Recomendaciones nutricionales para el personal de salud y el personal esencial expuesto a la COVID-19 en Latinoamérica

Autores/as

  • Cristina Palacios Departamento de Dietética y Nutrición. Florida International University
  • Jennifer Bernal Observatorio de Soberanía y Seguridad Alimentaria y Nutricional, Universidad Nacional de Colombia
  • Anabelle Bonvecchio Directora de Investigación de Políticas y Programas de Nutrición Instituto Nacional de Salud Pública
  • Marlen Gutiérrez
  • Marianella Herrera Cuenca Centro de Estudios del Desarrollo Universidad Central de Venezuela. Caracas
  • Laura Irizarry Programa Mundial de Alimentos (WFP), Oficina Regional para América Latina y el Caribe
  • Lina Lay Mendivil Universidad Tecnológica de Panamá (UTP).Programa de Liderazgo Latinoamericano de Nutrición (Programa LILANUT)
  • Fabiola López Bautista Departamento de Biología Molecular. Instituto Nacional de Cardiología Ignacio Chávez
  • Marisol López
  • Claret Mata Escuela de Nutrición y Dietética. Universidad Central de Venezuela
  • Paula Moliterno Escuela de Nutrición. Universidad de la República. Uruguay. Programa de Liderazgo Latinoamericano de Nutrición
  • Daniela Moyano Escuela de Nutrición, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba
  • Diana Murillo
  • Selene Pacheco Miranda
  • Lita Palomares
  • Kenia Páramo
  • Analy Pérez
  • María Virginia Tijerina Walls
  • María Angélica Trak-Fellermeier

Palabras clave:

Micronutrientes, Suplementación, Compuestos Bioactivos, Personal de Salud, Personal Esencial, COVID-19, Micronutrients, Supplementation, Bioactive Compounds, Health Personnel, Essential Staff

Resumen

Estas recomendaciones se basan en la evidencia científica actual derivada de meta-análisis y revisiones sistemáticas sobre nutrición y prevención de infecciones respiratorias causadas por los virus SARS-CoV, MERS-CoV o influenza, similares en su estructura al SARS-CoV-2. Están dirigidas al personal en la primera línea de atención de salud y al personal que presta servicios esenciales a la comunidad, con alto riesgo de infección por la COVID-19. Estas personas usan equipo de protección personal, cumplen largos turnos laborales, en ocasiones bajo condiciones extremas, lo que puede llevar a descanso insuficiente, alto nivel de estrés, depresión, pobre calidad en la alimentación y deshidratación. Todos estos factores influyen negativamente en el sistema inmune y podrían conllevar un mayor riesgo de infección. Una ingesta adecuada de micronutrientes y otros compuestos bioactivos es esencial para el desempeño óptimo del sistema inmune. Existe evidencia moderada que avala la suplementación, en forma individual, con vitamina C (2 000 mg), vitamina D (1 000-2 000 UI) y zinc (≤ 40 mg) en la prevención de infecciones respiratorias en adultos. No se encontró evidencia suficiente para avalar la suplementación con vitamina A, niacina, ácido fólico, B12, omega 3, probióticos y polifenoles, aunque si se recomienda el consumo de alimentos ricos en estos nutrientes para apoyar al sistema inmune. Se recomienda al personal seguir la recomendación de consumir 5 porciones/día (400 g) de frutas y vegetales/hortalizas, mantenerse hidratado y limitar la cafeína. No hay evidencia del consumo de alimentos alcalinos para prevenir infecciones. Estas recomendaciones son particularmente importantes durante la pandemia.

These recommendations are based on current scientific evidence obtained through meta-analysis and systematic reviews on nutrition and the prevention of respiratory infections related to SARS-CoV, MERS-CoV or influenza, similar in structure to SARS-CoV-2. They are aimed at primary health care personnel and to those who provide essential services to the community and are, consequently, at high risk of COVID-19 infection. These individuals wear personal protective equipment, work long shifts, sometimes under extreme conditions, which can lead to insufficient rest, high stress levels, depression, poor nutrition and dehydration. Together, these factors have a negative impact on the immune system and could result in an increased risk of infection. An adequate intake of micronutrients and other bioactive compounds is essential for optimal immune performance. There is moderate evidence supporting supplementation, individually, with vitamin C (2 000 mg), vitamin D (1 000-2 000 IU) and zinc (≤40 mg) for the prevention of respiratory infections in adults. Insufficient evidence was found to support supplementation with vitamin A, niacin, folic acid, B12, omega 3, probiotics and polyphenols; however, the consumption of foods rich in these nutrients is recommended to support immune function. It is recommended that workers follow the recommendation of consuming 400 g/day of fruits and vegetables, remain hydrated and limit caffeine. There is no scientific evidence supporting the consumption of alkaline foods to prevent infections. The aforementioned recommendations are particularly relevant during the pandemic.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

