M. Role of Minerals and Trace Elements in Diabetes and Insulin Resistance. Nutrients. 2020 Jun 23; 12(6):1864.

Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011 May 10; 283(2–3):65–87.

Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int J Mol Sci. 2021 Apr 28; 22(9):4642.

H K, N K, M M, Ta M. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm [Internet]. 2010 [cited 2022 May 29];2010. Available from: https://pubmed.ncbi.nlm.nih.gov/20182627/

Martínez-Esquivias F, Guzmán-Flores JM, Pérez-Larios A, Rico JL, Becerra-Ruiz JS. A Review of the Effects of Gold, Silver, Selenium, and Zinc Nanoparticles on Diabetes Mellitus in Murine Models. Mini-Rev Med Chem. 21(14):1798–812.

Azlan AYHN, Katas H, Busra MFM, Salleh NAM, Smandri A. Metal nanoparticles and biomaterials: The multipronged approach for potential diabetic wound therapy. Nanotechnol Rev. 2021 Jan 1; 10(1):653–70.

Alkaladi A, Abdelazim AM, Afifi M. Antidiabetic Activity of Zinc Oxide and Silver Nanoparticles on Streptozotocin-Induced Diabetic Rats. Int J Mol Sci. 2014 Feb; 15(2):2015–23.

Umrani RD, Paknikar KM. Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. Nanomed. 2014 Jan; 9(1):89–104.

El-Gharbawy RM, Emara AM, Abu-Risha SES. Zinc oxide nanoparticles and a standard antidiabetic drug restore the function and structure of beta cells in Type-2 diabetes. Biomed Pharmacother. 2016 Dec 1; 84:810–20.

Siddiqui SA, Or Rashid MdM, Uddin MdG, Robel FN, Hossain MS, Haque MdA, et al. Biological efficacy of zinc oxide nanoparticles against diabetes: a preliminary study conducted in mice. Biosci Rep. 2020 Apr 7; 40(4):BSR20193972.

El-Borady OM, Othman MS, Atallah HH, Moneim AEA. Hypoglycemic potential of selenium nanoparticles capped with polyvinyl-pyrrolidone in streptozotocin-induced experimental diabetes in rats. Heliyon [Internet]. 2020 May [cited 2022 May 31]; 6(5). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7264054/

Al-Quraishy S, Dkhil MA, Abdel Moneim AE. Anti-hyperglycemic activity of selenium nanoparticles in streptozotocin-induced diabetic rats. Int J Nanomedicine. 2015 Oct 29; 10:6741–56.

De Blasio MJ, Huynh N, Deo M, Dubrana LE, Walsh J, Willis A, et al. Defining the Progression of Diabetic Cardiomyopathy in a Mouse Model of Type 1 Diabetes. Front Physiol [Internet]. 2020 [cited 2022 May 31]; 11. Available from: https://www.frontiersin.org/article/10.3389/fphys.2020.00124

Yazdi HB, Hojati V, Shiravi A, Hosseinian S, Vaezi G, Hadjzadeh MAR. Liver Dysfunction and Oxidative Stress in Streptozotocin-Induced Diabetic Rats: Protective Role of Artemisia Turanica. J Pharmacopuncture. 2019 Jun; 22(2):109–14.

Mohamed AAR, Khater SI, Hamed Arisha A, Metwally MMM, Mostafa-Hedeab G, El-Shetry ES. Chitosan-stabilized selenium nanoparticles alleviate cardio-hepatic damage in type 2 diabetes mellitus model via regulation of caspase, Bax/Bcl-2, and Fas/FasL-pathway. Gene. 2021 Feb 5; 768:145288.

BarathManiKanth S, Kalishwaralal K, Sriram M, Pandian SRK, Youn H seop, Eom S, et al. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotechnology. 2010 Jul 14; 8:16.

Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010 Oct 29;107(9):1058–70.

Venkatachalam M, Govindaraju K, Mohamed Sadiq A, Tamilselvan S, Ganesh Kumar V, Singaravelu G. Functionalization of gold nanoparticles as antidiabetic nanomaterial. Spectrochim Acta A Mol Biomol Spectrosc. 2013 Dec; 116:331–8.

Edrees HM, Elbehiry A, Elmosaad YM. Hypoglycemic and Anti-Inflammatory Effect of Gold Nanoparticles in Streptozotocin-Induced Type 1 Diabetes in Experimental Rats. Int J Diabetes Res. 2017; 6(1):16–23.

Torabian F, Akhavan Rezayat A, Ghasemi Nour M, Ghorbanzadeh A, Najafi S, Sahebkar A, et al. Administration of Silver Nanoparticles in Diabetes Mellitus: A Systematic Review and Meta-analysis on Animal Studies. Biol Trace Elem Res. 2022 Apr; 200(4):1699–709.

Descargas

Publicado

2023-05-14