TRABAJO ESPECIAL DE GRADO

DESARROLLO DE HERRAMIENTAS AUTOMATIZADAS PARA EL DISEÑO DE EQUIPOS DE PROCESOS A PARTIR DE REPORTES DE SIMULACIÓN

Presentado ante la Ilustre Universidad Central de Venezuela Por el Br. Roca M. Luis E., Para optar al Título de Ingeniero Químico

TRABAJO ESPECIAL DE GRADO

DESARROLLO DE HERRAMIENTAS AUTOMATIZADAS PARA EL DISEÑO DE EQUIPOS DE PROCESOS A PARTIR DE REPORTES DE SIMULACIÓN

TUTOR ACADÉMICO: Prof. Jaime Hernández L.

TUTOR INDUSTRIAL: Ing. Carlos Arias

Presentado ante la Ilustre Universidad Central de Venezuela Por el Br. Roca M. Luis E., Para optar al Título de Ingeniero Químico Los abajo firmantes, miembros del Jurado designado por el Consejo de Escuela de Ingeniería Química, para evaluar el Trabajo Especial de Grado presentado por el Bachiller Luis Enrique Roca Martínez, titulado:

"DESARROLLO DE HERRAMIENTAS AUTOMATIZADAS PARA EL DISEÑO DE EQUIPOS DE PROCESOS A PARTIR DE REPORTES DE SIMULACIÓN"

Consideran que el mismo cumple con los requisitos exigidos por el plan de estudio conducente al título de Ingeniero Químico, y sin que esto signifique que se hacen solidarios con las ideas expuestas por el autor, lo declaran APROBADO

Prof. All Lara

Jurado

Prof Jaime Hernández

Tutor Académico

Ing. Carlos Arias

Rroft Domingo Ramírez

Jurado

Tutor Industrial

DEDICATORIA

A Dios, por darme la fortaleza necesaria y permitirme alcanzar mis metas.

A mi madre, por todo los valores que me inculcaste cuando era pequeño. Sé que estas desde ahí arriba cuidándome y guiándome en cada paso que doy en mi vida.

A mi padre, por ser ejemplo de vida y enseñarme que las cosas se consiguen con esfuerzo, honestidad y trabajo continúo apoyándome en cada momento de mi carrera y de mi vida.

A mi hermano Rodolfo porque siempre has estado pendiente de mi dándome consejos y cuidándome.

A mi hermano Robert por siempre alegrarme con sus ocurrencias.

A Bercel por todo el apoyo que me has brindado.

AGRADECIMIENTOS

En primer lugar agradecer a Dios, por estar siempre presente en mi vida, ser mi guía y darme toda la fuerza y sabiduría necesaria para alcanzar mis metas.

A mi familia, por su apoyo incondicional en todo momento a lo largo de mis estudios, por su entera confianza y por todo su esfuerzo.

A la ilustre Universidad Central de Venezuela, a la Facultad de Ingeniería, Escuela de Ingeniería Química y a todo el personal docente que me permitieron crecer profesionalmente trasmitiéndome parte de sus conocimientos.

A mi tutor industrial, el Ing. Carlos Arias por brindarme todo su apoyo, dedicación y transmitirme tantos conocimientos no solo referente al presente TEG, sino también acerca del ambiente de trabajo de un Ing. de Procesos en la empresa y por toda la confianza depositada en mí.

A mi tutor académico el Prof. Jaime Hernández por su apoyo en forma incondicional, dedicación, esfuerzo y ayuda para la culminación del presente TEG.

Al jurado, Prof. Ali Lara y Prof. Domingo Ramírez por su colaboración y disposición en la evaluación de este trabajo.

Al grupo de trabajo de la Gerencia RIRF de PDVSA INTEVEP, por todo su apoyo durante la elaboración de este trabajo, Pedro Mateo, Cesar Pernalete, Marlene Perozo, Juan Alvares y Carlos Canelón, y al grupo de trabajo de Ingeniería y Construcción de Puerto La Cruz.

Un agradecimiento a mis amigos que de alguna u otra manera me han apoyado, Neyla, Raúl, Jean, Angelo, Carlos, Kevin H., Hilmar, Karem, Belén, Anabel, Kevin C., Katherine, Madelyn, Mario, Jorge, Manuel, Jairo, Franklin, Adrian, Luis, Andreina, Rubén, Andrea, Nelson, Wilnor, Yusbely, Joanna, Elis, Frederick, Anthony, Ángel, David, Margareth, Simón, Javier y muy especialmente a ti Marisela Salas.

Roca M., Luis E.

DESARROLLO DE HERRAMIENTAS AUTOMATIZADAS PARA EL DISEÑO DE EQUIPOS DE PROCESOS A PARTIR DE REPORTES DE SIMULACIÓN

Tutor académico: Prof. Jaime Hernández. Tutor industrial: Ing. Carlos Arias Tesis. Caracas, U.C.V. Facultad de Ingeniería. Escuela de Ingeniería Química. 2014, 182pp.

Palabras claves: Diseño de Equipos, Normas Técnicas de PDVSA, Tanques Atmosféricos, Separadores, Compresores, Simulación.

Resumen. En el presente Trabajo Especial de Grado, se realizó la automatización de las metodologías de cálculo presentes en las normas Técnicas de PDVSA, a partir de la elaboración de herramientas para el diseño de tanques atmosféricos, separadores y compresores mediante el uso del ambiente de programación de "Visual Basic for Applications" (VBA) de Excel, con dichas herramientas se tendrá un ahorro significativo de tiempo en el diseño de equipos; y además, se estará cumpliendo con los criterios y recomendaciones de mejores prácticas expuestas en el Manual de Diseño de Procesos y el Manual de Ingeniería de Diseño. Para la elaboración de cada herramienta, se realizaron Diagramas de Flujo de Cálculo, a partir de las metodologías presentes en los manuales. Se identificaron las curvas y tablas necesarias y se realizaron los ajustes correspondientes. Las herramientas son muy intuitivas y cuentan con manuales de usuario para cada una de ellas. La validación se realizó con diseños previos hechos en la empresa. La diferencia promedio entre los resultados obtenidos mediante la herramienta de separadores y los casos de estudio fue de 4,00%. Para la herramienta de compresores fue de 1,72% y para tanques de 11,76%.

ÍNDICE DE CONTENIDO

CAPÍTULO I	I. FUNDAMENTOS DE LA INVESTIGACIÓN	2
I.1 PLANT	EAMIENTO DEL PROBLEMA	2
I.2 ANTEC	EDENTES	4
I.3 OBJETI	VOS	9
I.3.1	Objetivo general	9
I.3.2	Objetivos específicos	9
	II. MARCO TEÓRICO	
II.1 TANQU	JES ATMOSFÉRICOS	10
II.1.1	Clasificación de los tanques Atmosféricos	10
II.1.1.1	Tanques de techo fijo	11
II.1.1.2	Tanques de techo flotante	11
II.1.2	Boquillas en tanques de almacenamiento	12
II.1.2.1	Boquilla de Entrada y Salida de producto	12
II.1.2.2	Boquillas de Drenajes	12
II.1.2.3	Bocas para entradas de personas (Manhole)	12
II.1.2.4	Boquillas para el venteo	12
II.1.2.5	Boquillas para Inertización	13
II.1.2.6	Conexiones para indicador y control de nivel	13
II.1.3	Niveles del tanque	13
II.2 TAMBO	DRES SEPARADORES	14
II.2.1	Clasificación de los separadores	14
II.2.1.1	Separador por gravedad	15
II.2.1.2	Separadores bifásicos	16
II.2.1.3	Separadores trifásicos	16
II.2.1.4	Separador cilíndrico vertical	16
II.2.1.5	Separadores cilíndrico horizontal	16
II.2.2	nternos De Un Separador	17
II.2.2.1	Deflectores	17
II.2.2.2	Distribuidores de entrada	18
II.2.2.3	Eliminador de niebla tipo Malla	18
II.2.2.4	Rompe – vórtices	18

