Beneficios cardiovasculares del semaglutide: un nuevo agonista del GLP-1

Autores/as

  • Juan Pablo Garcés Ortega
  • Stefany María Quillupangui Ramón
  • Juan Carlos Pañi Panamá
  • Julio Ignacio Pacuruco Cajas
  • Estefanía Gabriela Reyes Pineda
  • Erika Paola Luzuriaga Sacoto
  • Gabriela Alexandra Roldan Masache
  • Andrés Mateo Gallegos Delgado
  • María Eugenia Romero Calle

Palabras clave:

Semaglutide, agonista GLP-1, enfermedad cardiovascular, diabetes mellitus, cardioprotección

Resumen

En vista de la magnitud de las enfermedades cardiovasculares (ECV) como problema de salud pública y su frecuente comorbilidad con la diabetes mellitus (DM), se ha sugerido el uso de drogas antidiabéticas como un posible tratamiento en pacientes con DM y ECV. Entre los fármacos de este grupo con propiedades cardioprotectoras destaca el semaglutide, un nuevo agonista del péptido similar al glucagón 1 (GLP-1). Los mecanismos por los cuales pueden mejorar la salud cardiovascular no están del todo dilucidados, pero se ha demostrado que tiene un rol en el funcionamiento endotelial y en el perfil lipídico e inflamatorio de los individuos. Así pues, se ha demostrado como el agonismo de GLP-1 puede aminorar la disfunción endotelial, el estrés oxidativo, la inflamación sistémica y vascular, la formación de células espumosas, la hiperlipidemia, y otros factores claves de procesos patológicos de diversas ECV. De tal manera, el objetivo del presente artículo de revisión es describir los posibles mecanismos por los cuales el semaglutide es considerado como un fármaco cardioprotector, y exponer la evidencia clínica que soporta sus efectos beneficiosos en la salud cardiovascular.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aje TO, Miller M. Cardiovascular disease: A global problem extending into the developing world. World J Cardiol. 2009;1(1):3-10. doi:10.4330/wjc.v1.i1.3.

Scott J. Pathophysiology and biochemistry of cardiovascular disease. Curr Opin Genet Dev. 2004 Jun;14(3):271-9. doi: 10.1016/j.gde.2004.04.012. PMID: 15172670.

Feigin VL, Stark BA, Johnson CO, Roth GA, Bisignano C, Abady GG, et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet Neurology [Internet]. octubre de 2021 [citado 19 de enero de 2022];20(10):795-820. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1474442221002520.

Song P, Fang Z, Wang H, Cai Y, Rahimi K, Zhu Y, Fowkes FGR, Fowkes FJI, Rudan I. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study. Lancet Glob Health. 2020 May;8(5):e721-e729. doi: 10.1016/S2214-109X(20)30117-0. PMID: 32353319.

Khan MA, Hashim MJ, Mustafa H, Baniyas MY, Al Suwaidi SKBM, AlKatheeri R, Alblooshi FMK, Almatrooshi MEAH, Alzaabi MEH, Al Darmaki RS, Lootah SNAH. Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus. 2020 Jul 23;12(7):e9349. doi: 10.7759/cureus.9349. PMID: 32742886; PMCID: PMC7384703.

Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol [Internet]. abril de 2020 [citado 19 de enero de 2022];16(4):223-37. Disponible en: http://www.nature.com/articles/s41581-019-0244-2.

Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail [Internet]. agosto de 2020 [citado 19 de enero de 2022];22(8):1342-56. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/ejhf.1858.

Cardiovascular diseases (Cvds) [Internet]. [citado 17 de marzo de 2022]. Disponible en: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).

Flora GD, Nayak MK. A Brief Review of Cardiovascular Diseases, Associated Risk Factors and Current Treatment Regimes. Curr Pharm Des. 2019;25(38):4063-4084. doi: 10.2174/1381612825666190925163827. PMID: 31553287.

Abbate R, Sticchi E, Fatini C. Genetics of cardiovascular disease. Clin Cases Miner Bone Metab. 2008;5(1):63-66.

North BJ, Sinclair DA. The intersection between aging and cardiovascular disease. Circ Res. 2012; 110(8):1097-1108. doi:10.1161/CIRCRESAHA.111.246876.

Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000 Nov 10; 87(10):840-4. doi: 10.1161/01.res.87.10.840. PMID: 11073878.

Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2181-90. doi: 10.1152/ajpheart.00554.2011. Epub 2011 Sep 23. PMID: 21949114.

King RJ, Grant PJ. Diabetes and cardiovascular disease: pathophysiology of a life-threatening epidemic. Herz. 2016 May;41(3):184-92. doi: 10.1007/s00059-016-4414-8. PMID: 27026400.

