RIAO/OPTILAS 2007

6th Ibero-American Conference on Optics (RIAO) and the
9th Latin-American Meeting on Optics, Lasers and
Applications (OPTILAS)

Campinas, São Paulo, Brazil 21 – 26 October 2007

EDITORS
Niklaus Ursus Wetter
Jaime Freijlich
To learn more about AIP Conference Proceedings, including the Conference Proceedings Series, please visit the webpage

http://proceedings.aip.org/proceedings
RIAO / OPTILAS 2007

6th Ibero-American Conference on Optics (RIAO) and the 9th Latin-American Meeting on Optics, Lasers and Applications (OPTILAS)

Campinas, São Paulo, Brazil 21 – 26 October 2007

EDITORS
Niklaus Ursus Wetter
Institute for Nuclear and Energetic Research
São Paulo, Brazil

Jaime Frejlich
IFGW-UNICAMP
Campinas, Brazil

All papers have been peer-reviewed

SPONSORING ORGANIZATIONS
The State of São Paulo Research Foundation - FAPESP
The State University of Campinas - UNICAMP
The Physics Institute G leb Wataghin - IFGW
The Brazilian Society of Physics - SBF
The National Council for Scientific and Technological Development - CNPq
The Optical Society of America - OSA
The International Society for Optical Engineering - SPIE
The International Commission for Optics - ICO
The Abdus Salam International Centre for Theoretical Physics - ICTP
The European Optical Society - EOS
The University of Campinas Research Foundation - FAEPEX
The National Council for High Level Education - CAPES

Melville, New York, 2008
AIP CONFERENCE PROCEEDINGS ■ VOLUME 992
CONTENTS

Preface ... xvii
Committees ... xix

ATMOSPHERIC OPTICS

Aerosol and Water Vapor Raman Lidar System at CEILAP, Buenos Aires, Argentina.
Case Study: November 07, 2006. ... 3
L. A. Otero, P. R. Ristori, and E. J. Quel

Stratospheric NO₂ Concentration Determined by DOAS Using Compact Spectrographs ... 9
M. M. Raponi, E. Wolfram, H. Rinaldi, A. Rosales, E. J. Quel, and J. O. Tocho

Ten Years of Research on Light Propagation through a Turbulent Atmosphere ... 15
L. Zunino, D. G. Pérez, and M. Garavaglia

Differential Optical Absorption Spectroscopy (DOAS) Using Targets: SO₂ and NO₂ Measurements in Montevideo City .. 21
I. Louban, G. Piriz, U. Platt, and E. Frins

Monitoring Atmospheric Turbulence Evolution by Thin Laser Beams ... 27
A. Consortini, S. Ceccarelli, and C. Innocenti

COLOR, VISION AND RADIOMETRY

New Approach for Fast and Accurate Color-Pattern Recognition ... 33
A. A. Kamshilin, L. Fauch, and E. Nippolainen

Color Image Sharpening and Application to Eye Fundus Image Analysis ... 39
E. Valencia and M. S. Millán

Assessment of the Color Space for the Measure of the Dominant Colors ... 45
M. Corbalán, E. Valencia, and A. Vega

Electromagnetic Radiometry and Spatial Coherence Wavelets ... 51
R. Castañeda and R. Betancur

Radiometric Analysis of Diffraction ... 57
R. Castañeda, R. Betancur, J. Herrera, and J. Carrasquilla

Contrast Sensitivity Test and Conventional and High Frequency Audiology:
Information Beyond that Required to Prescribe Lenses and Headsets ... 63
S. A. Comastri, G. Martin, J. M. Simon, C. Angarano, S. Dominguez, F. Luzzi, M. Lanusse,
M. V. Ranieri, and C. M. Boccio

Wavefront Aberrations: Analytical Method to Convert Zernike Coefficients from a Pupil to a Scaled Arbitrarily Decentered One ... 69
S. A. Comastri, L. I. Perez, G. D. Pérez, K. Bastida, and G. Martin

Study of Light Scattering in the Human Eye ... 75
J. Perez, N. C. Bruce, and L. R. Berriel Valdos

Automatic Analysis for the Chemical Testing of Urine Examination Using Digital Image Processing Techniques ... 81
J. M. Vilardy, J. C. Peña, M. F. Daza, C. O. Torres, and L. Mattos

Hue Discrimination in Iberoamerican Observers ... 86
J. Carranza and J. Medina

New Treatment Applying Low Level Laser Therapy for Acute Dehiscence Saphenectomy in Post Myocardial Revascularization ... 92
N. C. Pinto, N. Shoji, M. Favoretto, Jr., M. Muramatso, M. C. Chavantes, and N. A. G. Stolf

Improved Pseudo-Colored Engraving Print Method ... 98
D. Hölck and J. Barbe

Cover Factor Determination by Means of Reflectance Measurement in Translucent Textile Webs ... 104
M. Tápias, J. Escofet, and M. Ralló

Model of the Human Eye Based on ABCD Matrix ... 108
G. Díaz González and M. D. Iturbe Castillo
Towards a Brazilian Intercomparison of Radiant Power .. 114
A. F. G. Ferreira, Jr., J. C. Texeira, and A. Tada

Characterization of FEL Lamps as Secondary Standard of Luminous Intensity 120
A. F. G. Ferreira, Jr. and I. E. C. Machado

DIFFRACTIVE OPTICS

Diffraction Spread of Spatially Partially Optical Fields along the Propagation Axis 129
R. Castaneda, R. Betancur, and J. Carraquilla

Diffractive Optical Elements Based in Diamond Like Carbon (DLC) Films 135
M. Sparvoli M. and R. D. Mansano

Compensation of Inherent Wavefront Distortion in Zero-Twist LCoS Spatial Light Modulators 140
J. Otón, M. S. Millán, E. Pérez-Cabrén, and P. Ambs

Application of LCoS to Dynamical Focusing in an Optical System 146
M. Goldín, G. Díaz Costanzo, O. E. Martínez, C. Iemmi, and S. Ledesma

Light Intensity Profile Control along the Optical Axis with Complex Pupils Implemented onto a Phase-Only SLM .. 152
O. López-Coronado, C. Iemmi, J. Davis, J. Campos, and M. J. Yzuel

The Ronchi Fractional Test .. 158
C. O. Torres, L. Mattos, G. Baldwin, and Y. Torres

Waist-to-Waist Transformation of Gaussian Beams Using the Fractional Fourier Transform 163
C. O. Torres, L. Mattos, C. Jiménez, J. Castillo, and Y. Torres

Fractional Shifting and Sampling in the Fractional Domain. Application to Digital Holography 168
R. Torres, P. Pellat-Finet, and Y. Torres

Optimization Algorithm for Designing Diffractive Optical Elements 174
V. A. Agudelo and R. Amézquita Orozco

Constructing White Light Holographic Screens Maximizing Its Size 180
J. J. Lunazzi, D. S. F. Magalhães, and M. C. I. Amon

EDUCATION FOR OPTICS

Simple Assembling of Organic Light Emitting Diodes for Teaching Purposes in Undergraduate Labs .. 187
S. Vázquez-Córdova, G. Ramos-Ortiz, J. L. Maldonado, M. A. Meneses-Nava, and O. Barbosa-García

Using a Photo-Resistor to Verify Irradiance Inverse Square and Malus’ Laws 193
A. Dias Tavares, Jr., L. P. Sosman, R. J. M. da Fonseca, L. A. C. P. da Mota, and M. Muramatsu

Polarization Phase-Shift Interferometry: A Simple Laboratory Setup 199
M. Vannoni, M. Trivi, and G. Molesini

Research Based Proposal to Learn Optics Better ... 205
M. C. Menikheim, G. Skop, A. Castellano, and L. I. Perez

Didactical Holographic Exhibit Including HoloTV (Holographic Television) 210
J. J. Lunazzi, D. S. F. Magalhães, and N. I. R. Rivera

Web-Based Photonics Training for a New, Flat World ... 216
D. Sporea, N. Massa, J. Donnelly, and F. Hanes