	II.2.2.5	Volúmenes de operación y emergencia de los separadores	. 19
II.3	COMPR	ESORES	. 20
IJ	I.3.1 C	Clasificación de los compresores	. 20
	II.3.1.1	Compresores centrífugos	. 21
	II.3.1.2	Compresores reciprocantes	. 22
	II.3.1.3	Eficiencia de Compresión	. 22
CAP	ÍTULO I	II. MARCO METODOLÓGICO	. 24
III.1	REV	ISIÓN BIBLIOGRÁFICA	. 24
IJ	П.1.1 І	nformación Básica	. 24
II	II.1.2 I	nformación de Normativas	. 24
III.2	PLAN	NTEAMIENTO DEL ALGORITMO DE CÁLCULO	. 25
III.3		TIFICACIÓN E IMPLEMENTACIÓN DE LAS FUNCIONES	
		S	
III.4		IFICACIÓN DE LAS HERRAMIENTAS	
III.5		BORACIÓN DEL MANUAL DE USUARIO	
III.6		IDACIÓN DE LAS HERRAMIENTAS	
		V. RESULTADOS Y DISCUSIÓN DE RESULTADOS	
IV.1	PLA	NTEAMIENTOS DE LOS ALGORITMOS DE CÁLCULO	. 27
		Planteamiento del algoritmo de cálculo para el diseño de tanques os	. 27
I	V.1.2 F	Planteamiento del algoritmo de cálculo para el diseño de separadores	s 29
I	V.1.3 F	Planteamiento del algoritmo de cálculo para compresores	. 31
IV.2	IDEN	ITIFICACIÓN E IMPLEMENTACIÓN DE LAS FUNCIONES	
NECI		5	
I	V.2.1 F	Factor de disipación de la velocidad para chorros incidentes	. 33
I	V.2.2	Áreas de secciones circulares vs alturas de cuerda	. 35
		Propiedades termodinámicas de los gases para los cálculos de	2.5
C	•	n y expansión	
	IV.2.3.1		
	IV.2.3.2	,	
	IV.2.3.3	-P	
_	IV.2.3.4	- '	
		Eficiencia isentrópica	
I.	V 2.5 F	Eficiencia Politrópica	. 54

IV.3 ELABORACIÓN DE LAS HERRAMIENTAS AUTOMATIZADAS PORTÁTILES PARA EL DISEÑO DE TANQUES, SEPARADORES Y
COMPRESORES
IV.4 ELABORACIÓN DEL MANUAL DE USUARIO 58
IV.5 VALIDACIÓN DE LAS HERRAMIENTAS
IV.5.1 Validación De La Herramienta De Tanques Atmosféricos
IV.5.2 Validación de la herramienta de Separadores
IV.5.3 Validación de la herramienta de compresores
CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES
V.1 CONCLUSIONES
V.2 RECOMENDACIONES
CAPÍTULO VI. BIBLIOGRAFÍA
APÉNDICE A. Diagrama de flujo de Cálculo para el diseño de tanques83
APÉNDICE B. Diagrama de flujo de cálculo para el diseño de separadores líquido vapor horizontales
APÉNDICE C. Diagrama de flujo de cálculo para el diseño de separadores líquido vapor verticales
APÉNDICE D. Diagrama de flujo de cálculo para separadores líquido-líquido con bota decantadora
APÉNDICE E. Diagrama de flujo de cálculo para separadores líquido-líquido cor ambas fases en el cuerpo principal
APÉNDICE F. Diagrama de flujo de cálculo para separadores líquido-líquido-vapor con bota decantadora
APÉNDICE G. Diagrama de flujo de cálculo para separadores líquido-líquido-vapor con ambas fases en el cuerpo principal
APÉNDICE H. Servicios más comunes de la industria Petrolera, Petroquímica y Carbonífera Nacional (PDVSA- MDP-03-S-03, 2005)90
APÉNDICE I. Recomendaciones genéricas del tipo de separador a utilizar(PDVSA MDP-03-S-03, 2005)
APÉNDICE J. Diagrama de flujo de flujo para la especificación de los compresores centrífugos
APÉNDICE K. Diagrama de flujo de flujo para la especificación de los compresores reciprocantes
APÉNDICE L. Disipación de la velocidad en chorros incidentes para los separadores (PDVSA- MDP-03-S-03, 2005)
APÉNDICE M. Longitudes de cuerdas y áreas de las secciones circulares vs. Alturas de la cuerda (PDVSA- MDP-03-S-03, 2005)

APÉNDICE N.Propiedades termodinámicas de los gases para los cálculos de compresión y expansión (Tr: 0,8-1,15) (PDVSA- MDP 02-K-04, 1996)96
APÉNDICE O. Propiedades termodinámicas de los gases para los cálculos de compresión y expansión (Tr: 1,20-1,60) (PDVSA- MDP 02-K-04, 1996)97
APÉNDICE P. Formato de modelo reporte de corrientes98
APÉNDICE Q. Hoja de especificaciones para tanques de techo flotante interno99
APÉNDICE R. Hoja de especificaciones para separadores verticales100
APÉNDICE S. Hoja de especificaciones para separadores líquido-líquido con bota decantadora
APÉNDICE T. Hoja de especificaciones para separadores líquido-líquido-vapor con ambas fases en el cuerpo principal
APÉNDICE U. Hoja de especificaciones para compresores centrífugos103
APÉNDICE V. Manual de usuario para la herramienta de tanques104
APÉNDICE W. Manual de usuario para la herramienta de separadores liquido- vapor
APÉNDICE X. Manual de usuario para la herramienta de compresores144
APÉNDICE Y. Capacidades de $34 m^3$ a $16432 m^3$ (API Standar $650, 2001$)168

ÍNDICE DE FIGURAS

Figura Nº 1. Clasificación de los separadores.	15
Figura Nº 2. Clasificación de los compresores	21
Figura Nº 3. Eficiencia isentrópica (PDVSA-MDP 02-K-04, 1996)	23
Figura Nº 4. Eficiencia Politrópica (PDVSA-MDP 02-K-04, 1996)	23
Figura Nº 5. Curva de disipación de la velocidad en chorros incidentes	34
Figura Nº 6. Dimensiones de la cuerda	35
Figura Nº 7. Curvas de RZ para temperaturas reducidas de [0,8-0,95]	36
Figura Nº 8. Curvas de RZ para temperaturas reducidas de [1-1,2]	37
Figura Nº 9. Curvas de RZ para temperaturas reducidas [1,3-1,6]	39
Figura N° 10. Curvas de RTr $(\partial Z \partial Tr)$ Pr para temperaturas reducidas de $[0,8-0,95]$	40
Figura № 11. Curvas de RTr(∂Z∂Tr)Pr para temperaturas reducidas [1-1,2]	41
Figura N° 12. Curvas de RTr(∂ Z ∂ Tr)Pr para temperaturas reducidas [1,3-1,6]	43
Figura N° 13. Curvas de Δ_{Cp} para temperaturas reducidas de [0,8-0,95]	44
Figura N° 14. Curvas de Δ_{Cp} para temperaturas reducidas [1-1,2]	45
Figura N° 15. Curvas de Δ_{Cp} para temperaturas reducidas [1,3-1,6]	47
Figura Nº 16. Curvas de C _P -C _V para temperaturas reducidas [0,8-0,95]	48
Figura Nº 17. Curvas de C _P -C _V para temperaturas reducidas [1-1,15]	49
Figura Nº 18. Curvas de C _P -C _V para temperaturas reducidas [1,3-1,6]	51
Figura Nº 19. Curvas de eficiencias isoentrópicas	53
Figura Nº 20. Curvas de eficiencias Politrópica	55