REFERENCIAS

Houghton C, Meskell P, Delaney H, Smalle M, Glenton C, Booth A, Chan XHS, Devane D, Biesty LM. Barriers and facilitators to healthcare workers' adherence with infection prevention and control (IPC) guidelines for respiratory infectious diseases: a rapid qualitative evidence synthesis. Cochrane Database Syst Rev. 2020;4:CD013582. doi: doi: 10.1002/14651858.CD013582

Intensive Care Society: Wellbeing resource library, 2020. Disponible en: https://www.ics.ac.uk/ICS/Education/Wellbeing/ICS/Wellbeing.aspx

Han Y, Lam JC, Li VO, Guo P, Zhang Q, Wang A, Crowcroft J, Wang S, Fu J, Gilani Z, Downey J. The effects of outdoor air pollution concentrations and lockdowns on Covid-19 infections in Wuhan and other provincial capitals in China. Preprints. 2020, 2020030364. doi: 10.20944/preprints202003.0364.v1.

Wu X, Nethery RC, Sabath BM, Braun D, Dominici F. Exposure to air pollution and COVID-19 mortality in the United States. 2020 medRxiv. doi:10.1101/2020.04.05.20054502

Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull. 2004;130(4):601-30.

Thornton LM, Andersen BL. Psychoneuroimmunology examined: The role of subjective stress. Cellscience. 2006;30;2(4):66-91.

Zorrilla EP, Luborsky L, McKay JR, Rosenthal R, Houldin A, Tax A, McCorkle R, Seligman DA, Schmidt K. The relationship of depression and stressors to immunological assays: a meta-analytic review. Brain Behav Immun. 2001;15(3):199-226.

Wintergerst ES, Maggini S, Hornig DH. Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab. 2007;51(4):301-23.

Linus Pauling Institute (LPL). Overview of the immune system. 2017. Disponible en: https://lpi.oregonstate.edu/mic/health-disease/immunity#authors-reviewers.

Mousa HA. Prevention and treatment of influenza, influenza-like illness, and common cold by herbal, complementary, and natural therapies. J Evid Based Complementary Altern Med. 2017;22(1):166-174. doi:10.1177/2156587216641831)

Gombart AF, Pierre A, Maggini S. A Review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients. 2020;12(1):236. doi:10.3390/nu12010236

Organización Mundial de la Salud (OMS) y Organización de Naciones Unidad para la Agricultura y la Alimentación (FAO). Human vitamin and mineral requirements. 2001. http://www.fao.org/3/Y2809E/y2809e00.htm#Contents

Semba RD. Vitamin A and immunity to viral, bacterial and protozoan infections. Proc Nutr Soc. 1999; 58:719-727.

Chen H, Zhuo Q, Yuan W, Wang J, Wu T. Vitamin A for preventing acute lower respiratory tract infections in children up to seven years of age. Cochrane Database Syst Rev. 2008, Issue 1. Art. No.: CD006090. DOI: 10.1002/14651858.CD006090.pub2

Timoneda J, Rodríguez-Fernández L, Zaragozá R, Marín MP, Cabezuelo MT, Torres L, Viña JR, Barber T. Vitamin A deficiency and the lung. Nutrients. 2018;10(9). pii: E1132. doi: 10.3390/nu10091132.

Toti E, Chen CO, Palmery M, Villaño Valencia D, Peluso I. Carotenoides no provitamínicos y provitamínicos A como inmunomoduladores: cantidad diaria recomendada, índice terapéutico o nutrición personalizada. Oxid Med Cell Longev. 2018;2018: 4637861.

Boon P. Chew, Jean Soon Park, Carotenoid Action on the Immune Response, J Nutr. 2004;134(1):p257S – 261S.

World Health Organization (WHO). Vitamin A supplementation to improve treatment outcomes among children diagnosed with respiratory infections 2011. Disponible en: https://www.who.int/elena/titles/bbc/vitamina_pneumonia_children/en/

Tam E, Keats EC, Rind F, Das JK, Bhutta AZA. Micronutrient supplementation and fortification interventions on health and development outcomes among children under-five in low- and middle-income countries: a systematic review and meta-analysis. Nutrients. 2020;12(2). pii: E289. doi: 10.3390/nu12020289

Imdad A, Mayo-Wilson E, Herzer K, Bhutta ZA. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. Cochrane Database Syst Rev. 2017; Issue 3. Art. No.: CD008524. DOI: 10.1002/14651858.CD008524.pub3

Rodríguez A, Hammer DH, Rivera J. Effects of moderate doses of Vitamin A as an adjunct to the treatment of pneumonia in underweight and normal-weight children: a randomized, double-blind placebo-controlled trial. Am J Clin Nutr. 2005;82:1090-1096

Institute of Medicine. Food and Nutrition Board. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: National Academy Press;2001.

