SABER UCV >
1) Investigación >
Artículos Publicados >
Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/10872/20584
|
Título : | The Space of Bounded p(⋅)-Variation in the Sense Wiener-Korenblum with Variable Exponent |
Autor : | Mejia, Odalis Merentes, Nelson Sánchez, José Luis Valera-López, Maira |
Palabras clave : | Generalized Variation p(⋅)-Variation in the Sense of Wiener-Korenblum Exponent Variable Composition Operator Matkowski’s Condition |
Fecha de publicación : | 15-Feb-2020 |
Citación : | 2016;6 |
Resumen : | In this paper we present the notion of the space of bounded p(⋅)-variation in the sense of Wiener-
Korenblum with variable exponent. We prove some properties of this space and we show that
the composition operator H, associated with h : R → R , maps the kBVW ([a,b])
pBV a b ⋅ κ , into itself, if and
only if h is locally Lipschitz. Also, we prove that if the composition operator generated by
h : [a,b]× → maps this space into itself and is uniformly bounded, then the regularization of h
is affine in the second variable, i.e. satisfies the Matkowski’s weak condition. |
URI : | http://hdl.handle.net/10872/20584 |
ISSN : | 2160-0384 |
Aparece en las colecciones: | Artículos Publicados
|
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.
|