ÍNDICE DE TABLAS

Tabla N° 1. Hojas de Especificaciones de procesos recopiladas para tanques (Álvarez y Gutiérrez, 2011)
Tabla N° 2. Hojas de especificaciones de procesos recopiladas para separadores verticales (Peña, Perozo, y Toyo, 2011)
Tabla N° 3. Hojas de especificaciones de procesos recopiladas para separadores horizontales (Peña, Perozo, y Toyo, 2011)
Tabla N° 4. Hojas de especificaciones de compresores Axens e Intevep (Gonzales y Mateo, 2011)
Tabla Nº 5. Hojas de especificaciones de compresores (Consultoras) (Gonzales y Mateo, 2011)
Tabla N° 6. Herramientas de cálculo recopiladas para Tanques (Álvarez y Gutiérrez, 2011)
Tabla N° 7. Herramientas de cálculo recopiladas para separadores (Peña, Perozo, y Toyo, 2011)
Tabla Nº 8. Herramientas de cálculo para compresores (Gonzales y Mateo, 2011) 9
Tabla N° 9. Niveles en los tanques de almacenamiento (PDVSA-MDP-03-S-05, 1995)
Tabla N° 10. Niveles de emergencia y operación en los separadores (PDVSA-MDP-03-S-05, 1995)
Tabla N° 11. Variables requeridas para dimensionamiento de Tanques
Tabla Nº 12. Variables requeridas para el dimensionamiento de separadores 29
Tabla Nº 13. Variables requeridas para la especificación de compresores
Tabla N° 14. Valores de disipación de la velocidad en chorros incidentes para los separadores
Tabla N° 15. Ajuste polinómico de la curva de disipación de la velocidad en chorros incidentes
Tabla N° 16. Ajuste polinómico para las dimensiones de la cuerda
Tabla N° 17. Ajustes para el cálculo de RZ para temperaturas reducidas de [0,8-0,95]
Tabla N° 18. Ajustes para el cálculo de RZ para temperaturas reducidas de [1-1,2]. 38
Tabla N° 19. Ajustes para el cálculo de RZ para temperaturas reducidas [1,3-1,6] 39
Tabla N° 20. Ajustes para el cálculo de RTr($\partial Z \partial Tr$)Pr para temperaturas reducidas [0,8-0,95]

Tabla N° 21. Ajustes para el cálculo de $RTr(\partial Z \partial Tr)Pr$ para temperaturas reducidas [1-1,2]
Tabla N° 22. Ajustes para el cálculo de RTr(∂Z∂Tr)Pr para temperaturas reducidas [1,3-1,6]
Tabla N° 23. Ajustes para el cálculo de Δ_{Cp} para temperaturas reducidas de $[0,8\text{-}0,95]$
Tabla N° 24. Ajustes para el cálculo de Δ_{Cp} para temperaturas reducidas [1-1,2] 46
Tabla N° 25. Ajustes para el cálculo de Δ_{Cp} para temperaturas reducidas [1,3-1,6] 47
Tabla N° 26. Ajustes para el cálculo de C_P - C_V para temperaturas reducidas [0,8-0,95]
Tabla N° 27. Ajustes para el cálculo de C _P -C _V para temperaturas reducidas [1-1,2]. 50
Tabla N° 28. Ajustes para el cálculo de C _P -C _V para temperaturas reducidas [1,3-1,6]
Tabla N° 29. Eficiencias isentrópicas
Tabla N° 30. Ajustes para el cálculo de la eficiencia isoentrópica
Tabla N° 31. Eficiencias politrópicas
Tabla N° 32. Ajustes para el cálculo de la eficiencias politrópicas
Tabla N° 33. Datos iniciales para el dimensionamiento de los tanques T-22-01 y T-22-02
Tabla Nº 34. Comparación entre los resultados obtenidos con la herramienta y los del proyecto para el tanque T-22-01
Tabla Nº 35. Comparación entre los resultados obtenidos con la herramienta y los del proyecto para el tanque T-22-02
Tabla Nº 36. Datos iníciales para el dimensionamiento de tres tanques de almacenamiento T-3001/02/03
Tabla Nº 37. Comparación entre los resultados obtenidos con la herramienta y los del proyecto para los tanques T-3001/02/03
Tabla N° 38. Datos iníciales para el dimensionamiento del tanque de almacenamiento de Nafta
Tabla Nº 39. Comparación entre los resultados obtenidos con la herramienta y los del proyecto para el tanque de almacenamiento de Nafta
Tabla Nº 40. Datos para el Dimensionamiento de los tanques T-3003 / 04
Tabla Nº 41. Comparación entre los resultados obtenidos con la herramienta y los del proyecto para los tanques T-3003 / 04
Tabla Nº 42. Datos para el dimensionamiento de los separadores D-7627/7647 69
Tabla Nº 43. Comparación entre los resultados obtenidos con la herramienta y los del proyecto para los separadores D-7627/7647

Tabla N° 44. Datos para el dimensionamiento de los separadores D-7638/7658 7	71
Tabla N° 45. Comparación entre los resultados obtenidos con la herramienta, proyecto y software de consultora para los separadores D-7638/7658	71
Tabla N° 46. Datos para el dimensionamiento de los separadores D-7801	73
Tabla N° 47. Comparación entre los resultados obtenidos con la herramienta, proyecto y software de consultora para el separador D-7801	73
Tabla N° 48. Datos para la especificación del compresor	75
Tabla N° 49. Comparación entre los resultados obtenidos con la herramienta y los de MDP–02–K–04 para el compresor	

INTRODUCCIÓN

En la gerencia de refinación de PDVSA INTEVEP se está desarrollando un proyecto el cual consiste en la elaboración de herramientas automatizadas para el diseño de equipos de proceso, a partir de los procedimientos del Manual de Diseño de Procesos y del Manual de Ingeniería de Diseño, pertenecientes a las Normas PDVSA. Con dichas herramientas se pretende evitar el uso de software especializado de terceros y garantizar el que el diseño de equipos en la empresa se realice mediante las metodologías, criterios y recomendaciones expuestos en los manuales de diseño, ya que estos manuales son de obligatorio cumplimiento por las diferentes organizaciones y personal de PDVSA, como parte del control interno en la ejecución de proyectos al momento de diseñar plantas.

El Trabajo Especial de Grado tuvo como alcance la elaboración de herramientas automatizadas para el diseño de tanques atmosféricos, separadores y compresores como herramientas portátiles, haciendo uso del lenguaje de programación de Visual Basic for Applications (VBA) en Excel, a partir del desarrollo de los diagramas de diseño de cada equipo y la identificación e implementación de las funciones necesarias presentes en las metodologías de cálculo expuestas en los manuales de PDVSA. Adicionalmente, las herramientas cuentan con su respectivo manual de usuario para familiarizar acerca de su uso y de su respectiva validación mediante casos reales de proyectos elaborados en la industria.

Para cumplir con dichos propósitos, El Trabajo Especial de Grado se distribuyo en cinco capítulos. En el Capítulo I se expone el planteamiento del problema, antecedentes y objetivos; El Capítulo II presenta el marco teórico; en el Capítulo III se describe la metodología a utilizar para cumplir con los objetivos propuestos; el Capítulo IV presenta los resultados obtenidos así como la discusión de los mismos; y en el Capítulo V se exponen las conclusiones y recomendaciones.

CAPÍTULO I

FUNDAMENTOS DE LA INVESTIGACIÓN

I.1 PLANTEAMIENTO DEL PROBLEMA

Durante las fases Conceptualización y Definición de los Proyectos de Inversión de Capital en PDVSA, en las que haya algún proceso químico, se diseñan todos los equipos de proceso a partir de los procedimientos del Manual de Diseño de Procesos (MDP) y del Manual de Ingeniería de Diseño (MID), pertenecientes a la Normalización Técnica Corporativa.

Algunas de las herramientas de cálculo que se tienen para el diseño de equipos se han elaborado a partir del MDP, pero a lo largos de los años han sido adulteradas y modificadas según criterios de diseño particulares de cada proyecto, y eso ha conducido a que, al no tenerse algún custodio de las herramientas para el diseño de equipos de procesos, se han transmitidos dichas herramientas entre el personal sin alguna verificación de que éstas obedezcan al procedimiento adecuado para los cálculos. Algunas otras simplemente ni siquiera se basan en la normativa empresarial de las MDP y MID, y el ingeniero de procesos está propenso a diseñar los equipos de otra manera, sin cumplir con los criterios y estándares expuesto en la norma, siendo esto una no conformidad, que cobra importancia cuando el equipo se deteriora por no cumplir con las características necesarias para un optimo desempeño. Adicionalmente, hay que recalcar que las normas técnicas de PDVSA son de obligatorio cumplimiento por el personal de la empresa, sus diferentes organizaciones y filiales, estas normas cumplen la función de estandarizar criterios técnicos, promover la eficiencia, eficacia, calidad y continuidad en las operaciones corporativas basados en las mejores prácticas de diseño de la Industria Petrolera, Petroquímica y Carbonífera Nacional (IPPCN).