World Health Organization, 2009. Global prevalence of vitamin A deficiency in populations at risk 1995–2005. WHO Global Database on Vitamin A Deficiency.

Sempértegui F, Estrella B, Camaniero V, Betancourt V, Izurieta R, Ortiz W, Fiallo E, Troya S, Rodríguez A, Griffiths JK. The beneficial effects of weekly low dose vitamin A supplementation on the acute lower respiratory infections and diarrhea in Ecuadorian children. Pediatr. 1999;104(1):1-7.

Grumelli S. Food as Coronavirus Prophylaxis. EC Pulmonol Respir Med. 2020;9.4:70-77

Kwon WY, Suh GJ, Kim KS, Kwak YH. Niacin attenuates lung inflammation and improves survival during sepsis by downregulating the nuclear factor-κΒ pathway. Crit Care Med. 2011;39(2): 328-334. DOI 10.1097/CCM.0b13e3181feeae4

Kwon WY, Suh GJ, Kim KS, Jung YS, Kim SH, Kim JS, You KM. 2016. Niacin and selenium attenuate sepsis-induced lung injury by up-regulating nuclear factor erythroid 2-related factor 2 signaling. Crit Care Med. 2011;44 (6): e370-e382. DOI 10.1097/CCM.0000000000001422

Su CF, Liu DD, Kao SJ, Chen HI. Nicotinamide abrogates lung injury caused by ischaemia/reperfusion. Eur Respiratory J. 2007;30: 119-204. DOI 10.1183/09031936.00025107

Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, Bucci E, Piacentini M, Ippolito G, Melino G. COVID-19 infection: the perspectives on immune responses. Cell death & Differentiation. 2020; 27: 1451-1454

Orjuela MA, Mejía-Rodriguez F, Quezada AD, Sánchez Pimienta TG, Shama- Levy T, Romero Rendón J, Bhatt Carreño S, Ponce-Castañeda MV Castro MA, Paul L, Villaldando S. Fortification of bakery and corn masa-based foods in Mexico and dietary intake of folic acid and folate in Mexican national survey data. Am J Clin Nutr. 2019;(00):1-15

Office of Dietary Supplements, National Institutes of Health. Folate, fact sheet. Disponible en: https://ods.od.nih.gov/factsheets/Folate-HealthProfessional/

Kunisawa J, Kiyono H. Vitamin-mediated regulation of intestinal immunity. Front immunol. 2013;(4):1-6.

Yamaguchi T, Hirota K, Nagahama K, Ohkawa, Takahashi, Nomura T, Sakaguchi S. Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity. 2007;(27):145-159.

Serseg T, Benarous K, Yousfi M. Hispidin and Lepidine E: two Natural Compounds and Folic acid as potential inhibitors of 2019-novel coronavirus main protease (2019-nCoVMpro), molecular docking and SAR study. Curr Comput Aided Drug Des. 2020; doi: 10.2174/1573409916666200422075440.

Taneja S, Strand TA, Kumar T, Mahesh M, Mohan S, Manger MS, Refsum H, Yajnik CS, Bhandari N. Folic acid and vitamin B-12 supplementation and common infections in 6-30-mo-old children in India: a randomized placebo-controlled trial. Am J Clin Nutr. 2013;98(3):731-7. doi: 10.3945/ajcn.113.059592.

Bhandari N, Taneja S, Mazumder S, Bahl R, Fontaine O, Bhan MK, Zinc Study Group. Adding zinc to supplemental iron and folic acid does not affect mortality and severe morbidity in young children. J Nutr. 2007;137(1):112-7.

Crider KS, Bailey LB, Berry RJ. Folic acid food fortification-Its history, effect, concerns and future directions. Nutrients. 2011;(3):370-384

Smith AD, Kim YI, Refsum H. Is folic acid good for everyone? Am J Clin Nutr. 2008;87(3):517-33.

Carr A, Maggini S. Vitamin C and immune function. Nutrients. 2017;9(11):1211. Doi: 10.3390/nu9111211.