Schubert M, Hansen S, Leefmann J, Guan K. Repurposing Antidiabetic Drugs for Cardiovascular Disease. Front Physiol. 2020 Sep 15;11:568632. doi: 10.3389/fphys.2020.568632. PMID: 33041865; PMCID: PMC7522553.

Lee YS, Jun HS. Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control. Mediators Inflamm. 2016;2016:3094642. doi: 10.1155/2016/3094642..

Helmstädter J, Frenis K, Filippou K, Grill A, Dib M, Kalinovic S, Pawelke F, Kus K, Kröller-Schön S, Oelze M, Chlopicki S, Schuppan D, Wenzel P, Ruf W, Drucker DJ, Münzel T, Daiber A, Steven S. Endothelial GLP-1 (Glucagon-Like Peptide-1) Receptor Mediates Cardiovascular Protection by Liraglutide In Mice With Experimental Arterial Hypertension. Arterioscler Thromb Vasc Biol. 2020 Jan;40(1):145-158. doi:

Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007 Oct;87(4):1409-39. doi: 10.1152/physrev.00034.2006.

Knudsen LB, Lau J. The Discovery and Development of Liraglutide and Semaglutide. Front Endocrinol (Lausanne). 2019;10:155. Published 2019 Apr 12. doi:10.3389/fendo.2019.00155.

Hadi HA, Suwaidi JA. Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag. 2007;3(6):853-76.

Farah C, Michel LYM, Balligand J-L. Nitric oxide signalling in cardiovascular health and disease. Nat Rev Cardiol [Internet]. mayo de 2018 [citado 25 de enero de 2022];15(5):292-316.

Nyström T, Gutniak MK, Zhang Q, Zhang F, Holst JJ, Ahrén B, Sjöholm A. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab. 2004 Dec;287(6):E1209-15. doi: 10.1152/ajpendo.00237.2004.

Ceriello A, Novials A, Ortega E, Canivell S, La Sala L, Pujadas G, et al. Glucagon-like peptide 1 reduces endothelial dysfunction, inflammation, and oxidative stress induced by both hyperglycemia and hypoglycemia in type 1 diabetes. Diabetes Care [Internet]. 1 de agosto de 2013 [citado 25 de enero de 2022];36(8):2346-50.

Gaspari T, Liu H, Welungoda I, Hu Y, Widdop RE, Knudsen LB, Simpson RW, Dear AE. A GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion molecule expression in an ApoE-/- mouse model. Diab Vasc Dis Res. 2011 Apr; 8(2):117-24. doi: 10.1177/1479164111404257.

Liu H, Dear AE, Knudsen LB, Simpson RW. A long-acting glucagon-like peptide-1 analogue attenuates induction of plasminogen activator inhibitor type-1 and vascular adhesion molecules. J Endocrinol. 2009 Apr; 201(1):59-66. doi: 10.1677/JOE-08-0468.

Dai Y, Mehta JL, Chen M. Glucagon-like peptide-1 receptor agonist liraglutide inhibits endothelin-1 in endothelial cell by repressing nuclear factor-kappa B activation. Cardiovasc Drugs Ther. 2013 Oct; 27(5):371-80. doi: 10.1007/s10557-013-6463-z. PMID: 23657563.

Hassanpour M, Rahbarghazi R, Nouri M, Aghamohammadzadeh N, Safaei N, Ahmadi M. Role of autophagy in atherosclerosis: foe or friend? J Inflamm [Internet]. diciembre de 2019 [citado 25 de enero de 2022];16(1):8. Disponible en: https://journal-inflammation.biomedcentral.com/articles/10.1186/s12950-019-0212-4.

Cai X, She M, Xu M, Chen H, Li J, Chen X, Zheng D, Liu J, Chen S, Zhu J, Xu X, Li R, Li J, Chen S, Yang X, Li H. GLP-1 treatment protects endothelial cells from oxidative stress-induced autophagy and endothelial dysfunction. Int J Biol Sci 2018; 14(12):1696-1708. doi:10.7150/ijbs.27774.

Rowlands J, Heng J, Newsholme P, Carlessi R. Pleiotropic effects of glp-1 and analogs on cell signaling, metabolism, and function. Front Endocrinol [Internet]. 23 de noviembre de 2018 [citado 25 de abril de 2022];9:672. Disponible en: https://www.frontiersin.org/article/10.3389/fendo.2018.00672/full.

Nagashima M, Watanabe T, Terasaki M, et al. Native incretins prevent the development of atherosclerotic lesions in apolipoprotein E knockout mice. Diabetologia. 2011;54(10):2649-2659. doi:10.1007/s00125-011-2241-2.

Zinman B, Aroda VR, Buse JB, et al. Efficacy, Safety, and Tolerability of Oral Semaglutide Versus Placebo Added to Insulin with or Without Metformin in Patients With Type 2 Diabetes: The PIONEER 8 Trial. Diabetes Care. 2019;42(12):2262-2271. doi:10.2337/dc19-0898.

