Tropical medicine rounds

Immunopathologic study of erythema dyschromicum perstans (ashy dermatosis)

Luz A. Vásquez-Ochoa* †, MD, Diana M. Isaza-Guzmán‡¶, MSc, Beatriz Orozco-Mora*, MD, Rodrigo Restrepo-Molina*, MD, Judith Trujillo-Perez*, BLC, and Félix J. Tapia§, MPh

From the *Universidad Pontificia Bolivariana, Medellín, †Hospital Pablo Tobón Uribe, Medellín, ‡Instituto Colombiano de Medicina Tropical, Sabaneta, ¶Universidad de Antioquia, Medellín, Colombia, and §Instituto de Biomedicina, Universidad Central de Venezuela, Caracas, Venezuela

Correspondence
Luz Adriana Vasquez-Ochoa
Diagonal 75 DD N° 4-41
Bloque 54,
Apt. 401
Medellín
Colombia
E-mail: gigonzal@epm.net.co

Abstract
Erythema dyschromicum perstans (EDP) is a pigmented disease of unknown etiology in which damage to basal cells is thought to be mediated by adhesion molecules. The aim of this study was to characterize the histopathology and immunopathology of EDP. Forty-three patients from Medellín, Colombia, with the diagnosis of EDP were evaluated. Skin biopsy specimens were obtained for histopathology and immunohistochemistry, using monoclonal antibodies directed against the following markers: CD4, CD8, CD56, CD1a, CD68, CLA, HLA–DR, ICAM-1 and LFA-1α.

A dermal lymphocytic infiltrate was observed in all cases, with a perivascular location in 86%. Other histologic features included melanophages in all specimens, vacuolization of the basement membrane zone (BMZ) 58% and exocytosis of lymphocytes (53.5%). The mean number of total leukocytes was 1510 cells mm−2 of tissue. There was a predominance of CD8+ T lymphocytes in the dermis and HLA–DR+, ICAM-1+ keratinocytes in the epidermis. Exocytosis of cutaneous lymphocyte antigen (CLA)+ cells was observed in areas of BMZ damage, suggesting that response to antigenic stimulation may play a role in the development of EDP.

Introduction
Erythema dyschromicum perstans (EDP), or ashy dermatosis, is an idiopathic dermal melanosis first described by Ramirez1–4 in 1957 in El Salvador; it typically occurs in the second decade of life, more often in women, and generally affects those with type IV skin.5–8 It has been described mainly in patients from tropical areas of Central and South America.9,10,11,12 Multiple factors, such as parasites, atopy, hypothyroidism and contact with chemical substances, have been implicated in the development of EDP, but the etiology remains obscure.5,16 It has been postulated that damage to melanocytes and basal layer keratinocytes1–17 results from an abnormal immune response to antigens.17,18 Opinions vary about whether EDP is an abortive form of lichen planus (LP) or a distinct entity.19–22

The characteristic clinical signs of EDP include gray macules with erythematous borders, which converge and cover variable percentages of the body surface. The most common histopathological findings are a dermal perivascular lymphocytic infiltrate with many melanophages, vacuolization of the basement membrane zone (BMZ), necrotic keratinocytes in the basal layer, colloid bodies, exocytosis of lymphocytes, and incontinence of the pigment.20,23–26 It has been postulated that adhesion molecules such as leukocyte function-associated antigen (LFA-1β) and intercellular adhesion molecule-1 (ICAM-1), and molecules of the class II major histocompatibility complex (MHC-II/HLA–DR), may play a role in the development of abnormal melanocytes and BMZ damage.4,17,20–24,26–30 The presence of interleukin-2 (IL-2), interferon-gamma (IFN-γ), natural killer (NK) cells and cytotoxic T cells in lesions of EDP is evidence that the immune system participates in this disease.31–33

There have been no published studies from Colombia concerning the immunopathology of EDP. Hence, we examined the histopathological findings along with the immunohistochemical features to help elucidate the immunopathology of EDP.