El proyecto IPAC-PDV (Ingeniería de Procesos Asistido por Computador en PDVSA) tiene como uno de sus objetivos la revisión de cada procedimiento de cálculo para el diseño de equipos de procesos, a partir de la revisión y actualización del MDP y del MID de PDVSA. En revisiones preliminares realizadas por los ingenieros de procesos de la Gerencia de Refinación de INTEVEP, se han detectado algunos errores en los procedimientos de cálculo para el diseño de algunos de los equipos de proceso, lo que conlleva a que se realice una actualización profunda y una elaboración de herramientas automatizadas de diseño de equipos acordes con dicha actualización.

Como un ejercicio de Soberanía Tecnológica, se busca apalancar el desarrollo de herramientas que minimicen el impacto económico que representa el uso de licencias de software especializados, que es el tipo de software que tradicionalmente se ha estado usando para el diseño de equipos en las empresas que prestan servicio a PDVSA, a esta iniciativa se le ha llamado Diseño Automatizado de Equipos de Procesos (DAEP), de forma que los Proyectos Mayores de Refinación, contemplados en el Plan Siembra Petrolera, dispongan de herramientas propias que minimicen las horas labor en diseño y revisión de equipos de procesos.

El DAEP parte de la generación de los algoritmos de cálculo que serán implementados en dos fases del proyecto IPAC-PDV, una primera fase, a la cual pertenece el trabajo especial de grado que aborda la elaboración de las herramientas automatizadas para el diseño de equipos, específicamente de tanques atmosféricos, separadores y compresores como herramientas portátiles haciendo uso del lenguaje de programación de Visual Basic for Applications (VBA) en Microsoft Office Excel 2003, y una segunda fase, en donde las herramientas serán diseñadas en formato web y serán centralizadas en servidores dedicados, para que su uso y acceso sea más extendido.

Para el DAEP se cuenta con una revisión preliminar de normas nacionales e internacionales para el diseño de equipos, en donde se implementan estándares y criterios de diseño ampliamente usados en la industria petrolera. Sin embargo, muchos de los criterios incluyen el uso de gráficos, nomogramas y tablas que

ralentizan los diseños por tratarse de lecturas difíciles y que producen error humano en su interpretación. Adicionalmente, muchos de los datos de entrada para el dimensionamiento de equipos provienen de resultado de simuladores de proceso, los cuales su trascripción conlleva al posible error humano, por lo cual se busca disminuir dichos errores.

I.2 ANTECEDENTES

En el año 2011, la Gerencia de Refinación de PDVSA INTEVEP, identificó la necesidad de: a) unificar los criterios para el diseño y evaluación de tanques, separadores y compresores b) revisar las normas técnicas de PDVSA utilizadas para este fin. Con este propósito se recopilaron y evaluaron las distintas hojas de especificaciones de proceso procedentes de distintos proyectos desarrollados en PDVSA, con la finalidad de revisar los aspectos y variables requeridas en las fases mencionadas anteriormente, que sirviesen de insumo para generar una hoja típica de especificación de proceso para cada uno de los equipos mencionados. En este sentido, para el caso de tanques, Alvares y Gutiérrez (2011) recopilaron y evaluaron tres hojas de especificaciones pertenecientes a los proyectos "HDH/SHP" de la Refinería de Puerto La Cruz (RPLC), "Upstream Surface Facilities Project" perteneciente a SINCOR y del proyecto de Expansión de la Refinería El Palito (RELP) (Tabla Nº1), para el caso de los separadores Peña, Perozo y Toyo (2011), evaluaron quince hojas de especificaciones pertenecientes a proyectos de la RPLC y RELP (Tabla N°2 y 3), así mismo para el caso de compresores Mateo y Gonzales (2011) evaluaron nueve hojas de especificaciones pertenecientes a los proyectos de la RPLC, RELP, Planta de Extracción Profunda de Soto y Tratamiento industrial de aceites lubricantes usados (Tabla N°4 y 5). En la evaluación realizada a las hojas de datos o especificaciones de proceso para el caso de tanques y separadores se extrajeron las características más resaltantes de cada una de estas hojas de datos de proceso, planteando su inclusión en la hoja típica de especificaciones de procesos para cada equipo. Con respecto a la evaluación hecha a las distintas hojas de datos de compresores, Mateo y Gonzales concluyeron que la hoja de especificación de proceso de compresores puede estar completamente basada en la hoja de datos de proceso de Axens, ya que observaron que es la única en la que todas las variables incluidas pueden ser calculadas por el ingeniero de proceso encargado del diseño del servicio de compresión, sin necesidad de recurrir a las especialidades; adicionalmente, la forma en la que están dispuestas, agrupadas y estructuradas cada una de estas variables es bastante sistemática y de fácil entendimiento para cualquier usuario de la hoja en cuestión.

Tabla Nº 1. Hojas de Especificaciones de procesos recopiladas para tanques (Álvarez y Gutiérrez, 2011)

Tipo de Equipo	Nombre del	Autor	Proyecto donde fue
Tipo de Equipo	Archivo		empleada
Tanque Atmosférico	3006-1821-	J. Álvarez	3006 HDH/SHP
D-82012 A/B	BP81301	J. Alvaiez	Proyectos RPLC
Heavy Slop Storage	CPFC-46-PRO-	D. Iglacias	Proyecto de Expansión
Tank X-4601	HD-003	R. Iglesias	REP
Data Shett-Diesel	CA04-04-15-D-	B. Perez	Upstream Surface
Storage Tank	DS-002	D. I CICZ	Facilities Proyect

Tabla N° 2. Hojas de especificaciones de procesos recopiladas para separadores verticales (Peña, Perozo, y Toyo, 2011)

Tipo de Equipo	Nombre del Archivo	Proyecto donde fue empleada
	3006-1781-BP81101	CP RPLC
	3006-1801-BP81302	CP RPLC
	3006-1761-BP81104	CP RPLC
	35-FPRO-DS-0108	Expansión RELP
Vertical Bifásico (líquido-	93-FPRO-DS-0115	Expansión RELP
Vapor)	Data Sheet D-7720	CP RPLC
	Data Sheet D-7731	CP RLPC
	Data Sheet D-8805	CP RPLC
	Data Sheet D-8809	CP RPLC
	Data Sheet D-8812	CP RPLC

Tabla N^{o} 3. Hojas de especificaciones de procesos recopiladas para separadores horizontales (Peña, Perozo, y Toyo, 2011)

Tipo de Equipo	Nombre del Archivo	Proyecto donde fue empleada
	3006-1801-BP81201	CP RPLC
Sanaradar Harizantal	3006-1761-BP81204	CP RPLC
Separador Horizontal	3006-1701-BP81112	CP RPLC
	Data Sheet D-7725	CP RPLC

Tabla Nº 4. Hojas de especificaciones de compresores Axens e Intevep (Gonzales y Mateo, 2011)

Tipo de Equipo	Nombre del Archivo	Autor	Proyecto donde fue empleada
Compresor centrifugo	G-2801_Axens_El Palito	Axens	Proyecto de Expansión de RELP
Compresor reciprocante	G-2802_Axens_El Palito	Axens	Proyecto de Expansión de la Refinería el Palito
Compresor reciprocante	K-30- 01_Axens_ATEPS	Axens	Tratamiento integral de aceites lubricantes usados
Compresor	G-	PDVSA	Proyecto de Conversión
reciprocante	7801_Intevep_RP	Intevep	Profunda

Tabla Nº 5. Hojas de especificaciones de compresores (Consultoras) (Gonzales y Mateo, 2011)