Ran L, Zhao W, Wang J, Wang H, Zhao Y, Tseng Y, Bu H. Extra dose of vitamin c based on a daily supplementation shortens the common cold: a meta-analysis of 9 randomized controlled trials. Biomed Res Int. 2018; 2018:1837634. doi: 10.1155/2018/1837634.

Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2013; (1):CD000980. doi: 10.1002/14651858.CD000980.pub4

Hemilä H, Louhiala P. Vitamin C for preventing and treating pneumonia. Cochrane Database Syst Rev. 2013 (8):CD005532. doi: 10.1002/14651858.CD005532.pub3.

Hemilä H. Vitamin C may alleviate exercise-induced bronchoconstriction: a meta-analysis. BMJ Open. 2013;20;3(6). pii: e002416.

Ferraro PM, Curhan GC, Gambaro G, Taylor EN. Total, dietary, and supplemental vitamin c intake and risk of incident kidney stones. Am J Kidney Dis. 2016;67(3):400-407. doi:10.1053/j.ajkd.2015.09.005

Marik PE. Is intravenous vitamin C contraindicated in patients with G6PD deficiency? Crit Care. 2019;23(1):109. doi:10.1186/s13054-019-2397-6

Vorilhon P, Arpajou B, Vaillant Roussel H, Merlin É, Pereira B, Cabaillot A. Efficacy of vitamin C for the prevention and treatment of upper respiratory tract infection. A meta-analysis in children. Eur J Clinical Pharmacology. 2019;75: 303–311. Doi:10.1007/s00228-018-2601-7

Zhou YF, Luo BA, Qin LL. The association between vitamin D deficiency and community-acquired pneumonia: A meta-analysis of observational studies. Medicine (Baltimore). 2019;98(38): e17252. doi: 10.1097/MD.0000000000017252.

Jat KR. Vitamin D deficiency and lower respiratory tract infections in children: a systematic review and meta-analysis of observational studies. Trop Doct. 2017;47(1):77-84.

Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL, Bhattoa HP. Evidence that vitamin D supplementation could reduce risk of influenza and Covid-19 infections and deaths. Nutrients. 2020;12(4). pii: E988. doi: 10.3390/nu12040988.

Sundaram ME, Coleman LA. Vitamin D and influenza. Adv Nutr. 2012;3(4):517-25. doi: 10.3945/an.112.002162

Martineau AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P, Dubnov-Raz G, Esposito S, Ganmaa D, Ginde AA, Goodall EC, Grant CC, Griffiths CJ, Janssens W, Laaksi I, Manaseki-Holland S, Mauger D, Murdoch DR, Neale R, Rees JR, Simpson S Jr, Stelmach I, Kumar GT, Urashima M, Camargo CA Jr. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. doi: 10.1136/bmj.i6583

Yamshchikov AV, Desai NS, Blumberg HM, Ziegler TR, Tangpricha V. Vitamin D for treatment and prevention of infectious diseases: a systematic review of randomized controlled trials. Endocr Pract. 2009;15(5):438-49. doi: 10.4158/EP09101.ORR.

Charan J, Goyal JP, Saxena D, Yadav P. Vitamin D for prevention of respiratory tract infections: A systematic review and meta-analysis. J Pharmacol Pharmacother. 2012;3(4):300-3. doi: 10.4103/0976-500X.103685.

Arihiro S, Nakashima A, Matsuoka M, Suto S, Uchiyama K, Kato T, Mitobe J, Komoike N, Itagaki M, Miyakawa Y, Koido S, Hokari A, Saruta M, Tajiri H, Matsuura T, Urashima M. Randomized trial of vitamin d supplementation to prevent seasonal influenza and upper respiratory infection in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2019;25(6):1088-1095. doi: 10.1093/ibd/izy346.

Loeb M, Dang AD, Thiem VD, Thanabalan V, Wang B, Nguyen NB, Tran HTM, Luong TM, Singh P, Smieja M, Maguire J, Pullenayegum E. Effect of Vitamin D supplementation to reduce respiratory infections in children and adolescents in Vietnam: A randomized controlled trial. Influenza Other Respir Viruses. 2019;13(2):176-183. doi: 10.1111/irv.12615.

Xiao L, Xing C, Yang Z, Xu S, Wang M, Du H, Liu K, Huang Z. Vitamin D supplementation for the prevention of childhood acute respiratory infections: a systematic review of randomised controlled trials. Br J Nutr. 2015;114(7):1026-34. doi: 10.1017/S000711451500207X

Zhou J, Du J, Huang L, Wang Y, Shi Y, Lin H. Preventive effects of vitamin d on seasonal influenza a in infants: a multicenter, randomized, open, controlled clinical trial. Pediatr Infect Dis J. 2018;37(8):749-754. doi: 10.1097/INF.0000000000001890.