Meier JJ, Gethmann A, Götze O, Gallwitz B, Holst JJ, Schmidt WE, Nauck MA. Glucagon-like peptide 1 abolishes the postprandial rise in triglyceride concentrations and lowers levels of non-esterified fatty acids in humans. Diabetologia. 2006 Mar;49(3):452-8. doi: 10.1007/s00125-005-0126-y. Epub 2006 Jan 31. PMID: 16447057.

Vergès B, Duvillard L, Pais de Barros JP, Bouillet B, Baillot-Rudoni S, Rouland A, Sberna AL, Petit JM, Degrace P, Demizieux L. Liraglutide Reduces Postprandial Hyperlipidemia by Increasing ApoB48 (Apolipoprotein B48) Catabolism and by Reducing ApoB48 Production in Patients with Type 2 Diabetes Mellitus. Arterioscler Thromb Vasc Biol. 2018 Sep;38(9):2198-2206. doi: 10.1161/ATVBAHA.118.310990. PMID: 30026275.

Basu A, Charkoudian N, Schrage W, Rizza RA, Basu R, Joyner MJ. Beneficial effects of GLP-1 on endothelial function in humans: dampening by glyburide but not by glimepiride. American Journal of Physiology-Endocrinology and Metabolism [Internet]. noviembre de 2007 [citado 25 de enero de 2022];293(5):E1289-95. Disponible en: https://www.physiology.org/doi/10.1152/ajpendo.00373.2007.

Ussher JR, Drucker DJ. Cardiovascular actions of incretin-based therapies. Circ Res. 2014 May 23;114(11):1788-803. doi: 10.1161/CIRCRESAHA.114.301958. PMID: 24855202.

Aroor AR, Mandavia CH, Sowers JR. Insulin resistance and heart failure: molecular mechanisms. Heart Fail Clin. 2012;8(4):609-617. doi:10.1016/j.hfc.2012.06.005.

Lovshin J, Cherney D. Glp-1r agonists and endothelial dysfunction: more than just glucose lowering? Diabetes [Internet]. 1 de julio de 2015 [citado 25 de enero de 2022]; 64(7):2319-21. Disponible en: https://diabetesjournals.org/diabetes/article/64/7/2319/18327/GLP-1R-Agonists-and-Endothelial-Dysfunction-More.

Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol [Internet]. diciembre de 2018 [citado 25 de enero de 2022];17(1):122. Disponible en: https://cardiab.biomedcentral.com/articles/10.1186/s12933-018-0762-4.

Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J, Warren ML, Woo V, Hansen O, Holst AG, Pettersson J, Vilsbøll T; SUSTAIN-6 Investigators. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2016 Nov 10;375(19):1834-1844. doi: 10.1056/NEJMoa1607141. Epub 2016 Sep 15. PMID: 27633186.

Leiter LA, Bain SC, Hramiak I, Jódar E, Madsbad S, Gondolf T, et al. Cardiovascular risk reduction with once-weekly semaglutide in subjects with type 2 diabetes: a post hoc analysis of gender, age, and baseline CV risk profile in the SUSTAIN 6 trial. Cardiovasc Diabetol [Internet]. diciembre de 2019 [citado 25 de enero de 2022]; 18(1):73. Disponible en: https://cardiab.biomedcentral.com/articles/10.1186/s12933-019-0871-8.

Husain M, Birkenfeld AL, Donsmark M, Dungan K, Eliaschewitz FG, Franco DR, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med [Internet]. 29 de agosto de 2019 [citado 25 de enero de 2022];381(9):841-51. Disponible en: http://www.nejm.org/doi/10.1056/NEJMoa1901118.

Husain M, Bain SC, Jeppesen OK, Lingvay I, Sørrig R, Treppendahl MB, Vilsbøll T. Semaglutide (SUSTAIN and PIONEER) reduces cardiovascular events in type 2 diabetes across varying cardiovascular risk. Diabetes Obes Metab. 2020 Mar;22(3):442-451. doi: 10.1111/dom.13955. Epub 2020 Feb 5. PMID: 31903692; PMCID: PMC7064975.

Westerink J, Sommer Matthiessen K, Nuhoho S, Fainberg U, Lyng Wolden M, Visseren F, et al. Estimating cardiovascular disease-free life-years with the addition of semaglutide in people with type 2 diabetes using pooled data from SUSTAIN 6 and PIONEER 6. European Heart Journal [Internet]. 1 de noviembre de 2020 [citado 26 de enero de 2022];41(Supplement_2):ehaa946.3069. Disponible en: https://academic.oup.com/eurheartj/article/doi/10.1093/ehjci/ehaa946.3069/6006068.

