RESPUESTAS DINÁMICA DEL CUERPO RÍGIDO

1.- \[N = \frac{\sqrt{2}}{2} P \] \(\uparrow \) ; \[f_R = \frac{\sqrt{2}}{6} P \] \(\uparrow \) ; \[\mu_{\text{mín}} = \frac{1}{3} \]

2.- \[x = \frac{\sqrt{6} L}{12} (\sqrt{6} - 2) \]

3.- \[O_x = 0 \] ; \[O_y = \frac{1}{2} m g \] \(\uparrow \)

4.- \[h = \frac{7}{5} R \]

5.- \[O_x = \frac{3}{2} m g \] \(\uparrow \) ; \[O_y = \frac{9\sqrt{3}}{56} m g \] \(\uparrow \)

6.- \[d = \frac{5}{6} b \]

7.- \[\ddot{a}_{c3}^3 = \frac{9}{16} g \hat{p} \]

donde 3 es la barra BC

8.- \[\mu_{\text{mín}} = 5 \]

9.- \[\ddot{a}_{21} = \frac{\sqrt{3}}{3 R} g \hat{k} \]

donde 2 es el disco

10.- \[\ddot{a}_{i}^{A2} = -\frac{2}{9} g \hat{i} \]

donde 2 es la cuña

11.- \[\ddot{a}_{i}^{D2} = -\frac{4}{5} g \hat{i} \]

donde 2 es el bloque

12.- \[N_A = \frac{(3 g R + v^2)}{6 g R} P \] \(\uparrow \) ; \[N_B = \frac{(3 g R + 2 v^2)}{6 g R} P \] \(\uparrow \)

13.- \[\theta = \tan^{-1} \left(\frac{\sqrt{3} + 2}{3} \right) \]
14. \[d = \frac{16}{11} \cdot L \]

15. \[\theta = \frac{\pi}{4} \]

16. a) \[T_{AB} = \frac{\sqrt{2}}{8} \cdot P \] (extensión)
 b) \(\ddot{a}_1^{B4} = \frac{5\sqrt{2}}{16} \cdot g \cdot \dot{p} \)

\[
\begin{align*}
\text{donde} & \quad 4 \text{ es la barra } AB \\
\end{align*}
\]

\[
\begin{align*}
c) & \quad f_R = \frac{5\sqrt{2}}{16} \cdot P \quad (\Rightarrow) \quad N = \frac{\sqrt{2}}{2} \cdot P \quad (\Rightarrow) \quad \text{d) } \mu_{\text{min}} = \frac{5}{8}
\end{align*}
\]

17. \[\ddot{a}_{21} = -\frac{9}{88 \cdot R} \cdot g \cdot \hat{k} \]

\[
\begin{align*}
\text{donde} & \quad 2 \text{ es la barra}
\end{align*}
\]

18. \[N = \frac{4}{3} \cdot P \quad (\uparrow) \]

19. \[\theta = \text{sen}^{-1} \left(\frac{8}{9} \right) \]

20. a) \[F = \frac{4\sqrt{3}}{3} \cdot P \]
 b) \[T = \frac{2\sqrt{3}}{3} \cdot P \]
 y \[O_X = \frac{\sqrt{3}}{3} \cdot P \]

21. \[\ddot{a}_{21} = -\frac{3}{25 \cdot R} \cdot \hat{k} \]

\[
\begin{align*}
\text{donde} & \quad 2 \text{ es el disco}
\end{align*}
\]

22. \[\omega_{21} = 2 \cdot \sqrt{\frac{2 \cdot \pi \cdot g}{3 \cdot R}} \]

\[
\begin{align*}
\text{donde} & \quad 2 \text{ es el disco}
\end{align*}
\]

23. \[V_{D}^{B2} = 2 \cdot \sqrt{2 \cdot \pi \cdot R \cdot g} \]

\[
\begin{align*}
\text{donde} & \quad 2 \text{ es el yoyo y } D \text{ la partícula de mayor velocidad}
\end{align*}
\]

24. \[\varphi = \cos^{-1} \left(\frac{\sqrt{2} + 1}{3} \right) \]

25. \[\omega_{21} = 2 \cdot \sqrt{\frac{10 \left(\sqrt{3} - 1 \right) \cdot g}{29 \cdot L}} \]

\[
\begin{align*}
\text{donde} & \quad 2 \text{ es la barra}
\end{align*}
\]
26.- $\omega_{21} = \frac{1}{2} \sqrt{\frac{3 \sqrt{2} \, g}{R}}$
donde 2 es la pieza

27.- $V_i^E = 2 \frac{h \, g}{15}$

28.- $\omega_{21} = \sqrt{\frac{2 \, g}{3 \, R}}$
donde 2 es el disco

29.- $\omega_{21} = \frac{1}{10} \sqrt{\frac{255 \, g}{R}}$
donde 2 es la barra AB

30.- $V_i^{A2} = \sqrt{\frac{15 \, g \, L}{14}}$
donc e 2 es la barra AC

31.- $\omega_{21} = \sqrt{\frac{6 \, g}{11 \, R}}$
donde 2 es el disco

32.- $\omega_{31} = \frac{1}{5} \sqrt{\frac{3 (8 \sqrt{2} - 9) \, g}{R}}$
donde 3 es la barra BC

33.- $h = \frac{9 \, v^2}{4 \, g}$

34.- $\omega_{31} = \sqrt{\frac{5 \, g \, (\sqrt{3} - \sqrt{2})}{6 \, L}}$
donde 3 es la barra AB

35.- $\omega_{21} = \sqrt{\frac{2 \, (\pi + 1) \, g}{3 \, R}}$
donde 2 es el disco de centro C

36.- $\omega_{31} = \sqrt{\frac{30 \, g}{131 \, R}}$
donc e 3 es la barra
37. \(\omega_{31} = \sqrt[3]{\frac{3gL(10 - 6\sqrt{2})}{32R}} \)
donde 3 es la barra

38. \(V_{1}^{B2} = \sqrt[3]{\frac{3gL(6 + 5\sqrt{3})}{2}} \)
donde 2 es la barra

39. \(R_{O} = \frac{\sqrt{10}}{4}P \)

40. \(N_{A} = \frac{11}{8}P \quad (\uparrow) \)

41. \(R_{B} = \frac{4\sqrt{7}}{3}P \)

42. \(\mu_{\text{mín}} = \frac{\sqrt{3}}{7} \)

43. \(R_{A} = 7P \)

44. \(R_{A} = \frac{\sqrt{17}}{3}m\)g

45. \(\beta = \tan^{-1}\left(\frac{\sqrt{3}}{6}\right) \)

46. \(\ddot{a}_{21} = \frac{3}{2L}g\quad \dddot{a}_{21} = \frac{3}{32R}g\quad (\downarrow) \)
donde 2 es la barra

47. \(\ddot{a}_{21} = \frac{3(9 - 4\sqrt{3})}{32R}g\quad (\ddot{a}_{21}) \)
donde 2 es la barra

48. \(R_{O} = \frac{\sqrt{201}}{8}P \)