Vuichard Gysin D, Dao D, Gysin CM, Lytvyn L, Loeb M. Effect of vitamin d3 supplementation on respiratory tract infections in healthy individuals: a systematic review and meta-analysis of randomized controlled trials. PLoS One. 2016;11(9):e0162996. doi: 10.1371/journal.pone.0162996.

Yakoob MY, Salam RA, Khan FR, Bhutta ZA.Vitamin D supplementation for preventing infections in children under five years of age. Cochrane Database Syst Rev. 2016;9;11:CD008824.

Urashima M, Mezawa H, Noya M, Camargo CA Jr. Effects of vitamin D supplements on influenza A illness during the 2009 H1N1 pandemic: a randomized controlled trial. Food Funct. 2014;5(9):2365-70. doi: 10.1039/c4fo00371c.

Jorde R, Witham M, Janssens W, Rolighed L, Borchhardt K, de Boer IH, Grimnes G, Hutchinson MS. Vitamin D supplementation did not prevent influenza-like illness as diagnosed retrospectively by questionnaires in subjects participating in randomized clinical trials. Scand J Infect Dis. 2012;44(2):126-32. doi: 10.3109/00365548.2011.621446.

Aglipay M, Birken CS, Parkin PC, Loeb MB, Thorpe K, Chen Y, Laupacis A, Mamdani M, Macarthur C, Hoch JS, Mazzulli T, Maguire JL. TARGet Kids! Collaboration. Effect of high-dose vs standard-dose wintertime vitamin d supplementation on viral upper respiratory tract infections in young healthy children. JAMA. 2017;18;318(3):245-254. doi: 10.1001/jama.2017.8708.

Steinbrenner H, Al-Quraishy S, Dkhil MA, Wunderlich F, Sies H. Dietary Selenium in Adjuvant Therapy of Viral and Bacterial Infections. Adv Nutr. 2015;6 (1): 73–82.

Friel H, Lederman H. A Nutritional supplement formula for influenza A (H5N1) infection in humans. Medical Hypotheses. 2006;67 (3): 578–87.

McCarty MF, DiNicolantonio JJ. Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus. Prog Cardiovasc Dis. 2020. pii: S0033-0620(20)30037-2. doi: 10.1016/j.pcad.2020.02.007.

Harthill M. Review: micronutrient selenium deficiency influences evolution of some viral infectious diseases. Biol Trace Elem Res. 2011;143(3):1325-36. doi: 10.1007/s12011-011-8977-1.

Moya, M, Bautista EG, Velázquez-González A, Vázquez-Gutiérrez F, Tzintzun G, García-Arreola ME, Castillejos M, Hernández E. Potentially-toxic and essential elements profile of AH1N1 patients in Mexico City. Scientific Reports. 2013;3: 1–7.

Broome CS, McArdle F, Kyle JA, Andrews F, Lowe NM, Hart CA, Arthur JR, Jackson MJ. An Increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am J Clin Nutr. 2004;80(1):154-62.

Kupka R, Mugusi F, Aboud S, Hertzmark E, Spiegelman D, Fawzi WW. Effect of selenium supplements on hemoglobin concentration and morbidity among HIV-1-infected Tanzanian women. Clin Infect Dis. 2009;48(10):1475-8. doi: 10.1086/598334.

Range N, Changalucha J, Krarup H, Pascal M, Andersen AB, Friis H. The effect of multi-vitamin/mineral supplementation on mortality during treatment of pulmonary tuberculosis: a randomised two-by-two factorial trial in Mwanza, Tanzania. Brit J Nutr. 2006;95 (4): 762–70.

Lassi ZS, Moin A, Bhutta ZA. Zinc supplementation for the prevention of pneumonia in children aged 2 months to 59 months. Cochrane Database Syst Rev. 2016, Issue 12. Art. No.: CD005978.

Ibs KH, Rink L. Zinc-altered immune function. J Nutr. 2003;133(5):1452S–56S.

Ravaglia G, Forti P, Maioli F, Bastagli L, Facchini A, Mariani E, Savarino L, Sassi S, Cucinotta D, Lenaz G. Effect of micronutrient status on natural killer cell immune function in healthy free-living subjects aged ≥90 y. Am J Clin Nutr. 2000;71(2):590–8.

Te Velthuis AJ, van den Worm, SH, Sims, AC, Baric, RS, Snijder, EJ, van Hemert, M J. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS pathogens. 2010;6: (11).