Materials and Methods
All patients with EDP, from 1994–2000, observed at the Laboratorio Departamental de Salud Publica de Antioquia in Medellín, Colombia, were included for study. After clinical evaluation and documentation of the medical history, two 4-mm punch biopsy specimens were obtained from the border of a lesion. Histopathology examination was performed on formalin-fixed paraffin-embedded sections stained with hematoxylin and eosin, and an immunohistochemical study was conducted on tissue that was snap-frozen in liquid nitrogen.
Immunohistochemistry was performed using monoclonal antibodies that recognize Langerhans cells (CD1a), macrophages (CD68), T-helper/inducer lymphocytes (CD4), cytotoxic T lymphocytes (CD8), NK cells (CD56), adhesion molecules LFA-1α (CD11a/CD18) and ICAM-1 (CD54), HLA–DR (MHC-II/HLA–DR) and cutaneous lymphocyte antigen (CLA). All antibodies were obtained from DAKO (Carpinteria, CA), except ICAM-1 and CLA (Biodesign International™, Saco, MN) and CD68 (Pharmingen, San Diego, CA). Except for localization of CD68, immunostaining was performed by the avidin-biotin-peroxidase method described by Isaza et al. To evaluate CD68 expression, an indirect immunofluorescence test was used. Cell counts were carried out using a light microscope with an ocular grid calibrated to determine the number of cells per square-millimeter (cells mm$^{-2}$) in epidermal and dermal infiltrates. The area of the grid for cell counting was 0.0196 mm2 using a ×40 objective. Immunostained cells were counted in 10 fields in each of two tissue sections. In most cases, this count represented the total infiltrate because the cellular density of the dermis was low. In evaluating the epidermis, cells that had one nucleus and at least two dendrites were counted as Langerhans cells.

Results

Of the 43 patients (56% male, 44% female) enrolled in the study, 65% were from the urban area of Medellin city. The mean age was 36 years (range 10–67 years). There was a predominance of type IV skin (49%), followed by type III (37%) and type V (14%); no patients had skin types I, II, or VI. Brown-grayish macules were observed in 24 patients (55%) and 11 patients (25%) had grayish macules and only five patients (12%) presented with macules that lacked erythematous borders. All patients had multiple lesions, and in 67% of cases three or four sites were affected, most often the anterior thorax (69%), followed by the lower limbs (67%), neck (67%), face (65%), and less frequently the posterior thorax (28%) and upper limbs (25%). On questioning, approximately half the patients noted that lesions were associated with pruritus and that there was no personal or family history of EDP.

Histologic evaluation of specimens from the 43 patients showed in all cases a dermal lymphocytic infiltrate and melanophages: vacuolization of the BMZ in 58%, colloid bodies in 42% and exocytosis of lymphocytes in 54% of biopsies. No granulomas were observed. The dermal infiltrate was perivascular in 37 patients (86%), diffuse in four patients (9%), and band-like in two patients (5%). The average number of total mononuclear cells in the dermal infiltrate was 1510 cells mm$^{-2}$.

Immunohistochemistry was performed on biopsy specimens from 36 of the 43 patients. The density of lymphocytes by immunophenotype and expression of adhesion molecules is displayed in Table 1. There was a slight predominance of CD8$^+$ over CD4$^+$ lymphocytes (Fig. 1), with a CD4/CD8 ratio of 0.83. Expression of LFA-1α was abundant in the dermal infiltrates (Table 1, Fig. 2). There were CLA-positive lymphocytes in all 34 cases studied, but these cells comprised only the 5% of dermal lymphocytes. Exocytosis of lymphocytes

