SABER UCV >
2) Tesis >
Pregrado >
Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/10872/12425
|
Título : | Avalanchas de actividad en redes neuronales de Morris-Lecar |
Autor : | Hoenicka, Johans |
Palabras clave : | leyes de potencia redes de neuronas la topología de la red actividad de la red topología sistema avalancha red neuronal |
Fecha de publicación : | 27-Oct-2015 |
Resumen : | En este trabajo de tesis se busca estudiar la aparición de un comportamiento caracterizado por leyes de potencia en redes de neuronas que obedecen las ecuaciones de Morris-Lecar [18] y su relación con la topología de la red. Se introducen varias maneras de cuantificar la actividad de la red, emulando el proceso de medición experimental. Identificamos que para un tipo específico de topología, el mundo pequeño económico [13], el sistema se ubica en un estado crítico en el cual las distribuciones de tamaño de avalancha y de tiempo de vida de avalancha obedecen leyes de potencias. En esta situación se observa una mayor aproximación de la tasa de ramificación σ al valor crítico. Estos resultados sugieren que la topología es un factor determinante para la aparición de condiciones de operatividad crítica en la red neuronal. |
URI : | http://hdl.handle.net/10872/12425 |
Aparece en las colecciones: | Pregrado
|
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.
|