GUIDED OPTICS

Contraction Measurements of Dental Composite Material during Photopolymerization by a Fiber Optic Interferometric Method .. 225
G. Arenas, S. Noriega, V. Mucci, C. Vallo, and R. Duchowicz

Waveguide Formation by Laser Backwriting Ablation of Metals unto Glass Substrates 231
R. Rangel-Rojo, A. Castelo, M. T. Flores-Arias, C. Gómez-Reino, C. López-Gascón, and G. F. de la Fuente

Loss Mechanisms and Fluorescence in Photonic Crystal Fibers Filled with Liquids and Polymers .. 237
J. S. K. Ong and C. J. Santiago de Matos
Kinetic of Long Period Gratings UV-Induced and Sensing Characteristics 242
R. Z. V. Costa, R. C. Kamikawachi, M. Muller, and J. L. Fabris

Investigation on the Spectral Properties of Locally Pressed Fiber Bragg Grating Written in
Polarization Maintaining Fibers ... 248
J. F. Botero-Cadavid, J. D. Causado-Buelvas, and P. Torres

Micro-Engineered Integrated Electro-Optic Modulators in LiNbO₃ .. 254
D. Janner, D. Tulli, M. Belmonte, and V. Pruneri

Magnetomechanically Induced Long Period Fiber Gratings ... 260
J. D. Causado-Buelvas, N. D. Gomez-Cardona, and P. Torres

Application of Artificial Neural Networks for Conformity Analysis of Fuel Performed with an
Optical Fiber Sensor ... 265
G. R. C. Possetti, F. K. Coradin, L. C. Côcco, C. I. Yamamoto, L. V. Ramos de Arruda, R. Falate,
M. Muller, and J. L. Fabris

Intermixing of InP-Based Multiple Quantum Wells for Photonic Integrated Circuits 271
D. A. May-Arrioja, N. Bickel, P. LiKamWa, and J. J. Sanchez-Mondragon

Electrically Tunable 2x2 Multimode Interference Coupler ... 276
D. A. May-Arrioja, P. LiKamWa, J. J. Sanchez-Mondragon, and M. Torres-Cisneros

HOLOGRAPHY AND INTERFEROMETRY

Lensometry by Two-Laser Holography with Photorefractive Bi₁₂TiO₂₀ 285
E. A. Barbosa and A. O. Preto

Compact Setup for Reflection Holography with Bi₁₂TiO₂₀ Crystals 291
E. A. Barbosa, A. O. Preto, D. M. Silva, J. F. Carvalho, and N. I. Morimoto

Multiplexed Transmission Gratings in Dichromated Gelatin Slavich PFG-04 Plates 297
A. Villamarín, J. Atencia, M. V. Collados, and M. Quintanilla

Analysis of PIV Photographs Using Holographic Lenses in an Anamorphic White Light
Fourier Processor Configuration ... 303
M. V. Collados, J. Atencia, A. M. Villamarín, M. P. Arroyo, and M. Quintanilla

Application of Biospeckle Phenomenon on Monitoring of Leavening Process in Breadmaking 309
E. R. da Silva, E. da Silva, Jr., M. Favoreto, Jr., S. C. da Silva Lannes, and M. Muramatsu

A New Estimator for Activity on Dynamic Speckles Based on Contrast of Successive
Correlations ... 314
E. R. da Silva, H. J. Rabal, M. Favoreto, Jr., and M. Muramatsu

Comparative Study of Analysis Methods in Biospeckle Phenomenon 320
E. R. da Silva and M. Muramatsu

Human Skull Analysis by Photorefractive Holographic Interferometry 326

Photorefractive Phase Coupling Measurement Using Self-Stabilized Recording Technique 332
R. Montenegro, I. de Oliveira, A. A. Freschi, and J. Frejlich

Photorefractive Absorption Effect in Holographic Recording .. 336
L. F. Avila, L. E. Gutierrez-Rivera, J. W. Menezes, W. R. Araújo, and L. Cescato

Fabrication of Stampers for Molding Polymeric Sieves Using Optical and Holographic
Lithography .. 340
L. E. Gutierrez-Rivera and L. Cescato

Light Intensity Effects in Photorefractive α-Phase PE-LiNbO₃ Waveguides 344
J. Villarroel, M. Carrascosa, J. Cárnicero, A. García-Cabañas, and J. M. Cabrera

Lippmann Holographic Storage with Homodyne Detection and Single Side Access 350

Analysis of the Kinetics of Phase and Amplitude Gratings Recorded in Azopolymer Films 356
A. A. Freschi, A. D. S. Cortes, D. A. Donatti, and J. Frejlich

Semispherical Armonics ... 361
J. J. Sánchez-Mondragón, A. Dávila-Alvarez, C. A. González-Valdez, A. Alejo-Molina, M. A. Basurto,
D. A. May-Arrioja, J. J. Escobedo-Alatorre, and M. Torres-Cisneros

Phase Recovery from a Single Interferogram by Region Growing 365
J. Muñoz Maciel, F. J. Casillas Rodríguez, M. M. González, F. G. Peña Lecona, and G. Gómez Rosas
Propagation of Optical Pulses in Polarization Maintaining Highly Birefringent Fibers ... 371
A. Leiva and R. Olivares

Impairments in Gain-Equalized Distributed Fiber Raman Amplifiers due to Four-Wave Mixing and Parametric Amplification Processes .. 377
M. A. Soto and R. Olivares

Continuous and Pulsed THz Generation with Molecular Gas Lasers and Photoconductive Antennas Gated by Femtosecond Pulses .. 383

Energy-Transfer Processes in High Power Yb:Tm:YLF Lasers Emitting at 2.3 µm .. 386
P. S. F. de Matos, N. U. Wetter, L. Gomes, M. I. Ranieri, and S. L. Baldocchi

Design of a Dual Wavelength Birefringent Filter .. 392
C. G. Treviño-Palacios, C. Wetzel, and O. J. Zapata-Nava

Development of a TW Level Cr:LiSAF Multipass Amplifier .. 398

Generation of Photon Pairs with Tailored Spectral Properties by Spontaneous Four-Wave Mixing .. 403
K. Garay-Palmett, R. Rangel-Rojo, A. B. U’Ren, S. Camacho-López, and R. Evans

J.-J. Zondy, R. Sarrouf, T. Badr, V. Sousa, and G. Xu

High Power, Good Beam Quality Nd:YVO₄ Laser Using a Resonator with High Extinction Ratio for Higher-Order Mode Thresholds .. 415
F. A. Camargo and N. U. Wetter

Compact Diode-Side-Pumped Nd:YLF Laser with High Beam Quality .. 426
E. Colombo Sousa, I. M. Raniere, S. L. Baldochi, and N. U. Wetter

Deep Optical Trap for Cold Calcium Atoms .. 431
M. Sereno, L. S. Cruz, and F. C. Cruz

Experimental Study of a Multicavity Fiber Laser System .. 435
L. C. Gómez-Pavón, J. G. Ortega Mendoza, C. Berrosoe-Rodríguez, E. Martí-Panameño, and A. Luís-Ramos

Describing the Laser Effect in a Substance Modeled by System Constituted by Microsystems of Three Levels of Energy with Variable Optical Pumping Using Package Simulink® .. 439

Design and Construction of a High Voltage Pulsed Source for Electric Excitation of the Gas Laser .. 445
X. Díaz, O. L. Neira B., and A. H. Díaz-Pérez

Optical Frequency Combs Based on Homemade High-Repetition Rate Femtosecond Ti:Sapphire Lasers .. 451
G. T. Nogueira and F. C. Cruz

Cluster-Type Entangled Coherent States Generation .. 454
F. C. Lourenço and A. Vidiella-Barranco

Partial Polarization and Coherence in Arbitrary Electromagnetic Fields .. 460
A. T. Friberg

Influence of Thermal Lensing on the Design of 3 and 4 Mirror Resonators of Ti:Sapphire Lasers .. 466
V. J. Pinto Robledo and E. Mejía Beltrán