<table>
<thead>
<tr>
<th>Cell surface markers in dermis</th>
<th>Sample (n)</th>
<th>Lymphocyte density (cells mm$^{-2}$)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4</td>
<td>33</td>
<td>158.8 ± 22</td>
<td>10.5 ± 1.4</td>
</tr>
<tr>
<td>CD8</td>
<td>36</td>
<td>189.2 ± 29</td>
<td>12.5 ± 0.9</td>
</tr>
<tr>
<td>CD68</td>
<td>25</td>
<td>176.2 ± 22</td>
<td>11.7 ± 1.1</td>
</tr>
<tr>
<td>CD56</td>
<td>36</td>
<td>12.6 ± 1.9</td>
<td>0.8 ± 0.06</td>
</tr>
<tr>
<td>CLA</td>
<td>34</td>
<td>74.0 ± 8.2</td>
<td>4.9 ± 0.64</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>32</td>
<td>76.1 ± 10</td>
<td>5.0 ± 0.7</td>
</tr>
<tr>
<td>LFA-1α</td>
<td>35</td>
<td>316.9 ± 35</td>
<td>21.0 ± 1.8</td>
</tr>
<tr>
<td>CD4/CD8 ratio</td>
<td>33</td>
<td>0.83</td>
<td></td>
</tr>
</tbody>
</table>

*Mean value of cells mm$^{-2} ±$ standard error (SEM).
was observed in 35% of cases. ICAM-1 was expressed by epidermal keratinocytes in 46% of specimens, and was preferentially localized to basal layer keratinocytes. In some cases, there were patches of ICAM-1 keratinocytes in the mid-epidermis. ICAM-1 keratinocytes were found in the vicinity of LFA-1α papillary dermal lymphocytes. Epidermal cells expressed HLA–DR in 64% of the samples with staining mainly of Langerhans cells and little expression by keratinocytes. Exocytosis was mainly of CD4+, CD8+ and CLA+ lymphocytes (Fig. 3), many of which also expressed LFA-1α. In lesions with vacuolization of the BMZ, there was a predominance of LFA-1α expression (73%), followed by ICAM-1 (64%), and HLA–DR on Langerhans cells (55%).

Discussion

Considered a disease of the tropics, erythema dyschromicum perstans has been described in a large series from Salvador,13 smaller cohorts of patients from Mexico11,12,13,15 and Venezuela,23,24 and in a patient from Argentina25, but there are no publications from Colombia. All our patients presented with grayish hyperpigmented lesions; consistent with the report by Ramirez.24 An erythematous lesion border was present in 24 patients, most of whom had the disease for at least 1 year. In contrast, Tschen et al.2 and Leonforte and Peñalé26 described the presence of an active margin in patients with EDP of short duration.

Histopathological analysis of lesions showed BMZ vacuolization in 58% of our patients, which is lower than the 85% reported by Vega et al.35 The perivascular distribution of the infiltrate in 86% of our cases contrasts with the typically band-like infiltrate in lichen planus or its variations.22,23,25 Some authors consider EDP and lichen planus pigmentosus to be variants of lichen planus,22,23 but we believe that EDP is a distinct entity. In both lichen planus and EDP, there are melanophages and BMZ vacuolization. Max Joseph-spaces, although not observed in all cases of lichen planus, are not present in EDP, and confirmed by our series. The immunopathology of EDP and LP are similar and include populations of helper/inducer (CD4+) and cytotoxic (CD8+) T cells and epidermal keratinocytes that express HLA–DR.2,20,23,39,40 The average number of mononuclear cells was 1510 mm². While the density of mononuclear cells has been reported in inflammatory diseases such as leprosy (3600 mm² of infiltrate),41 and leishmaniasis (8000 mm²),42 to our knowledge, this is the first report on cellular density in EDP.

It has been shown that ICAM-1(CD54) is undetectable in normal skin, but it is expressed focally in keratinocytes of patients with inflammatory skin diseases. Epidermal ICAM-1 expression was found in 46% of our patients, reinforcing the inflammatory nature of EDP. The location of the LFA-1α lymphocytes in the papillary dermis apposed to an ICAM-1 + dermal–epidermal junction, supports a process in which lymphocytes are dependent on adhesion.43 In 22 patients in which basal vacoulization was evaluated, we found LFA-1α expression in 73% and 64% had ICAM-1 expression, supporting a role for these two adhesion molecules in the development of BMZ damage in EDP.

References