Tsapas A, Avgerinos I, Karagiannis T, Malandris K, Manolopoulos A, Andreadis P, Liakos A, Matthews DR, Bekiari E. Comparative Effectiveness of Glucose-Lowering Drugs for Type 2 Diabetes: A Systematic Review and Network Meta-analysis. Ann Intern Med. 2020 Aug 18;173(4):278-286. doi: 10.7326/M20-0864. Epub 2020 Jun 30. PMID: 32598218.

Marsico F, Paolillo S, Gargiulo P, Bruzzese D, Dell’Aversana S, Esposito I, Renga F, Esposito L, Marciano C, Dellegrottaglie S, Iesu I, Perrone Filardi P. Effects of glucagon-like peptide-1 receptor agonists on major cardiovascular events in patients with Type 2 diabetes mellitus with or without established cardiovascular disease: a meta-analysis of randomized controlled trials. Eur Heart J. 2020 Sep 14;41(35):3346-3358. doi: 10.1093/eurheartj/ehaa082. PMID: 32077924.

Rubino DM, Greenway FL, Khalid U, O’Neil PM, Rosenstock J, Sørrig R, et al. Effect of weekly subcutaneous semaglutide vs daily liraglutide on body weight in adults with overweight or obesity without diabetes: the step 8 randomized clinical trial. JAMA [Internet]. 11 de enero de 2022 [citado 26 de enero de 2022];327(2):138. Disponible en: https://jamanetwork.com/journals/jama/fullarticle/2787907.

Newsome P, Francque S, Harrison S, et al. Effect of semaglutide on liver enzymes and markers of inflammation in subjects with type 2 diabetes and/or obesity. Aliment Pharmacol Ther. 2019;50(2):193-203. doi:10.1111/apt.15316.

Lagrand WK, Visser CA, Hermens WT, Niessen HWM, Verheugt FWA, Wolbink G-J, et al. C-reactive protein as a cardiovascular risk factor: more than an epiphenomenon? Circulation [Internet]. 6 de julio de 1999 [citado 26 de enero de 2022]; 100(1):96-102. Disponible en: https://www.ahajournals.org/doi/10.1161/01.CIR.100.1.96.

Aroda VR, Rosenstock J, Terauchi Y, Altuntas Y, Lalic NM, Morales Villegas EC, Jeppesen OK, Christiansen E, Hertz CL, Haluzík M; PIONEER 1 Investigators. PIONEER 1: Randomized Clinical Trial of the Efficacy and Safety of Oral Semaglutide Monotherapy in Comparison with Placebo in Patients With Type 2 Diabetes. Diabetes Care. 2019 Sep;42(9):1724-1732. doi: 10.2337/dc19-0749. Epub 2019 Jun 11. PMID: 31186300.

Mosenzon O, Blicher TM, Rosenlund S, Eriksson JW, Heller S, Hels OH, Pratley R, Sathyapalan T, Desouza C; PIONEER 5 Investigators. Efficacy and safety of oral semaglutide in patients with type 2 diabetes and moderate renal impairment (PIONEER 5): a placebo-controlled, randomised, phase 3a trial. Lancet Diabetes Endocrinol. 2019 Jul;7(7):515-527. doi: 10.1016/S2213-8587(19)30192-5. Epub 2019 Jun 9. Erratum in: Lancet Diabetes Endocrinol. 2019 Sep;7(9):e21. PMID: 31189517.

Corrigendum for “reductions in insulin resistance are mediated primarily via weight loss in subjects with type 2 diabetes on semaglutide”. The Journal of Clinical Endocrinology & Metabolism [Internet]. 1 de enero de 2020 [citado 26 de enero de 2022];105(1):386-386. Disponible en: https://academic.oup.com/jcem/article/105/1/386/5674940.

Iacobellis G, Villasante Fricke AC. Effects of semaglutide versus dulaglutide on epicardial fat thickness in subjects with type 2 diabetes and obesity. Journal of the Endocrine Society [Internet]. 1 de abril de 2020 [citado 26 de enero de 2022];4(4):bvz042. Disponible en: https://academic.oup.com/jes/article/doi/10.1210/jendso/bvz042/5805125.

Guglielmo M, Lin A, Dey D, Baggiano A, Fusini L, Muscogiuri G, et al. Epicardial fat and coronary artery disease: Role of cardiac imaging. Atherosclerosis [Internet]. marzo de 2021 [citado 26 de enero de 2022]; 321:30-8. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0021915021000678.

Wong CX, Ganesan AN, Selvanayagam JB. Epicardial fat and atrial fibrillation: current evidence, potential mechanisms, clinical implications, and future directions. Eur Heart J. 2017 May 1;38(17):1294-1302. doi: 10.1093/eurheartj/ehw045. PMID: 26935271.

Descargas

Publicado

2023-05-14