Tipo de Equipo	Nombre del Archivo	Autor	Proyecto donde fue empleada
Compresor centrifugo	G-1357_Foster Wheeler_El Palito	Foster Wheeler	Proyecto de Expansión de RELP
Compresor centrifugo	G- 8321_Technip_RP	Technip	Proyecto de Conversión Profunda RPLC
Compresor centrifugo y Axial	Siemens_Propak	Siemens	Planta de Extracción Profunda Soto
Turboexpansor- Compresor	mafi- trench_Tecna_Sot	mafitrench	Planta de Extracción Profunda Soto

Alvares y Gutiérrez (2011), igualmente evaluaron las Normas técnicas de PDVSA relacionadas con el Diseño de Procesos de Tanques y la contrastaron con las Normas técnicas internacionales, con lo cual se pudo generar una base de conocimiento referente al diseño de tanques y resaltar que no existe en la empresa, un Manual de Diseño de Procesos (MDP) o una guía de diseño para tanques, como la perteneciente al Manual de Ingeniería de diseño (MID), que es la PDVSA F-201. De igual manera, Peña y otros (2011) evaluaron los Manuales de Diseño de Proceso de separadores bifásicos y trifásicos y las compararon con normas y prácticas de diseño internacional. Para el caso de compresores, Mateo y Gonzales (2011) hicieron lo mismo con el MDP de dicho equipo, en cualquiera de los casos, se observó que las normas utilizadas para el diseño en PDVSA presentaban errores de redacción e inconsistencias de índole técnico. Por ello, estructuraron notas técnicas que incluyen comentarios para cada manual de diseño, con las correcciones específicas en cada caso.

Por último, Alvares y Gutiérrez recopilaron y evaluaron diferentes hojas de cálculo disponibles de proyectos de ingeniería desarrollados en PDVSA y otras empresas, tanto a nivel nacional como internacional. Para el caso de tanques dispusieron de una hoja de cálculo de una consultora nacional (Tabla Nº6), la cual incluye funciones o tareas muy útiles, que contribuyeron a mejorar el control en la presentación y trazabilidad del producto para tanques entregable en los proyectos, sin embargo ésta es mejorable y no esta automatizada. Para el caso de separadores Peña y otros, recopilaron hojas de cálculo de separadores horizontales y verticales bifásicos y trifásicos, las cuales corresponden a autores y compañías diferentes (Tabla Nº7), no se encontró ninguna hoja de cálculo que cumpliera por sí sola con todos los criterios y alcances deseados que se exige en el MDP, por lo que sugirieron diseñar nuevas hojas de cálculo tomando como base a nivel estructural y de presentación las secciones y variables que se presentan la hoja de cálculo del archivo "PDA-V-4020.PDVSA.xls", la cual cumple con parte de los criterios establecidos en las normas PDVSA. Sin embargo, es necesario automatizar el cálculo, además de incluir algunos criterios de diseño tales como: alturas de niveles de líquido mínima para medición adecuada del nivel, altura mínima desde el nivel alto de líquido o muy alto de líquido hasta el tope del tambor, volumen normal de líquido, volumen de líquido requerido para control de nivel, volúmenes de emergencia, distancia de la boquilla a la tapa del tambor más cercana, especificaciones de la malla, longitud total del separador incluyendo tolerancias, entre otros cálculos que deben ser incorporados en la herramienta de cálculo para cumplir con lo establecido en los manuales de diseño de PDVSA. Para el caso de compresores Mateo y Gonzales, no encontraron ninguna hoja de cálculo que por sí sola cumpliera con todos los criterios y el alcance deseado, por lo que concluyeron que se debía diseñar nuevas hojas de cálculo (Tabla N°8).

Tabla Nº 6. Herramientas de cálculo recopiladas para Tanques (Álvarez y Gutiérrez, 2011)

Tipo de Equipo	Nombre del Archivo	Autor	Proyecto donde fue empleada
Hoja de cálculo- Excel	HDTANQUE	Consultora de Ingeniería	N/A

Tabla Nº 7. Herramientas de cálculo recopiladas para separadores (Peña, Perozo, y Toyo, 2011)

Tipo de equipo	Nombre del archivo	Proyecto donde fue empleada
Separador Horizontal	2-Ph.H.Sep.(M.Units)	Consultara
	Evaluacion.Sep.Horizontal	PDVSA
	PDA-V-4020.PDVSA	PDVSA
	Sep.Horizontal.2004	PDVSA
Separador Vertical	2-Ph.V.Sep.(M.Units)	Consultora
	3210HC01	Maraven, S.A
	Evaluacion.Sep.Vert	PDVSA
	PDA-V-4020.PDVSA	PDVSA
	Sep.Vertical.2004	PDVSA
	Cal.sep.vertical	CP RPLC

Tabla Nº 8. Herramientas de cálculo para compresores (Gonzales y Mateo, 2011)

Tipo de Equipo	Nombre del Archivo	Autor	Proyecto donde fue empleada
Compresor reciprocante	Comp. Recip_Iulay.xls	Iulay González	RPLC
Compresor reciprocante	Cálculo de Compresores.xls	Iulay González	RPLC
Compresor reciprocante	Cálculo Comp. Recip. I.xls	Iulay González	RPLC

I.3 OBJETIVOS

En base a la información presentada en este trabajo, se plantea el siguiente objetivo general y los siguientes objetivos específicos.

I.3.1 Objetivo general

Desarrollar herramientas automatizadas para el diseño de equipos de proceso, a través del desarrollo de los algoritmos y funciones parametrizadas necesarias para la automatización de dichas herramientas, específicamente tanques atmosféricos, separadores y compresores, a partir de los procedimientos del Manual de Diseño de Procesos y del Manual de Ingeniería de Diseño, pertenecientes a las Normas PDVSA, y a partir de datos de reportes de simulación de procesos.

I.3.2 Objetivos específicos

- a) Desarrollar los algoritmos de diseño de tanques atmosféricos, separadores y compresores, que serán insumos para su desarrollo como herramienta portátil.
- b) Identificar e implementar las funciones necesarias en el desarrollo de los algoritmos de cálculos de los equipos de procesos del alcance de este trabajo.
- c) Elaborar las herramientas automatizadas portátiles para el diseño de tanques atmosféricos, separadores y compresores.
- d) Elaborar el manual de usuario de las herramientas.
- e) Validar las herramientas automatizadas portátiles mediante casos reales de proyectos elaborados en PDVSA.

CAPÍTULO II

MARCO TEÓRICO

Las herramientas tienen como fin el diseño y especificación desde el punto de vista de ingeniería de procesos, de tres tipos de equipos: tanques atmosféricos, separadores y compresores. A continuación se ofrece una serie de definiciones relacionadas con el desarrollo de este trabajo.

II.1 TANQUES ATMOSFÉRICOS

Los tanques atmosféricos están diseñados y equipados con el fin de almacenar productos a presión atmosférica. Esta categoría normalmente incluye tanques verticales que varían en tamaño desde pequeños a grandes tanques de cuerpo establecido (GPSA, 1998). Se utilizan para recibir y mantener las materias primas hasta su posterior transformación en productos finales y posteriormente almacenar los productos terminados hasta su distribución (Heydari y Kalat, 2006).

II.1.1 Clasificación de los tanques Atmosféricos

El diseño y cálculo de tanques de almacenamiento atmosférico, se basa en el "A.P.I. STANDAR 650", para tanques de almacenamiento a presión atmosférica. Esta publicación cubre aquellos tanques de techo fijo y techo flotante en los cuales se almacenan fluidos líquidos, no se usen para servicios de refrigeración y estén construidos de acero con el fondo uniformemente soportado por una cama de arena, grava, concreto o asfalto, diseñados para soportar una presión de operación atmosférica o presiones internas que no excedan el peso del techo por unidad de área de 17,2 kPag y una temperatura de operación menor de 93 °C (200 °F). (API Standar 650, 2001).