Generation of States Maximally Entangled (EPR States) by Passing Two Atoms through Two Coupled Cavities .. 472
B. F. C. Yabu-uti, F. K. Nohama, and J. A. Roversi

Measuring Spatial Coherence with a Two-Dimensional Aperture Array .. 478
A. I. González and Y. Mejía

All Fiber Laser Using a Ring Cavity .. 484
A. Vargue Flores, G. Beltrán Pérez, S. Muñoz Aguirre, and J. Castillo Mixcóatl

DCOOD Optically Pumped by a ¹³CO₂ Laser: New Terahertz Laser Lines .. 489
R. C. Viscoivini, L. F. L. Costa, J. C. S. Moraes, F. C. Cruz, and D. Pereira
METAMATERIALS

2D Photonic Crystal Layers in Antimony-Based Films ... 495
J. W. Menezes, M. Nalin, V. F. Rodríguez-Esquerré, H. Hernandes-Figueroa, E. S. Braga, and L. Cescato

Transfer Matrix and Reflexion in a Metallo-Dielectric Photonic Crystal 501
A. Alejo-Molina, J. J. Sánchez-Mondragón, C. Velásquez-Ordoñez, A. Zamudio-Lara,
J. J. Escobedo-Alatorre, D. A. May-Arrioja, and M. Torres-Cisneros

Atomic Layer Deposition of Tungsten Thin Films on Opals in the Visible Region 507
Z. A. Sechrist, R. Piestun, and S. M. George

NONLINEAR OPTICS

Ultra Fast Third Order Nonlinear Response of a Triazole Derivative by Optical Kerr Effect 515
L. Tamayo-Rivera and R. Rangel-Rojo

Visible to Near-Infrared Continuum Generation in a Watercore Photonic Crystal Fiber 520
A. Bozolan, C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, and C. H. Brito Cruz

Automated Z-Scan to Distinguish Different Types of Nonlinearity without Proposing It 524
E. Reynoso Lara, M. D. Iturbe Castillo, C. G. Treviño Palacios, J. A. Dávila Pintle, L. Vela Reyes, and
E. A. Martí Panaméno

Evolution of Bright Periodic Lattices in Negative Nonlinear Medium 530
E. Alvarado-Méndez, M. Trejo-Durán, J. M. Estudillo-Ayala, J. A. Andrade Lucio, G. Anzueto-Sánchez,
E. Vargas-Rodríguez, I. Sukhoivanov, and S. Chávez-Cerda

Organic-Inorganic Hybrid Glass: Non-Linear Optical Properties 536
R. Domínguez Cruz, A. Mendez-Perez, G. Romero Galván, M. Mendoza-Panduro, M. Trejo-Duran,
E. Alvarado-Méndez, J. M. Estudillo-Ayala, R. Rojas-Laguna, A. Martínez-Richa, and V. M. Castano

Chaos Induction in a Laser Diode ... 541
M. Reyes and E. Solarte

Numerical and Experimental Analysis of Modulation Instability and Self-Frequency Shift, in a
Standard Single Mode Fibers Pumped by Pulses in Pico- and Nano-Second 547
S. Mendoza-Vazquez, J. L. Camas-Anzueto, E. A. Kuzin, S. Chávez-Cerda, and C. García Lara

Optical Characterization of Ag\(^{\text{N}}\) and TiO\(_{2}\) Nanoparticles 553
A. Espinosa-Calderón, M. Torres-Cisneros, O. G. Ibarra-Manzano, F. R. Arteaga-Sierra,
D. A. May-Arrioja, J. J. Sánchez-Mondragón, C. Velásquez-Ordoñez, and A. Campero

Experimental Z-Scan Measurements Using Gaussian-Bessel Beams 559
M. M. Méndez Otero, M. L. Arroyo Carrasco, M. D. Iturbe Castillo, G. C. Martínez Jiménez, and
F. Rodríguez García

Comparison between the Morse Eigenfunctions and Deformed Oscillator Wavefunctions 565
J. Récamier, M. Gorayeb, W. L. Mochán, and J. L. Paz

Wavelength Converter Based on Four-Wave Mixing in a Bulk Semiconductor Optical
Amplifier Assisted by a Sagnac Interferometer and Polarizer 571
M. C. Acosta Enriquez, H. Soto, and R. G. Maldonado Basilio

OPTICAL INSTRUMENTS

Correlation of Spatially Filtered Dynamic Speckles in Distance Measurement Application 577
D. V. Semenov, E. Nippolainen, S. V. Miridonov, and A. A. Kamshilin

and Chromic Effects ... 583
H. E. Lazcano Hernández, C. Sánchez Pérez, and A. García Valenzuela

New Differential Absorption Lidar for Stratospheric Ozone Monitoring in Argentina 589

Tolerance Analysis of Misalignment for 2D-MEMS Free-Space Optical Cross-Connect 594
V. Argueta-Díaz and J. T. Yañez-Montiel

Photometric Passive Range Sensor .. 600
V. Argueta-Díaz and A. García-Valenzuela
Characterization of an Optical Device with an Array of Blue Light Emitting Diodes LEDs for Treatment of Neonatal Jaundice .. 606
P. Froés Sebbe, A. G. J. Balbin Villaverde, R. A. Nicolau, A. M. Barbosa, and N. Veissid
Gas Sensor Design Using a Fabry-Perot Interferometer and a Pyroelectric Detector .. 611
E. Vargas-Rodriguez, H. N. Rutt, R. Rojas-Laguna, and E. Alavarado-Mendez
Analysis of the Existent Noise in a Gyrocompass of Dynamic Configuration .. 617
G. E. Sandoval-Romero and S. Palma-Vargas
Single Sagnac’s Interferometers Instrumentation, Based in the Best Detection Limit .. 622
S. Palma-Vargas, A. Ramirez-Ibarra, and G. E. Sandoval-Romero
A New Technique to Measure the Width of Gaussian Beams .. 628
J. A. Dávila, L. V. Reyes, and E. R. Lara
Implementing and Characterizing a Video Reflectometry Set-Up .. 632
Alignment Validation of Segmented Mirrors Using Sub-Structured Ronchi Test .. 638
D. P. Vidal, F. Granados, and A. Cornejo
M. E. López-Medina, S. Vázquez-Montiel, and J. Herrera-Vázquez
Development of Transmissible Photoplethysmography Prototype Sensor Using Polimeric Fiber Optic .. 648
L. Z. Villegas, M. R. Veiga, R. D. Mansano, and J. C. Santos
Arrangement of the Optical System for Star Testing Using a Spatial Light Modulator .. 653
N. Bautista-Elívar and C. Robledo-Sánchez
Free System of Spherical and Coma Aberrations by Use Aspherical and Diffusive Surfaces .. 659
O. García-Liévanos and S. Vázquez-Montiel
Spectroscopic Refractometer Using a Double Prism Scheme for Optical Characterization of Liquid Mixtures .. 665
C. Sánchez-Pérez, V. Leyva-García, A. García-Valenzuela, and R. Soto-Astorga
Crop Field Reflectance Measurements .. 671
C. Weber, D. C. Schinca, J. O. Toclo, and F. Videla
3D Imaging with a Linear Light Source .. 677
J. J. Lunazzi and N. I. R. Rivera
Optical Trapping Dynamics in Interference Field .. 681
L. A. Vierà, I. Lira, L. Soto, and C. Pavez
Novel Stress Sensor Using a Fiber Bragg Grating and a Long Fiber Period Grating .. 687