Das RR, Singh M. Oral zinc for the common cold. JAMA. 2014, 311(14), 1440-1441.

Hemilä H, Fitzgerald JT, Petrus EJ, Prasad A. Zinc acetate lozenges may improve the recovery rate of common cold patients: an individual patient data meta-analysis. Open Forum Infect Dis. 2017;4(2):ofx059. doi: 10.1093/ofid/ofx059.

Eby GA. Zinc lozenges as cure for the common cold—a review and hypothesis. Med Hypotheses. 2010;74:482–92.

Hemilä, H. Zinc lozenges and the common cold: a meta-analysis comparing zinc acetate and zinc gluconate, and the role of zinc dosage. JRSM open. 2017b;8(5):2054270417694291.

IZINCG. IZINCG Technical brief. Determining the risk of zinc deficiency: assessment of dietary zinc intake. 2019;3, 2nd edition. Disponible en: https://www.izincg.org/new-blog-1/2019/3/3/second-edition-of-izincg-technical-brief-no-3-out-now

Lonnerdal, B. Dietary factors influencing zinc absorption. J Nutr. 2000;130(5), 1378S-1383S.

Temple JL, Hostler D, Martin-Gill C, Moore CG, Weiss PM, Sequeira DJ, Condle JP, Lang ES, Higgins JS, Patterson PD. Systematic review and meta-analysis of the effects of caffeine in fatigued shift workers: implications for emergency medical services personnel. Prehosp Emerg Care. 2018;22(sup1):37-46. doi: 10.1080/10903127.2017.1382624

Zhang Y, Coca A, Casa DJ, Antonio J, Green JM, Bishop PA. Caffeine and diuresis during rest and exercise: A meta-analysis. J Sci Med Sport. 2015;18(5):569-74. doi: 10.1016/j.jsams.2014.07.017.

Li X, Zhang C, Liu L, Gu M. Existing bitter medicines for fighting 2019-nCoV-associated infectious diseases. FASEB J. 2020. doi: 10.1096/fj.202000502

EFSA. Scientific opinion on the safety of caffeine, EFSA J 2015, 13(5):4102

Food and Drug Administration (FDA). Al grano: ¿cuánta cafeína es demasiada? 2018. Disponible en: https://www.fda.gov/consumers/articulos-en-espanol/al-grano-cuanta-cafeina-es-demasiada

Remer T, Manz F. Potential renal acid load of foods and its influence on urine pH. J Am Diet Assoc. 1995;95(7):791-797

Sturman LS, Ricard CS, Holmes KV. Conformational change of the coronavirus peplomer glycoprotein at pH 8.0 and 37 degrees C correlates with virus aggregation and virus-induced cell fusion. J Virol. 1990;64(6):3042-50.

Hosseini B, Berthon BS, Saedisomeolia A, Starkey MR, Collison A, Wark PAB, Wood LG. Effects of fruit and vegetable consumption on inflammatory biomarkers and immune cell populations: a systematic literature review and meta-analysis. Am J Clin Nutr. 2018;108(1):136-155. doi: 10.1093/ajcn/nqy082.

Organización Mundial de la Salud (OMS) y Organización de Naciones Unidad para la Agricultura y la Alimentación (FAO). Joint WHO/FAO Expert consultation on diet, nutrition and the prevention of chronic diseases, report of a joint WHO/FAO expert consultation, Geneva, 28 January -- 1 February 2002.

Popkin BM, D'Anci KE, Rosenberg IH. Water, hydration, and health. Nutr Rev. 2010;68(8), 439–458. Doi:10.1111/j.1753-4887.2010.00304.x

Institute of Medicine. Dietary reference intakes for water, potassium, sodium, chloride, and sulfate. Institute of Medicine Panel on Dietary Reference Intakes for Electrolytes and Water, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes Washington, D.C. National Academies Press;2005.

Organización Mundial de la Salud (OMS). Nutrients in drinking water. Geneva: 2005.

Wittbrodt MT, Millard-Stafford, M. Dehydration impairs cognitive performance. Med Sci Sports Exerc. 2018;50(11):2360-2368. doi: 10.1249/MSS.0000000000001682.

Alomar MZ, Akkam A, Alashqar S, Eldali A. Decreased hydration status of emergency department physicians and nurses by the end of their shift. Int J Emerg Med. 2013;6(1):27. doi: 10. 1186/1865-1380-6-27.