II.1.1.1 Tanques de techo fijo

Los tanques de techo fijo son los menos costosos de construir y en general los mínimo aceptables para el almacenamiento de los VOL (líquidos volátiles orgánicos). Se componen básicamente de una carcasa de acero cilíndrico con un techo en forma de cúpula de cono o en forma geodésica el cual permanece unido permanentemente a la carcasa principal. Para tanques de techo fijo, la capacidad nominal es el volumen geométrico de la parte inferior del tanque. Se le puede instalar una válvula de venteo dependiendo de los requerimientos operacionales, lo cual le permite operar a una presión interna leve (Kolmetz & Jaya, 2011). Los tanques cilíndricos de techo fijo se dividen en tanques de techo cónico y tanques de techo domo o geodésico. Los tanques de techo cónico son utilizados con el fin de almacenar productos con presión de vapor relativamente baja, por tanto los productos almacenados en estos tanques no tienen tendencia a producir vapores a temperatura ambiente. Los tanques de techo domo o geodésico son utilizados preferiblemente para almacenar productos con presiones de vapor relativamente altas, es decir, con gran tendencia a emitir vapores a la temperatura ambiente, la forma de la tapa proporciona una mayor resistencia a los esfuerzos causados por las posibles altas presiones que se dan dentro del tanque (Goméz y Ximena, 2007).

II.1.1.2 Tanques de techo flotante

Los tanques de techo flotante se asemejan en su construcción a los tanques cilíndricos con techo cónico, con la diferencia que su tapa superior es una superficie que se encuentra en contacto directo con el producto almacenado, esto con el fin de evitar pérdidas por evaporación y evitar la acumulación de vapores que podrían ocasionar daños debido a las altas presiones de vapor, la presión nunca es mayor a la presión atmosférica en este tipo de tanques (Goméz y Ximena, 2007). Se dividen en tanques de techo flotante externo y en tanques de techo flotante interno. Los tanques de techo flotante externo poseen un techo móvil, el cual flota encima del producto almacenado y es libre de moverse con el nivel del líquido. Ellos son los preferidos para el almacenamiento de productos de petróleo con una presión de vapor real de 10,3 a

76,5 kPa absolutos. Los tanques de techo flotante interno consisten en tanques de techo fijo, que a su vez contienen una cubierta interna flotante. El techo fijo externo protege al flotante interno de la lluvia y otros agentes externos, mientras que el techo flotante tiene como función mantener los vapores (Kolmetz y Jaya, 2011).

II.1.2 Boquillas en tanques de almacenamiento

Todos los tanques de almacenamiento atmosférico deberán estar provistos de boquillas, a continuación se señalan las mínimas requeridas que deberán ser instaladas en los tanques de almacenamiento.

II.1.2.1 Boquilla de Entrada y Salida de producto

Las boquilla a la entrada y salida del tanque consisten en un orificio practicado en un tanque para permitir el acceso y salida de un fluido al recipiente, generalmente son bridas o roscadas lo cual facilita el armado o desarmado de las mismas (Carreño y Luna, 2008).

II.1.2.2 Boquillas de Drenajes

Los tanques de almacenamiento también deberán contar al menos con una boquilla para el drenaje, la cual puede estar al ras con el fondo, dirigidas a un sumidero por debajo del tanque (Carreño y Luna, 2008).

II.1.2.3 Bocas para entradas de personas (Manhole)

Los tanques de almacenamiento contaran, por lo menos con una entrada para hombre en el cuerpo o en el techo con la finalidad de poder realizar limpieza, revisiones o reparaciones en el interior del tanque (Carreño y Luna, 2008). El tamaño mínimo de las bocas de entrada es de 24 pulg y todos los tanques deben tener al menos una boca de entrada de 30 pulg en el cuerpo o cilindro principal (PDVSA- F-201, 2000).

II.1.2.4 Boquillas para el venteo

Los tanques de almacenamiento contarán con una boquilla exclusiva para venteo, son instaladas en el techo del tanque para proporcionar suficiente capacidad de

ventilación para proteger el tanque de los efectos nocivos de la sobrepresión o vacío (Pilacuán, 2009). Las causas por las que se pueden dar estas situaciones son por movimiento de líquido, cambios térmicos, exposición al fuego y otras circunstancias como resultado de fallas de equipos o errores de funcionamiento (API Standar 2000, 2009).

II.1.2.5 Boquillas para Inertización

La boquilla de inertización de los tanques permite mantener una capa de gas en el espacio de vapor del recipiente. La inertización por gas se usa para reducir emisiones, para eliminar el potencial de combustión y evitar la contaminación del producto. Este proceso se efectúa generalmente usando una fuente de gas a alta presión y una válvula para reducir la presión a un valor inferior. (Tyco Flow Control).

II.1.2.6 Conexiones para indicador y control de nivel

Consiste de un tubo que atraviesa el techo del tanque y está equipada con cierre automático, facilita el acceso para medir manualmente el nivel existente en el tanque y tomar muestras de él (Pilacuán, 2009). El tamaño es de al menos 200mm. (PDVSA-F-201, 2000).

II.1.3 Niveles del tanque

En la protección de sobrellenado de tanques de almacenamiento, el objetivo es minimizar los desbordamientos de productos que pueden resultar en los riesgos ambientales y de seguridad, pérdida de inventario, y el daño a los tanques y zonas adyacentes (API Standar 2350, 2005). En este sentido los tanques se equipan con un equipo de detección de nivel muy alto para que permita el cierre automático de llenado del tanque y alarmas de nivel alto para obtener una respuesta por parte del operador. Los tanques igualmente se deben proteger por bajo nivel, si desde un tanque se alimenta una bomba, es muy importante garantizar que la bomba tenga líquido para ser bombeado, ya que la falta de líquido en la succión podría producir daños mecánicos en la bomba. Para evitar este tipo de inconvenientes operacionales

los tanques se equipan con alarmas de nivel muy bajo para automáticamente apagar la bomba o descargar otro tanque y alarmas de nivel bajo para la obtención de una respuesta por parte del operador (PDVSA-MDP-03-S-05, 1995). A continuación se muestran los diferentes niveles de un tanque de almacenamiento en la Tabla Nº9.

Tabla N° 9. Niveles en los tanques de almacenamiento (PDVSA-MDP-03-S-05, 1995).

Descripción	Siglas
Nivel muy alto de líquido	NAAL
Nivel Alto de líquido	NAL
Nivel normal de líquido	NNL
Nivel bajo de líquido	NBL
Nivel muy de líquido	NBBL

II.2 TAMBORES SEPARADORES

La principal función de los separadores en la industria petrolera es de separar el petróleo y gas en dos corrientes una líquida y otra gaseosa, sin embargo, existen equipos que adicionalmente separan el agua del petróleo por lo que se comportan como separadores trifásicos si tales cantidades son considerables (Oliveira, 2003), un separador debe cumplir al menos con las siguientes funciones (Azócar, 2010):

- a) Permitir una primera separación entre los hidrocarburos, esencialmente líquidos y gaseosos.
- Refinar aún más el proceso, mediante la recolección de partículas líquidas atrapadas en la fase gaseosa.
- c) Liberar parte de la fracción gaseosa que pueda permanecer en la fase líquida.
- d) Descargar por separado las fases líquida y gaseosa, para evitar que se puedan volver a mezclar, parcial o totalmente.

II.2.1 Clasificación de los separadores

Los separadores se pueden clasificar según su forma, el tipo de separación y la manera en que la inducen, en la Figura Nº1 se puede observar cómo se desglosa cada una de estas categorías.

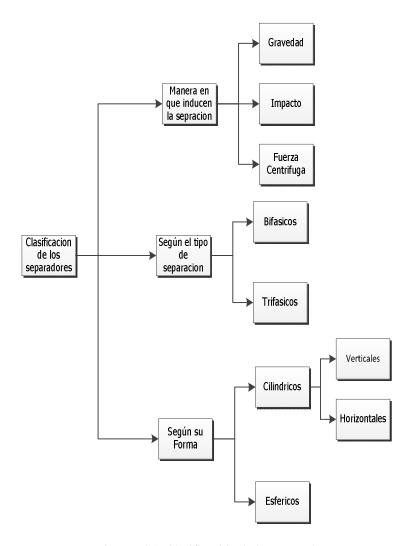


Figura Nº 1. Clasificación de los separadores.