OPTICAL MATERIALS AND APPLICATIONS

Photo-Electromotive-Force from Vibrating Speckled Pattern of Light on Photorefractive CdTe:V .. 695
T. O. Santos, J. C. Launay, and J. Frejlich
Temperature and Impurity Concentration Effects on $\text{Mg}_{(1-x)}\text{Ga}_x\text{O}_4$ Photoluminescence .. 699
L. P. Sosman, A. Dias Tavares, Jr., R. J. M. da Fonseca, and A. R. P. Papa
Characterization of Photorefractive Materials Using Holographic and Photoconductivity Techniques .. 704
Colour Centre Bragg Grating Recording in Lithium Fluoride Thin Layers .. 710
Parallel Beams and Fans of Rays in Uniaxial Crystals .. 714
M. C. Simon, L. I. Perez, and F. E. Veiras
Optimization of the Characteristics of a Quadrant Photodiode .. 720
A. V. Marquina, D. Berman-Mendoza, and L. A. González
Development, Characterization and Optimization of an Ultraviolet Silicon Sensor .. 725
D. Berman-Mendoza, M. Aceves-Mijares, L. R. Berriel-Valdos, J. Pedraza, and A. Vera-Marquina
Spectral Characterization of a Ferroelectric Liquid Crystal Modulator and Performance Optimization ... 731
P. Velázquez, P. García, M. M. Sánchez-Lopez, I. Moreno, and F. Mateos

Confocal and Atomic Force Microscopies of Color Centers Produced by Ultrashort Laser Irradiation in LiF Crystals ... 737

Incandescent Microlamps Based on MEMS and PECVD Materials .. 743

Optical Characterization of Europium Tetracycline Complex in the Presence of Low Density Lipoprotein and Its Applications .. 749

ARROW Waveguides Fabricated with SiOₓNᵧ and a-SiC:H Films ... 755
D. O. Carvalho and M. I. Alayo

Overcoming of the Diffraction Limit for the Discrete Case in Time Reversed Acoustics 761
J. M. Velázquez-Arcos, C. A. Vargas, L. Fernández-Chapou, and J. Granados-Samaniego

Optical Characterization of Light Propagation through Supramolecular Chiral Structures in Azopolymer Films .. 769

Development of a Hybrid Integrated Optics Device ... 775
A. Rodríguez, M. V. Hernández, S. Guel, G. Ramírez, L. E. Elizalde, and R. Ledezma

Electrical and Optical Characterization of Porous Silicon/P-Crystalline Silicon Heterojunction Diodes .. 780
F. Fonthal, T. Trifonov, A. Rodríguez, C. Goyes, L. F. Marsal, J. Ferré-Borrull, and J. Pallares

Polymeric Optical Waveguides Fabricated by Plasma Fluorination Process 786
J. R. Bartola, V. M. Giacon, M. I. Alayo, and M. N. P. Carreño

OPTICAL METROLOGY

Simple Method for Thickness Measurement in Opaque Samples with a Michelson-Sagnac Interferometer ... 793
E. N. Morel and J. R. Torga

Extension of Theoretical Model and Improvement on the Data Acquisition Process and the Use of the Biospeckle Technique .. 798
F. A. Bova

Insect Wing Displacement Measurement Using Digital Holography .. 804
D. D. Aguayo, F. Mendoza Santoyo, M. H. de la Torre Ibarra, and C. I. Caloca Mendez

Low Level Free Vibration Measurements Using High Speed Digital Holography 810
C. Pérez López, F. Mendoza Santoyo, and M. H. de la Torre Ibarra

Two Dimensional Integration Methods in Polar Coordinates System to Measure the Surface Topography by Optical Deflectometry ... 816
A. Moreno, M. Espinola, and J. Campos

Fourier Transform and Temporal Phase Shifting Methods to Measure Vibration Frequency of a Cantilever without Out-of-Plane Conversion ... 822
C. Meneses-Fabian, G. Rodríguez-Zurita, R. Pastrana-Sanchez, C. Robledo-Sanchez, R. Rodríguez-Vera, and F. Mendoza-Santoyo

Three-Dimensional Displacement Measurement by Fringe Projection and Speckle Photography ... 828
B. Barrientos, M. Cerca, J. García-Márquez, and C. Hernández-Bernal

Influences of the Windowed Fourier Transform on Reliability-Guided Phase Unwrapping 834
J. Garzón, C. López, D. Duque, and J. Galeano

Topographic Characterization of Corroded Steel Surface ... 840
J. Garzón, D. A. Duque, C. H. López, and J. A. Galeano

Measurement of the Topography, Refractive Index and Thickness in Tissues by Mean of a Chromatic Confocal Method ... 846
J. Garzón, T. Gharbi, and J. Meneses
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporal Phase Unwrapping in Structured Perfilometry</td>
<td>852</td>
</tr>
<tr>
<td>J. Garzón, J. Galeano, C. López, and D. Duque</td>
<td></td>
</tr>
<tr>
<td>Error Analysis in a Device to Test Optical Systems by Using Ronchi Test and Phase Shifting</td>
<td>858</td>
</tr>
<tr>
<td>The Geometrical optics PSF with Third Order Aberrations</td>
<td>864</td>
</tr>
<tr>
<td>R. Díaz-Uribe and M. Campos-García</td>
<td></td>
</tr>
<tr>
<td>Temperature Measurement of the Air Convection Using a Schlieren System</td>
<td>870</td>
</tr>
<tr>
<td>C. Álvarez-Herrera, D. Moreno-Hernández, B. Barrientos-García, and J. A. Guerrero-Viramontes</td>
<td></td>
</tr>
<tr>
<td>Two-Dimensional Point Shifting for Improving the Quantitative Testing with Null Screens</td>
<td>876</td>
</tr>
<tr>
<td>V. I. Moreno-OLiva, M. Campos-García, and R. Díaz-Uribe</td>
<td></td>
</tr>
<tr>
<td>Development of Equipment for Real Time MTF Measurement of Optical Systems</td>
<td>882</td>
</tr>
<tr>
<td>D. Rodrigues Romano, S. A. de Almeida Nobre, and B. F. C. de Albuquerque</td>
<td></td>
</tr>
<tr>
<td>In-Fiber Integrated Micro-Displacement Sensor</td>
<td>888</td>
</tr>
<tr>
<td>J. D. Causado-Buelvas, N. D. Gomez-Cardona, and P. Torres</td>
<td></td>
</tr>
<tr>
<td>Analysis of Surfaces and Small Dimensions Mechanical Objects with Projections of Fringes</td>
<td>893</td>
</tr>
<tr>
<td>Illuminated with Optical Fibers.</td>
<td></td>
</tr>
<tr>
<td>A. Alarcía, K. Contreras, and M. Lomer</td>
<td></td>
</tr>
<tr>
<td>Corrections to the Centroid Evaluation of Spots for a Structured Light System</td>
<td>899</td>
</tr>
<tr>
<td>J. A. Jiménez Hernández and R. Díaz Uribe</td>
<td></td>
</tr>
<tr>
<td>Quantitative Shape Evaluation of Fast Aspherics with Null Screens by Fitting Two Local Second Degree Polynomials to the Surface Normals</td>
<td>904</td>
</tr>
<tr>
<td>M. Campos-García and R. Díaz-Uribe</td>
<td></td>
</tr>
<tr>
<td>On-Axis Digital Moiré Optoelectronic Telemetrology</td>
<td>910</td>
</tr>
<tr>
<td>P. F. Meilan, A. P. Laquidara, J. A. Bava, and M. Garavaglia</td>
<td></td>
</tr>
<tr>
<td>Optomechatronic Techniques to Characterize the Topography of a MW Satellite Antenna</td>
<td>916</td>
</tr>
<tr>
<td>Nanometrology of Deformations by Temperature in Metallic Materials</td>
<td>919</td>
</tr>
<tr>
<td>E. F. Mendoza, C. J. Peruchó, and A. Plata G.</td>
<td></td>
</tr>
<tr>
<td>Three-Dimensional Profilometry of Solid Objects in Rotation</td>
<td>924</td>
</tr>
<tr>
<td>G. Trujillo-Schiaffino, N. Portillo-Amavisca, D. P. Salas-Peimbert, L. Molina-de la Rosa, S. Almazán-Cuellar, and L. F. Corral-Martínez</td>
<td></td>
</tr>
<tr>
<td>Dispersion Equation for a Uni axial Crystal by Using a Plano-Convex Lens</td>
<td>929</td>
</tr>
<tr>
<td>M. Avendaño-Alejo, D. González-Utrera, and R. Díaz-Uribe</td>
<td></td>
</tr>
<tr>
<td>Angular Magnification for a Confocal Off-Axis Optical System</td>
<td>935</td>
</tr>
<tr>
<td>M. Avendaño-Alejo, S. Maca García, and R. Díaz-Uribe</td>
<td></td>
</tr>
<tr>
<td>Depolarization of Light Scattered from Rough Cylindrical Surfaces</td>
<td>941</td>
</tr>
<tr>
<td>R. Aparicio, F. Pérez Quintián, and M. A. Rebollo</td>
<td></td>
</tr>
<tr>
<td>Surfaces Relief Profilometry of Solid Objects by Sweeping of a Laser Line</td>
<td>947</td>
</tr>
<tr>
<td>Study of the Sludge Sedimentation Dynamics by Means of an Optical System</td>
<td>951</td>
</tr>
<tr>
<td>J. O. Uc, G. G. Vallesjos, C. P. Caballero, C. Q. Franco, and M. Pérez-Cortes</td>
<td></td>
</tr>
<tr>
<td>Temperature Determination with Radial Basis Functions Means of a Nonlinear Common Path Interferometer</td>
<td>957</td>
</tr>
<tr>
<td>E. de la Rosa Miranda, L. R. Berriel Valdos, L. I. Olivos-Pérez, and G. Miramontes de León</td>
<td></td>
</tr>
<tr>
<td>Fringe Pattern Demodulation by Independent Windows Fitting Using Genetic Algorithms</td>
<td>963</td>
</tr>
<tr>
<td>L. E. Toledo and F. J. Cuevas</td>
<td></td>
</tr>
<tr>
<td>Gas Sensor Using a Rhodamine-6G Doped TiO₂ Film Deposited on an Optical Fiber to Detect Volatile Organic Compounds</td>
<td>969</td>
</tr>
<tr>
<td>S. Muñoz Aguirre, C. Martínez Hipatí, J. Castillo Mixcóatl, G. Beltrán Pérez, and R. Palomino Merino</td>
<td></td>
</tr>
<tr>
<td>Fizeau Receiving Interferometer with 2-D CCD Matrix for Low Coherence Interferometric Fiber Optic Sensors</td>
<td>975</td>
</tr>
<tr>
<td>M. C. Tomic and Z. V. Djinović</td>
<td></td>
</tr>
<tr>
<td>Laser and Optical Fiber Metrology in Romania</td>
<td>981</td>
</tr>
<tr>
<td>D. Sporea and A. Sporea</td>
<td></td>
</tr>
<tr>
<td>Radiant Flux of Near Field in Temperature Measurements</td>
<td>987</td>
</tr>
<tr>
<td>J. G. Suárez-Romero, A. J. Reséndiz Barrón, and J. O. Farias Arguello</td>
<td></td>
</tr>
</tbody>
</table>
OPTICAL PROCESSING