El-Sharkawy AM, Bragg D, Watson P, Neal K, Sahota O, Maughan RJ, Lobo DN. Hydration amongst nurses and doctors on-call (the HANDS on prospective cohort study. Clin Nutr. 2016;35(4):935-42. doi: 10.1016/j.clnu.2015.07.007

Bishop PA, Pieroni RE, Smith JF, Constable SH. Limitations to heavy work at 21 degrees C of personnel wearing the U.S. Military chemical defense ensemble. Aviat Space Environ Med. 1991;62:216–220.

Rubenstein CD, DenHartog EA, Deaton AS, Bogerd CP & DeKant S. Fluid replacement advice during work in fully encapsulated impermeable chemical protective suits. J Occupational and Environmental Hygiene. 2017;14(6):448-455. doi: 10.1080/15459624.2017.1296230

OSHA (Administración de Seguridad y Salud Ocupacional). OSHA Technical Manual (OTM). Section III: Chapter 4 http://www. osha.gov/dts/osta/otm/otm_iii/otm_iii_4.html

Kenefick RW, Sawka MN. Hydration at the work site. J Am Coll Nutr. 2007;26(5):597S-603S.

Husson MO, Ley D, Portal C, Gottrand M, Hueso T, DesseynJL, Gottrand, F. Modulation of host defense against bacterial and viral infections by omega-3 polyunsaturated fatty acids. J Infection. 2016;73(6), 523–535. doi:10.1016/j.jinf.2016.10.001.

Das UN. Can bioactive lipids inactivate coronavirus (COVID-19)? Arch Med Res. 2020. pii: S0188-4409(20)30292-7. doi: 10.1016/j.arcmed.2020.03.004.

Wu D, Lewis ED, Pae M, Meydani SN. Nutritional modulation of immune function: analysis of evidence, mechanisms, and clinical relevance. Front Immunol. 2019;9:3160. doi: 10.3389/fimmu.2018.03160

Gutiérrez S, Svahn SL, Johansson ME. Effects of omega-3 fatty acids on immune cells. Int J Mol Sci. 2019;20:5028. doi: 10.3390/ijms20205028.

Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol. 2020;92:479–490. Doi:10.1002/jmv.25707

Chen H, Wang S, Zhao Y, Luo Y, Tong H, Su L. Correlation analysis of omega-3 fatty acids and mortality of sepsis and sepsis-induced ARDS in adults: Data from previous randomized controlled trials. Nutr J. 2018;17:57. doi: 10.1186/s12937-018-0356-8.

Pérez-Jiménez J, Neveu V, Vos F, Scalbert A. Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. Eur J Clin Nutr. 2010;64(3):S112-20. doi: 10.1038/ejcn.2010.221.

Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Scientific World J. 2013;2013:162750. doi: 10.1155/2013/162750.

Furushima D, Ide K, Yamada H. Effect of tea catechins on influenza infection and the common cold with a focus on epidemiological/clinical studies. Molecules. 2018;20;23(7). pii: E1795. doi: 10.3390/molecules23071795.

Uchide N, Toyoda H. Antioxidant therapy as a potential approach to severe influenza-associated complications. Molecules. 2011;16(3): p. 2032–2052.

Rasouli H, Farzaei MH, Khodarahmi R. Polyphenols and their benefits: A review. International J Food Properties. 2017;20(2):1700-1741.

Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. doi:10.1017/jns.2016.41

Somerville V, Braakhuis A, Hopkins W. Effect of flavonoids on upper respiratory tract infections and immune function: a systematic review and meta-analysis. Adv Nutr. 2016; 7: p. 488–97

Furushima D, Nishimura T, Takuma N, Iketani R, Mizuno T, Matsui Y, Yamaguchi T, Nakashima Y, Yamamoto S, Hibi M, Yamada H. Prevention of acute upper respiratory infections by consumption of catechins in healthcare workers: a randomized, placebo-controlled trial. Nutrients. 2019; 12(1). pii: E4. doi: 10.3390/nu12010004.

Matsumoto K, Yamada H, Takuma N, Niino H, Sagesaka YM. Effects of green tea catechins and theanine on preventing influenza infection among healthcare workers: a randomized controlled trial. BMC Complement Altern Med. 2011;1:15. doi: 10.1186/1472-6882-11-15.

Heinz S, Henson D, Austin M, Jin F, Nieman C. Quercetin supplementation and upper respiratory tract infection: A randomized community clinical trial. Pharmacol Res. 2010; 622: 37–242

Han MK, Barreto TA, Martinez FJ, Comstock AT, Sajjan US. Randomised clinical trial to determine the safety of quercetin supplementation in patients with chronic obstructive pulmonary disease. BMJ Open Respir Res. 2020; 7(1). pii: e000392. doi: 10.1136/bmjresp-2018-000392.