A continuación se suministra una breve descripción de los tipos de separadores que son alcance de este trabajo.

II.2.1.1 Separador por gravedad

En este tipo de separadores actúa la fuerza de gravedad sobre el fluido permitiendo que el líquido abandone la fase vapor y caiga hacia el fondo del separador. Esta sección provee del tiempo de retención suficiente para que los equipos aguas abajo pueden operar satisfactoriamente. En el caso de separadores líquido-líquido el tiempo de retención es para la decantación de la fase pesada o la flotación de la fase liviana (PDVSA-MDP-03-S-01, 1995).

II.2.1.2 Separadores bifásicos

Son recipientes capaces de separar el gas y líquido inmiscible. Se emplean para dejar lo más libre posible el gas del líquido y viceversa, a presiones y temperaturas definidas, se acostumbra a denominar en esta categoría a cualquiera de sus tres tipos verticales, horizontales y esféricos (Requena y Rodríguez, 2009).

II.2.1.3 Separadores trifásicos

Son recipientes capaces de separar el gas y las dos fases de líquidos inmiscibles. Por lo general resultan muy grandes porque se diseñan para garantizar que ambas fases líquidas salgan completamente libres una de la otra. Estos separadores se emplean para separar el agua que pueda estar presente en el crudo, con lo cual se reduce la carga en el equipo de tratamiento del petróleo y se aumenta la capacidad de transporte en las tuberías. También ayuda a mejorar la precisión de las mediciones de flujo. (Requena y Rodríguez, 2009).

II.2.1.4 Separador cilíndrico vertical

En estos equipos, la fase pesada decanta en dirección opuesta al flujo vertical de la fase liviana. Por consiguiente, si la velocidad de flujo de la fase liviana excede levemente la velocidad de decantación de la fase pesada, no se producirá la separación de fases, a menos que en la fase pesada se formen gotas más grandes. Las normas PDVSA cubren el diseño de los separadores por gravedad verticales líquidovapor (PDVSA-MDP-03-S-01, 1995).

II.2.1.5 Separadores cilíndrico horizontal

En estos equipos, la fase pesada decanta perpendicularmente a la dirección horizontal de flujo de la fase liviana, permitiendo que la fase liviana continua pueda viajar a una velocidad superior a la velocidad de decantación de la fase pesada discontinua. Los separadores cubiertos por las normas PDVSA son los separadores por gravedad horizontales líquido-vapor, líquido-líquido y líquido-líquido-vapor. Los separadores horizontales pueden poseer en su estructura una bota decantadora cuando la cantidad

de fase líquida pesada a contener por el separador es muy pequeña dado el bajo tiempo de residencia o los bajos flujos de la fase pesada. En este tipo de separadores, el criterio principal de diseño es que la fase líquida liviana esté libre de gotas de líquido pesado, ahorran costos al no poner en el cilindro principal el volumen del líquido pesado, ahorrando diámetro y longitud en el cuerpo principal del recipiente, teniendo un costo extra por tener la bota decantadora, pero este costo es menor que si se tuviera la fase líquida pesada dentro del cuerpo principal del separador.

Cuando la cantidad de fase líquida pesada a retener, es tal que no puede tenerse en una bota decantadora, la siguiente alternativa a escoger es un separador con las dos fases líquidas dentro del cuerpo cilíndrico. Esta alternativa es más costosa que la anterior, ya que el tener la fase líquida pesada también dentro del cuerpo, aumenta el diámetro del recipiente, haciéndolo más pesado y más costoso (PDVSA-MDP-03-S-05, 1995).

II.2.2 Internos De Un Separador

Los internos de un separador prestan una gran variedad de funciones, todas con el objetivo de mejorar la separación de las fases y garantizar una operación confiable y segura de los equipos aguas abajo, el diseño de las partes internas es exclusivo del fabricante, por lo que no existen diseños estandarizados para los elementos internos del separador. A continuación se muestra una breve descripción de los diferentes internos recomendados por las normas PDVSA.

II.2.2.1 Deflectores

Los deflectores tienen una gran variedad de formas, pueden ser de placa, ángulo, cono, codo de 90, o semiesfera. El diseño y forma del deflector depende principalmente del soporte requerido para resistir la carga de impacto a la cual es sometido. Estas fuerzas de impacto pueden llegar a desprender el elemento y ocasionar serios problemas de arrastre. Para efectos de lo deflectores cubiertos por las normas PDVSA, se tienen deflectores en forma de codo de 90. Dichos aditamentos internos adosados a las boquillas de entrada, se emplean para producir un cambio de

cantidad de movimiento o de dirección de flujo de la corriente de entrada, y así producir la primera separación mecánica de las fases (PDVSA- MDP-03-S-03, 2005).

II.2.2.2 Distribuidores de entrada

Los distribuidores son elementos de tubería internamente colocados perpendicularmente a la boquilla de entrada, los cuales tienen ranuras u orificios, por los cuales salen las dos fases a una baja velocidad. (PDVSA-MDP-03-S-01, 1995). De acuerdo a las recomendaciones que se presentan en los manuales de PDVSA para esta categoría, tenemos los distribuidores en forma de T. Los distribuidores pueden ser de ranuras o de orificios, siempre serán más costosos que un codo de 90°, pero pueden soportar velocidades más altas sin que suceda arrastre en la superficie de líquido. Los distribuidores en T generan un patrón de flujo dentro del recipiente que facilita la separación final de las fases, reduciendo posiblemente el tamaño de la boquilla de entrada y, en cierta medida, las dimensiones del equipo separador (Oliveira, 2003).

II.2.2.3 Eliminador de niebla tipo Malla

Es el eliminador recomendado y especificado por las normas PDVSA, se encarga de retener las partículas líquidas hasta que adquieren un tamaño suficientemente grande como para que el peso supere tanto la tensión superficial como la acción de arrastre producida por el gas. Posee una de las más altas eficiencias de remoción y es preferido debido a su bajo costo de instalación (Oliveira, 2003).

II.2.2.4 Rompe – vórtices

Cuando un líquido es drenado de un recipiente, se pueden producir condiciones que originen la formación de un remolino. Este efecto en separadores ocasiona el escape de la fase de vapor por la boquilla de desalojo de líquido, lo cual es indeseable sobre todo desde el punto de vista de seguridad. Para solventar este problema es usual instalar, por encima de las boquillas de salida de líquido, elementos rompe-vórtice que eviten o dificulten la formación de remolinos (PDVSA Nº 10603.2.309, 1999).

II.2.2.5 Volúmenes de operación y emergencia de los separadores

Los separadores, al igual que se comentó para los tanques, son equipados con alarmas y niveles de operación y de emergencia capaces de garantizar que las operaciones sean inherentemente seguras. En este sentido tenemos el volumen de operación, el cual fija la altura del nivel alto al nivel bajo en el separador, se establece de acuerdo a los requerimientos del proceso. Por su parte, el volumen de emergencia, es el volumen adicional que corresponde al líquido que debe satisfacer el llamado "tiempo de respuesta o de intervención del operador", se tendrán cinco minutos adicionales de tiempo de residencia de líquido por alarma. Este tiempo fija las alturas del nivel bajo y nivel alto al nivel muy bajo y al nivel alto-alto, respectivamente. Para el caso especial de separadores líquido-líquido y líquido-líquido-vapor, existe un volumen de líquido pesado que fija la altura del nivel alto de la interfase al nivel bajo de la interfase, se establece para asegurar un control adecuado de las operaciones. Los tambores separadores igualmente se deben proteger por bajo nivel para evitar así daños mecánicos en la bomba, para ello se fija una altura que debe tener el separador desde el fondo hasta el nivel muy bajo de líquido y, nivel bajo de la interfase cuando aplique (PDVSA-MDP-03-S-05, 1995). A continuación en la Tabla N°10 se puede observar las siglas de los diferentes niveles de los separadores.

Tabla N° 10. Niveles de emergencia y operación en los separadores (PDVSA-MDP-03-S-05, 1995).