Objective Assessment of Wrinkled Fabrics by Optical and Digital Image Processing .. 1045
H. C. Abril, E. Valencia, and M. S. Millán

Optical ID Tags for Secure Verification of Multispectral Visible and NIR Signatures 1051
E. Pérez-Cabré, M. S. Millán, and B. Javidi

Correlation Based Rotation-Invariant Corner Detector ... 1057
J. Mazzaferri and S. Ledesma

Optically Simulated Universal Quantum Computation .. 1061
D. Francisco and S. Ledesma

Fractional Fourier Transform Applied to Digital Images Encryption ... 1067
J. M. Vilardy, C. O. Torres, and L. Mattos

Three-Dimensional Reconstruction Optical System Using Shadows Triangulation 1073
L. Barba J., L. Vargas Q., C. Torres M., and L. Mattos V.

Fingerprint Verification by Correlation Using Wavelet Compression of Preprocessing Digital Images 1078
Y. Morales Daza and C. O. Torres

Digital Color Encryption Using a Multi-Wavelength Source and a Joint Transform Correlator 1083
D. Amaya, M. Tebaldi, R. Torroba, and N. Bolognini

Optimized Characterization for a Spatial Light Modulator under Less Restrictive Operating Conditions .. 1088
C. Dorbesi, E. Rueda, M. Tebaldi, R. Torroba, and N. Bolognini

Frequency Wavelet Filtering Using a Two-Wave Mixing Arrangement in a BSO Crystal 1094
A. Salazar and H. Lorduy G.

Opto-Electronic Emulation of a Programmable Digital Circuit ... 1100
E. E. Rodríguez, H. J. Zúñiga, M. L. Calvo, and E. Tepichín

Wigner Distribution Function of the Images of Quasi-Point Sources in the Vicinity of the Focal Plane 1106
I. J. Orlando Guerrero, J. F. Aguilar, L. R. Berriel Valdós, and J. E. A. Landgrave

Engraving Print Classification ... 1111
D. Hößlé and J. Barbé

Detection of a Cosmetic Defect on Lenses Using Wavelets ... 1117
S. Almazán-Cuéllar, A. Chacón-Aldama, G. Trujillo-Schiaffino, D. Salas-Peinbert, and F. Corral-Martínez
Application of Laser Shock Processing System by Underwater Irradiation (1064 nm) in Metal Surface
G. Gómez-Rosas, C. Rubio-González, J. L. Ocaña, C. Molpeceres, J. A. Porro, M. Morales, F. J. Casillas,
M. Mora-González, and F. G. Peña-Lecona

On the Analogy between Fresnel Diffraction and Dispersion in Transmission Lines and Some of Its Applications
P. Pellat-Finet, Z. Lizarazo, and R. Torres

Two-Dimensional Temporal Coherence Coding for Super Resolved Imaging through Single Mode Fiber
D. Sylman, Z. Zalevsky, V. Micó, C. Ferreira, and J. García

Photothermal Spectroscopic Characterization in Core-Shell Quantum Dots Nanoparticles
V. Pilla, R. A. Cruz, T. Catunda, E. Munin, and M. T. T. Pacheco

Applications of a Visible-LED-Based Resonant Photoacoustic Device
A. Peuriot, V. Slezak, G. Santiago, and M. González

Identification of Atherosclerotic Plaques in Carotid Artery by Fluorescence Spectroscopy

Monte Carlo Simulation of Visible Light Diffuse Reflection in Neonatal Skin
J. A. Delgado Atencio, E. E. Rodríguez, A. Cornejo Rodríguez, and J. F. Rivas-Silva

Global Monitoring of Atmospheric Trace Gases, Clouds and Aerosols from UV/vis/NIR Satellite Instruments: Currents Status and Near Future Perspectives
T. Wagner, S. Beirle, T. Deutschmann, C. Frankenberg, M. Grzegorski, M. F. Khokhar, S. Kühl,

Micro-Crater Laser Induced Breakdown Spectroscopy—An Analytical Approach in Metals
V. Piscitelli, J. Gonzalez, X. Mao, A. Fernandez, and R. Russo

Thermo-Optical Properties of Nanofluids
M. A. Ortega, L. Rodríguez, J. Castillo, A. Fernández, and L. Echevarria

Laser-Induced Breakdown Spectroscopy of Alcohols and Protein Solutions
N. Melikechi, H. Ding, A. Marcano Os., and S. Rock

Absorption Spectra of Nitrobenzene Measured with Incoherent White-Light Excitation
H. Cabrera M., A. Marcano Os., and J. Ojeda A.

Comparison between Mode-Matched and Mode-Mismatched Thermal Lens Methods for Absorption Measurements in Liquids
A. Marcano O., H. Cabrera M., and M. Díaz B.