Khan MF, Khan MA, Khan ZA, Ahamad T, Ansari WA. Identification of dietary molecules as therapeutic agents to combat COVID-19 using molecular docking studies. Research Square. 2020. 10.21203/rs.3.rs-19560/v1

Zakaryan H, Arabyan E, Oo A, Zandi. Flavonoids: promising natural compounds against viral infections. Arch Virol. 2017;162(9):2539-2551. doi: 10.1007/s00705-017-3417-y.

Del Bo' C, Bernardi S, Marino M, Porrini M, Tucci M, Guglielmetti S, Cherubini A, Carrieri B, Kirkup B, Kroon P, Zamora-Ros R, Liberona NH, Andres-Lacueva C, Riso P. Systematic review on polyphenol intake and health outcomes: is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern? Nutrients. 2019;16;11(6). pii: E1355. doi: 10.3390/nu11061355

Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009; 2:270–8. doi: 10.4161/oxim.2.5.9498

Cory H, Passarelli S, Szeto J, Tamez M, Mattei J. The role of polyphenols in human health and food systems: a mini-review. Front Nutr. 2018;5:87. doi: 10.3389/fnut.2018.00087

Kanauchi O, Andoh A, AbuBakar S, Yamamoto N. Probiotics and paraprobiotics in viral infection: clinical application and effects on the innate and acquired immune systems. Curr Pharm Des. 2018; 24:710–717

Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019;16(10):605-616. doi: 10.1038/s41575-019-0173-3.

Hao Q, Dong BR, Wu T. Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst Rev. 2015; 2: CD006895

Reid G. Probiotic use in an infectious disease setting. Expert Rev Anti Infect Ther. 2017; 15 (5): 449-455

Laursen R, Hojsak I. Probiotics for respiratory tract infections in children attending day care centers A systematic review. Eur J Pediatr. 2018; 177:979–994. Doi:10.1007/s00431-018-3167-1

Wang Y, Li X, Ge T, Xiao Y, Liao Y, Cui Y, Zhang Y, Ho W, Yu G, Zhang T. Probiotics for prevention and treatment of respiratory tract infections in children: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 2016; 95(31):e4509. doi: 10.1097/MD.0000000000004509.

King S, Tancredi D, Lenoir-Wijnkoop I, Gould K, Vann H, Connors G, Sanders ME, Linder JA, Shane AL, Merenstein D. Does probiotic consumption reduce antibiotic utilization for common acute infections? A systematic review and meta-analysis. Eur J Public Health. 2019;29(3):494-499. doi: 10.1093/eurpub/cky185.

Khalesi S, Bellissimo N, Vandelanotte C, Williams S, Stanley D, Irwin C. A review of probiotic supplementation in healthy adults: helpful or hype? Eur J Clin Nutr. 2019;73(1):24-37. doi: 10.1038/s41430-018-0135-9.

Wypych TP, Wickramasinghe LC, Marsland BJ. The influence of the microbiome on respiratory health. The influence of the microbiome on respiratory health. Nat Immunol. 2019; 20(10):1279-1290.

Capurso L. Thirty years of lactobacillus rhamnosus GG. A review. J Clin Gastroenterol. 2019;53(s1):S1–S41.

Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med. 2019;25(5):716-729. doi: 10.1038/s41591-019-0439-x.

Wolvers D, Antoine JM, Myllyluoma E, Schrezenmeir J, Szajewska H, Rijkers GT. Guidance for substantiating the evidence for beneficial effects of probiotics: prevention and management of infections by probiotics. J Nutr. 2010;140(3):698S-712S. doi: 10.3945/jn.109.113753

Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361 j2179.

Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K, Abrouk M, Farahnik B, Nakamura M, Zhu TH, Bhutani T, Liao W. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73. doi: 10.1186/s12967-017-1175-y.

Descargas

Cómo citar

Palacios, C., Bernal, J., Bonvecchio, A., Gutiérrez, M., Herrera Cuenca, M., Irizarry, L., Lay Mendivil, L., López Bautista, F., López, M., Mata, C., Moliterno, P., Moyano, D., Murillo, D., Pacheco Miranda, S., Palomares, L., Páramo, K., Pérez, A., Tijerina Walls, M. V., & Trak-Fellermeier, M. A. (2020). Recomendaciones nutricionales para el personal de salud y el personal esencial expuesto a la COVID-19 en Latinoamérica. Archivos Latinoamericanos De Nutrición (ALAN), 69(4), 242–258. Recuperado a partir de http://saber.ucv.ve/ojs/index.php/rev_alan/article/view/19275

Número

Sección

Artículo General

Artículos más leídos del mismo autor/a