High-Sensitivity Thermal Lens Optimized Technique to Measure Low Linear Absorption Coefficients
R. A. Cruz, C. Jacinto, A. Marcano Os., and T. Catunda

Increasing Er³⁺ Up-Conversion Intensities By Co-Doping Telluride Glasses With Yb²⁺

Enhancement on the Hypocrellin B Singlet Oxygen Generation Quantum Yield in the Presence of Rare Earth Ions
D. J. Toffoli, L. Gomes, N. D. Vieira, Jr., and L. C. Courrol

Analysis of the Composition of Titanium Oxide Coating by Laser Induced Breakdown Spectroscopy
H. Estupiñán, D. Y. Peña, R. Cabanzo, and E. Mejía-Ospino

Study of Biomimetic and Electrolytic Calcium Phosphate Coating on Titanium Alloy by Laser Induced Breakdown Spectroscopy Depth Profiling
H. Estupiñán, D. Y. Peña, R. Cabanzo, and E. Mejía-Ospino

Intensity Distribution of Laser Induced Plasma Generated at Different Ambient Gas Pressure
R. Sarmiento, R. Cabanzo, and E. Mejía-Ospino

Comparative Study of Three Fundamental Organic Compounds of Chain Structure of Three Rings—An Approach Based in the Molecular Descriptors of the DFT (Density Functional Theory)
O. L. Neira B., E. F. Mejía, and B. E. Rincón

R. Sato, R. Redón, A. Vázquez, O. Flores, R. Zanella, and J. Saniger
ATR-FTIR Spectroscopy and Their Applications in the Ring-Opening Reaction of Spiropyran Polymers ... 1237
R. Delgado Macuil, M. Rojas López, M. Bibbins Martínez, and V. Camacho Pernas

Optical Properties of Self-Ensemble Monolayers of Gold Metallic Nanostructures ... 1242

An Array of Photodiodes for Monitoring Hydrocarbons Combustions Burners ... 1247
L. Arias P., S. Torres I., D. Sbarbaro H., and O. Farias F.

FTIR Spectroscopy Applied in Remazol Blue Dye Oxidation by Laccases ... 1253

Raman and FTIR Spectroscopy of GaSb and AlGaSb Alloys with Nanometric Thickness Grown at Low Temperatures by Liquid Phase Epitaxy .. 1258

Spectroscopy Stress Evaluation of Translucent Polymers Using Laser Photoelasticity .. 1262
M. V. Treviño, A. Flores Gil, J. M. Rodríguez-Lelis, A. Hernández González, D. V. Arvizo, M. Mor Alarcón, and A. Abundez Pliego

Plasma Emission Spectra of Opuntia Nopalea Obtained with Microsecond Laser Pulses .. 1268
L. Ponce, T. Flores, A. Arronte, and A. Flores

Laser Induced Breakdown Spectroscopy of Prickly Pear’s Spines and Glochids: A Qualitative Analysis .. 1274
T. Flores, L. Ponce, G. Bilmes, A. Arronte, and F. Alvira

THIN FILMS

Optical Excitation of Charge Carriers from Intra-Bandgap States in Ce-Doped SnO2 Thin Films ... 1283

Optical Monitoring of Dip Coating: Non-Newtonian Liquids .. 1289
A. F. Michels, P. Lovato, and F. Horowitz

Effect of the Pd-Au Thin Film Deposition Technique on Optical Fiber Hydrogen Sensor Response Time .. 1294
D. Luna-Moreno, D. Monzón-Hernández, D. Martínez, and C. Juárez Lora

Thin Films IV-VI Semiconductors Compounds with Applications in Optoelectronic Devices by HWBE Growth Technique ... 1300

Quantum Model for Continuous Photodetection .. 1306
S. S. Mizrahi, A. V. Dodonov, and V. V. Dodonov

Microtopographical Characterization of Microcavities on X-Rays Sensor Array .. 1312
M. F. M. Costa

Microtopographic Inspection and Fractal Analysis of Skin Neoplasia .. 1318

Phase Estimation in Temporal Speckle Pattern Interferometry Using the Empirical Mode Decomposition Method .. 1324
F. A. Marengo Rodríguez, A. Federico, and G. H. Kaufmann

Beam Propagation in a Thick Lens Using the Quantum Mechanics Formalism ... 1329
H. Lorduy G., L. Castellanos, and Á. Salazar

Author Index .. 1335
These Proceedings contains papers presented at the “6th. Ibero-American Conference on Optics and 9th. Latin-American Meeting on Optics, Lasers and Applications” (acronym: “RIAO/OPTILAS’07”) that was held in Campinas, São Paulo State, Brazil, between the 21st. and 26th. of October 2007.

The RIAO/OPTILAS conferences are held each three years in Latino-American and Iberian countries and are focused on senior and young researchers as well as students working in all areas of Optics, mainly in these countries, but warmly welcoming participants from all over the world.

The present RIAO/OPTILAS’07 follows the one held in Venezuela in 2004 and will preced the next one already appointed to be held in Peru in 2010. The most active countries in the area like Argentine, Brazil, Mexico, Spain, Colombia and Venezuela have registered a large number of participants but other countries in the area like Chile, Cuba, Ecuador, Peru, Portugal and Uruguay have also sent a representative number of participants. About 7% of the registered participants came from Europe, USA and Middle-East. It was very stimulating to realize that about 44% of the accepted registered participants were students. An international committee was in charge of selecting the best student posters and thus ten students were awarded with prizes offered by organizations (SPIE, Wiley & Sons) and individuals.

There were 7 plenary invited talks by high quality researcher from Argentine, Germany, Israel, Italy, Mexico and Ukraine and 12 invited contributions from Brazil, Finland, Italy, Spain, UK and Uruguay.. The Book of Abstracts recorded 471 communications divided into 15 different topics with 160 oral communications in three parallel sessions and 311 posters in two special sessions.

We are particularly grateful to SPIE, OSA and ICTP that have provided us with important financial support mainly devoted to support the participation of students in this conference.

We also acknowledge the financial and organizational support from federal (CNPq, CAPES) and state (FAPESP, UNICAMP) national brazilian organizations and institutions as well as scientific national (SBFisica, CePOF) and international (ICO, EOS) organizations that have enabled the successful development of this conference.

We warmly acknowledge the efficient work of all members of the national and international committees that have participated in the organization of the conference and the reviewing of papers.
We are particularly grateful to all those that have made their best to delight us with their interesting and high quality scientific communications.

We also acknowledge the American Institute of Physics (AIP) for offering to us the opportunity to present these Proceedings containing a selection of the most interesting papers presented in RIAO/OPTILAS’07.
General Chair
Jaime Frejlich
UNICAMP

International Scientific Committee

• Miguel V. Andres (Spain)
• Cid B. de Araújo (Brazil)
• Guillermo Baldwin (Peru)
• Vanderlei S. Bagnato (Brazil)
• Mercedes Carrascosa (Spain)
• Anna Consortini (Italy)
• Manuel Filipe Costa (Portugal)
• Brian Culshaw (U.K.)
• Luiz Davidovich (Brazil)
• Rufino Diaz U. (Mexico)
• Concepcion Domingo (Spain)
• A.A. Friesem (Israel)
• Erna Frins (Uruguay)
• Angela Ma. Guzman H. (Colombia)
• Alexei A. Kamshilin (Finland)
• Guillermo Kauffman (Argentina)
• Arturo Lezama (Uruguay)
• Fernando Mendoza (Mexico)
• Luis Mosquera (Peru)
• Hector Moya (Mexico)
• Jose Luis Paz (Venezuela)
• Hector Rabal (Argentina)
• Y. Tomita (Japan)
• Yezid Torres M. (Colombia)
• Asticio V. Vargas (Chile)
• Maria J. Yzuel (Spain)

Organizing Committee

• Armando Albertazzi (UFSC)
• Isabel Carvalho (PUC-RJ)
• Tomaz Catunda (USP/S.Carlos)
• Ivan de Oliveira(CESET/UNICAMP)
• Dario Donatti (UNESP/RC-SP)
• Pedro V. dos Santos (UFAL)
• Anderson Gomes (UFPE)
• Luis G. Neto (UFSC- S.Carlos)
• Artur da S.Gouveia-Neto (UFRPE)
• Jandir M. Hickman (UFAL)
• Flavio Horowitz (UFRGS)
• Salomon Mizrahi (UFSCAR-DF)
• Carlos Monken (UFMG)
• Sebastião Padua (UFMG)
• José W. Tabosa (UFPE)

Local Committee

• Luis E. E. de Araujo (UNICAMP)
• Eduardo A. Barbosa (FATEC/SP)
• Fernando L. Braga (SBFisica)
• Lucila Cescato (UNICAMP)
• Cristiano Cordeiro (UNICAMP)
• Flavio C. Cruz (UNICAMP)
• Mikiya Muramatsu (USP/SP))
• José A. Roversi (UNICAMP)
• Antonio Vidiella Barranco (UNICAMP)
• Niklaus U. Wetter (IPEN)
• Maria Luisa Calvo (Spain)
Micro-Crater Laser Induced Breakdown Spectroscopy - an Analytical approach in metals samples.

Vincent Piscitellia,b, Jhanis Gonzalezb, Xianglei Maob, Alberto Fernandeza, and Richard Russob

\textit{a} UCV- Laboratorio de Espectroscopia Láser, Caracas, Venezuela \textit{b} Lawrence Berkeley National laboratory, Berkeley, US

Abstract. The laser ablation has been increasing its popularity like as technique of chemical analysis. This is due to its great potentiality in the analysis of solid samples. On the way to contributing to the development of the technique, we in this work studied the laser induced breakdown spectroscopy (LIBS) in conditions of micro ablation for future studies of coverings and micro crates analysis. Craters between 2 and 7 micrometers of diameter were made using an Nd-YAG nanosecond laser in their fundamental emission of 1064 nm. In order to create these craters we use an objective lens of long distance work and 0.45 of numerical aperture. The atomic emission versus the energy of the laser and its effect on the size of craters was study. We found that below 3 micrometers although there was evidence of material removal by the formation of a crater, it was no detectable atomic emission for our instruments. In order to try to understand this, curves of size of crater versus plasma temperature using the Boltzmann distribution graphs taking the Copper emission lines in the visible region were made. In addition calibration curves for Copper and aluminum were made in two different matrices; one of it was a Cu/Zn alloy and the other a Zinc Matrix. The atomic lines Cu I (521.78 nm) and Al I (396.15 nm) was used. From the Calibration curve the analytical limit of detection and other analytical parameters were obtained.

Keywords: Laser Ablation, Laser induced Breakdown spectroscopy, Micro- crates.

PACS: 52.50.Jm, 52.38.–r, 42.62.Fi

INTRODUCTION

Laser induced breakdown spectroscopy (LIBS) is an atomic emission spectroscopy technique that has the capability to detect, identify and quantify the chemical composition of many material. LIBS utilize a pulsed laser focused on a spot (typically >20µm) to create a plasma on the sample surface. The resulting light emission is collected to produce spectrum containing emission lines from the atomic, ionic, and molecular fragments created by the plasma. By properly manipulation of these spectra, elemental chemical analysis both qualitative and quantitative of a wide range of materials can be accomplished \([1-4]\).

LIBS analysis performance depends greatly on the plasma properties and lifetime. In general, to assure adequate plasma lifetime and strong emission intensity, most LIBS setups involve the use of a high energy pulsed laser (>30mJ, depending on the type of laser and wavelength), and large spot sizes (>20µm) \([4,5]\). However, these experimental conditions restrict the spatial resolution (lateral and depth resolution) necessary to access smaller information domains (nanoanalysis and monolayer analysis).

Attempts are being made to push this technology towards miniaturization of the instrumentation; these efforts are mainly driven by the necessity of portable analytical systems rather than improving spatial resolution. However, as is explain below, spot sizes down to less than 10µm are used in these miniature systems.

The miniaturization of LIBS systems to compact systems ideal for field deployment have been possible due to the development of small spectrometers, fiber optics, and microchip lasers capable of delivering peak pulses powers up to megawatts \([6,7]\) . Such systems have been used for chemical interrogation of different materials, obtaining analytical figures of merit (precision, accuracy, limit of detection, etc) comparable with the most commonly used LIBS systems, such as those that use high energy Nd:YAG lasers. However, even though there are many advantages by miniaturizing these systems, they also present some drawbacks. For example, microchip lasers can only be
operating at high repetition rates (>kHz), reason for which is required to rotate or scan the samples while they are being ablated, limiting lateral resolution.

In addition, microchip lasers have short pulse widths, in the range of hundreds of picoseconds and they can only deliver pulse energies between 10-50µJ. Dependency on the pulse widths have been well documented [2,4,8,9], in these papers have been reported that shorter the pulse width shorter the plasma lifetime. Therefore, signal acquisition closer in time to the ablation pulse is required, for which ungated detectors could be used at the risk of increasing the background signal intensity.

Finally, due to the low energy provide by these microchip lasers tight focusing conditions are required to reach breakdown thresholds. And although the small spot size required, theoretically will improve lateral and depth resolution, in fact can introduce new problems. For example, short working distance and shallow focusing depth to such an extent that small changes in the sample surface will move the sample out of focus.

Driven by the increased need of development techniques for nano and monolayer analysis, in this paper is presented a LIBS system in which the crater size can be change between 7-14 µm using the 1064nm wavelength of a Nd:YAG laser. Signal detection and quantitative chemical analysis is shown. Also a study of plasma emission as a function of the crater size and laser energy is also presented.

EXPERIMENTAL

The first part of this study consisted on making an experimental setup that allow us to create the smallest possible crater permitted by diffraction limitations. For this purpose, the system build works in the focal plane of the objective lens, instead of the image plane which is commonly used in LIBS systems. Working on the focal plane will permit to create craters down close to the optical diffraction limit. Figure 1 show the experimental setup schematics.

A Q-switched Nd:YAG laser (τ=4ns), operating at its fundamental wavelength (1064 nm) was used to initiate the ablation. The pulse energy was precisely controlled by beam attenuation. The laser beam was directed to the sample using dicroic mirror. Then it was focused using an objective lens (Edmund Optics EO M PLAN HR OBJECTIVE 10X) with a focal length of 19 mm and numerical aperture (NA) of 0.45 and conditioned by a couple of quartz lens. A XYZ motorized stage (Thorlabs RB13S) was used for positioning the sample. Images of the sample were acquired by a camera (Canon PowerShot G7).

![Figure 1: Experimental Setup](image)

The samples were a series of standard reference materials from the National Institute of Standards and Technology (NIST zinc-base alloys 626-630) and Glen Spectra Inc. (Cu-Zn binary alloys). Table # 1 shows the SRM’s compositions. The samples were cutting to an appropriate size and polish even 0.05 µm alumina powder, cleaned with acetone and storage in a dry cabinet.

The system build for these experiments resembles an optical microscope, even though the focal plane is used instead of the image plane, and the objective lens is used to focusing the laser beam.

The next step was to determine the minimum spot size (energy) from which a reliable signal distinguishable from the background is achievable. For this study the energy was also varied from 1 to 100 µJ and the emission intensity of aluminum (λ= 396.15 nm) and copper (λ=521.8 nm) were monitored.

<table>
<thead>
<tr>
<th>SRM</th>
<th>Cu</th>
<th>Al</th>
<th>Mg</th>
<th>Fe</th>
<th>Pb</th>
<th>Cd</th>
<th>Sn</th>
<th>Cr</th>
<th>Mn</th>
<th>Ni</th>
<th>Si</th>
<th>~Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>625</td>
<td>0.034</td>
<td>3.06</td>
<td>0.07</td>
<td>0.036</td>
<td>0.014</td>
<td>0.00076</td>
<td>6E-04</td>
<td>0.0128</td>
<td>0.031</td>
<td>0.0184</td>
<td>0.017</td>
<td>96.7181</td>
</tr>
<tr>
<td>626</td>
<td>0.056</td>
<td>3.56</td>
<td>0.02</td>
<td>0.103</td>
<td>0.0022</td>
<td>0.0016</td>
<td>0.001</td>
<td>0.0395</td>
<td>0.048</td>
<td>0.047</td>
<td>0.042</td>
<td>95.0795</td>
</tr>
<tr>
<td>627</td>
<td>0.132</td>
<td>3.88</td>
<td>0.03</td>
<td>0.023</td>
<td>0.0082</td>
<td>0.0051</td>
<td>0.004</td>
<td>0.0038</td>
<td>0.014</td>
<td>0.0029</td>
<td>0.021</td>
<td>95.8756</td>
</tr>
<tr>
<td>628</td>
<td>0.611</td>
<td>4.59</td>
<td>0.0094</td>
<td>0.066</td>
<td>0.0045</td>
<td>0.004</td>
<td>0.0022</td>
<td>0.0087</td>
<td>0.0091</td>
<td>0.03</td>
<td>0.0088</td>
<td>94.6576</td>
</tr>
<tr>
<td>629</td>
<td>1.5</td>
<td>5.15</td>
<td>0.094</td>
<td>0.017</td>
<td>0.0135</td>
<td>0.0155</td>
<td>0.012</td>
<td>0.0006</td>
<td>0.0017</td>
<td>0.0075</td>
<td>0.078</td>
<td>93.1100</td>
</tr>
<tr>
<td>630</td>
<td>0.976</td>
<td>4.3</td>
<td>0.03</td>
<td>0.023</td>
<td>0.0083</td>
<td>0.0048</td>
<td>0.004</td>
<td>0.0031</td>
<td>0.0106</td>
<td>0.0027</td>
<td>0.022</td>
<td>94.6155</td>
</tr>
</tbody>
</table>

The last part of this study consisted in building calibration curves using the two series of reference standard materials. Two conditions were set to meet the requirements of this study, improve spatial resolution. These conditions were the used of the smallest spot size from which reliable signal-to-background ratio was obtained (7 µm diameter at 41 µJ) and one pulse per sample location (10 different locations were ablated to monitor precision). Others optimized parameters used for these experiments were; Gate 300ns, and acquisition delay time 200ns. To collect the emission a 600 µm fiber multimode fiber optics was used. The end part of this fiber was focused into a 15 cm spectrometer with 600 groves/mm gratings and Princeton iCCD as a detector.

RESULT AND DISCUSSION:

Paraxial resolution

The paraxial wave equation that relates laser spot size, numerical aperture and beam quality was used to calculate the minimum spot size permitted by diffraction limits under these experimental conditions. This equation was:

$$ S = 2M^2 \frac{\lambda}{\pi NA_{obj}^2} $$

where S is the spot size diameter, NA_{obj} is the numerical aperture of the objective lens, M^2 is the beam quality, and λ is the wavelength of the laser radiation. The theoretically spot size for our experimental conditions (NA= 0.45, λ=1064 nm and assuming M^2=1), is 1.5 µm and the size of the spot have no dependence with the energy of the laser. However, the crater size could not be experimentally reached since the intensity profile of the spot is strongly dependent on the intensity profile of the radiation, as well as the sample properties. For this reason, the dependency of the crater size with the pulsed laser energy was studied, in order to get the best relation between small crater and detectable emission light for the elements that we was chosen for the studied. The energy was varied from 1 to 100 µJ. Sample NIST628 was used for this experiment. This sample was chose because the certificated amount of copper is enough to get a strong emission signal and low to avoid the auto-adsorption effects. The importance of the copper lines was based in the fact that whit these emission lines we can calculated the temperature of the plasma using the Boltzmann Plot. In this part of the experiment we fixed the Z sample position to the focal plane of the objective lens, and we vary the laser energy 100 µJ to 1 µJ and collect 20 spectra per energy all of them in different Y sample position. The smallest crater obtained was the 1.7 µm in diameter and 0.5 µm in depth, at laser energy of 1 µJ. this crater is close enough to the theoretical crater predicted using the paraxial wave equation. And as expected, there was a clear correlation (linear) between the pulsed laser energy and the crater size in which, higher the laser energy larger the crater size, figure 2-A. The same tendency was observed for the crater depth, figure 2a insert in figure 2-A shows the crater diameters versus crater depths. It is also important to mention that, in general, if the intensity profile is uniform the spot takes on the Airy disc intensity profile but if the intensity profile is Gaussian, as in this case, the result is an spot of Gaussian profile, as shown in figure 2-B.
Crater size versus emission

The relations between the crater size and the intensity of emission were studied using the sample 628. Figure 4 shows the integrated signals intensities versus laser energy. In this plot it is indicated the energy for which the signal intensity reaches at least three times the background level (3σ). It is also shown the total volume ablated (measured using a white light interferometer microscope (Zygo 200)) at these energies. As is expected, for aluminum (higher concentration) the requirement set for these experiments for the signal level (3σ background) is reached at lower energy than for copper. A minimum energy of 10µJ (spot size of 5.3µm) and 27µJ (spot size of 7µm) for aluminum and copper, respectively, are necessary to obtain the minimum signal set in this study for chemical analysis.

In order to understand why there was not copper emission measurable when the energy and the crater were less than 27 µJ and 7 µm, respectively. We calculated the excitation temperature from the plasmas form using energies ≥40µJ; the Boltzmann plot method was used.

The Cu I emission lines centered at 427.51, 510.55 and 521.8nm were used [10]. The results are showed in figure 5. This figure shows the relation between the plasma excitation temperature and the energy. The plasma excitation temperature decrease when the laser energy decreases. This maybe is due because the amount of material that was removal is lower when the energy of the laser is lower. But also maybe is due that the plasma is so small, that it cold down so fast and no enough thermal energy is available to excite the atoms and promoted its emission. We do have not enough evidence but make sense that a combination of both of this effect is the cause of no emission where the crater size is smaller than 3 µm.

FIGURE 2: 2-A. CRATER SIZE VS LASER ENERGY: NIST 628, 2-B. CRATER PROFILES AT DIFFERENT LASER ENERGIES: NIST 628.

FIGURE 4: SIGNAL INTENSITIES AT DIFFERENT LASER ENERGIES: NIST 628.
Calibration Curves

The second part of this work was building the calibration curves for Cu in order to get the analytical merits of the instrument to know which the L.O.D when micro-crater is are used instead the bigger crater.

The calibration curve obtained for NIST 627-630 using these conditions is shown in figure 6. The linear regression data in figure 6 gave a correlation coefficient of 0.970 and a limit of detection of 0.1% for Cu. Samples NIST 625 and 626 were not included since they did not meet the requirement of signal-to-background ratio. The calibration curves were made using the area belong the emission peak instead the high of the peak. The 0.1 L.O.D obtained in this work is similar to the L.O.D. obtained by Winefordner et al [6] for similar crater size with the advantage that in this work we can make single crater analysis.

On the other hand, figure 7, in the same experimental condition the Brass series was studied. For those the Cu I (521.8 nm) and the Zn I (481.5 nm) was chose. The first thing that we observed is that for Cu no linear relations was found when we made the graph concentration of Copper versus intensity. Similar effect was observed by Russo et al [11]. The reason of this effect is not well established, but the true is that the seam effect was observed in two different experimental conditions in the same series of sample. In Order to get a better calibration curve for Cu, we made the Zn/Cu ratio in concentration and intensity and the linear square relation obtained was 0.987 and 7 % of LOD for the Copper.
CONCLUSIONS

We found in this work, that it is possible to make craters near the limit of diffraction if we used the suitable optics. But these small craters are not able to emit radiation. Possibly to connect this system to a more sensible detector as a mass detector would allow the observation of the elements contained in the target. The smaller crater with emission sufficient to acquire a good spectrum that we could obtain was of 7 μm. the limit of detection as well as the other figures of merits are good enough if we consider the amount of energy provided in this experiment. This type of work opens the door to new experiments on the way to which the microanalysis of samples by means of the laser ablation and in specific of LIBS can be a reality, since they allow knowing the weaknesses and strengths the technique.

ACKNOWLEDGMENTS

CDCH- UCV.
LBNL, Team D, Dr Richard Russo

REFERENCES

L.O.D.= 7%

FIGURE 7: ZN AND CU CALIBRATION CURVE (BRASS).