Descripción	Siglas
Nivel muy alto de líquido	NAAL
Nivel alto de líquido	NAL
Nivel normal de líquido	NNL
Nivel bajo de líquido	NBL
Nivel muy bajo de líquido	NBBL
Nivel alto de interfase	NAI*
Nivel bajo de interfase	NBI*

^{*}Solo aplica para separadores líquido-líquido y líquido-líquido-vapor

II.3 COMPRESORES

Los compresores son máquinas que tienen por finalidad aportar una energía a los fluidos compresibles, tales como el aire, el gas natural, el oxígeno, el nitrógeno, y otros gases de importancia industrial. Esto se realiza mediante un trabajo ejercido por el compresor que es transferido a la sustancia que pasa por él, convirtiéndose en energía de flujo, aumentando la presión y energía cinética del fluido. La energía necesaria para efectuar este trabajo la puede proporcionar un motor eléctrico o uno de combustión interna, entre otros (Toapanta, 2009)

Existen varios tipos de compresores, cada uno posee características que los identifican y que los hacen apropiados para una determinada aplicación, así por ejemplo las características de velocidad, la relación entre capacidad y peso, o el rendimiento puede señalar a un compresor como indicado para un uso e impropio para otro (Méndez, 2005).

II.3.1 Clasificación de los compresores

Los principales tipos de compresores se muestran en la Figura N°2, en la misma se observan dos grupos:

- a) Los dinámicos.
- b) Los de desplazamientos positivo.

Los compresores dinámicos son máquinas rotatorias de flujo continuo en la cual el cabezal de velocidad del gas es convertido en presión. Se clasifican de acuerdo al flujo que manejan en centrífugos (flujo radial), axiales (flujo axial) y flujo mezclado (PDVSA-MDP-02-K-03, 1996).

Los compresores de desplazamiento positivo son unidades de flujo intermitente, donde sucesivos volúmenes de gas son confinados en un espacio y elevados a alta presión. Se dividen en dos grupos: reciprocantes y rotatorios (PDVSA-MDP-02-K-03, 1996).

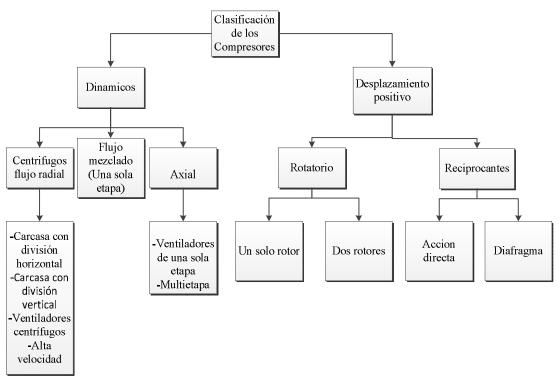


Figura N°2. Clasificación de los compresores

II.3.1.1 Compresores centrífugos

Los compresores centrífugos son el tipo que más se emplea en la industria de procesos químicos por su construcción sencilla y por ser libres de mantenimiento, lo cual permite un funcionamiento continuo durante largos periodos de tiempo. Este tipo de compresores generan un cabezal de descarga porque desarrollan altas velocidades del gas en un impulsor centrífugo (PDVSA-MDP-02-K-03, 1996). El aumento de presión tiene lugar por medio de dos tipos de elementos, los elementos rotativos, denominados impulsores que aceleran radialmente el fluido, y los elementos estáticos denominados difusores dispuestos alrededor de los impulsores, formando parte de la carcasa del compresor (Villarrel, Cedeño, y Martínez, 2009). Los compresores centrífugos pueden ser máquinas tanto de una sola etapa, como de etapas múltiples, ya sean de impulsión directa o indirecta a través de engranajes, estos compresores se subdividen a su vez en compresores de carcasa dividida en forma horizontal, carcasa dividida en forma vertical, ventiladores centrífugos y de alta velocidad (Méndez, 2005).

II.3.1.2 Compresores reciprocantes

Estos compresores son ampliamente utilizados en la industria petrolera, como por ejemplo en las plantas de refinación, químicas y petroquímicas, pueden ser de acción directa o de diafragma y a su vez de una etapa simple o de múltiples etapas, el número de etapas está determinado por la relación de compresión (presión de descarga / presión de succión), la cual a su vez está limitada por la temperatura máxima permisible de descarga del gas a la salida del compresor (Villarrel, Cedeño, y Martínez, 2009).

Según lo estipula la norma API 617, para el diseño y manufactura de compresores reciprocantes, se ha establecido en base a recomendaciones de los fabricantes de compresores, una temperatura máxima permisible de 422 K para el gas a la descarga del compresor, razón por la cual la relación de compresión por etapa por lo general no excede de cuatro, produciendo con ello un proceso suficientemente eficiente, por lo que se considera de alta utilidad práctica para la industria de los hidrocarburos gaseosos.

Los compresores reciprocantes de etapas múltiples tienen inter-enfriadores entre estas etapas, estos son intercambiadores de calor que suelen diseñarse para reducir la temperatura del aire comprimido hasta cerca de aquélla con la que entró a la primera etapa, esta reducción en la temperatura conduce a un ahorro en la potencia (Méndez, 2005).

II.3.1.3 Eficiencia de Compresión

Es la relación del requerimiento de trabajo teórico (usando un proceso establecido) y el trabajo actual requerido a ser hecho sobre el gas a comprimir. Tomando en cuenta pérdidas por fugas internas y fricción del fluido, así como variaciones del proceso termodinámico teórico. Para la especificación de equipos mediante el método isentrópico se utiliza la Figura N°3 para determinar la eficiencia isentrópica.

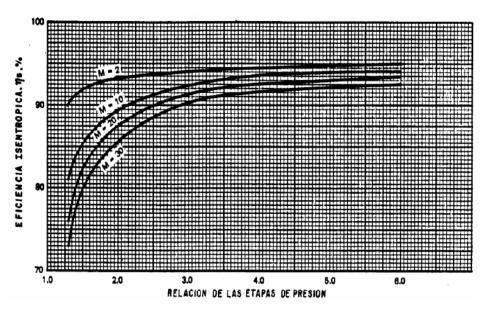


Figura Nº 3. Eficiencia isentrópica (PDVSA- MDP 02-K-04, 1996).

Para la especificación de equipos mediante el método politrópico se utiliza la Figura Nº4, para determinar la eficiencia politrópica.

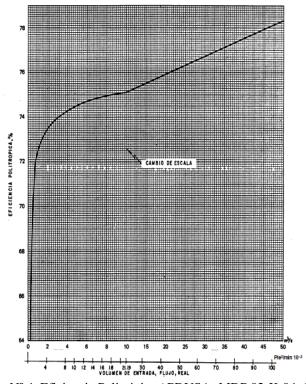


Figura Nº 4. Eficiencia Politrópica (PDVSA-MDP 02-K-04, 1996)

CAPÍTULO III

MARCO METODOLÓGICO

En esta sección se presentan los pasos que se siguieron para lograr el cumplimiento de los objetivos planteados al inicio del presente trabajo.

III.1 REVISIÓN BIBLIOGRÁFICA

La etapa inicial para el desarrollo de este tema consistió en la recolección de la información necesaria, dicho proceso se llevó a cabo de la siguiente manera:

III.1.1 Información Básica

En primer lugar se procedió a la recopilación de información bibliográfica relacionada con la conceptualización y diseño de tanques atmosféricos, separadores y compresores, que fueron los equipos de procesos de alcance de este trabajo, esto con el fin de generar una visión concreta de las bases teóricas necesarias para el diseño de estos equipos. Para ello fue necesario la investigación y consulta continua en: libros de texto, trabajos de grado, publicaciones, cursos, informes y notas técnicas de PDVSA, además de la consulta en internet de algunas páginas web relacionadas con este tema.

III.1.2 Información de Normativas

Con la finalidad de cumplir con las normativas y criterios de diseño de PDVSA, se procedió a la revisión en forma detallada de las metodologías de cálculo del Manual de Ingeniería de Diseño y del Manual de Diseño de procesos referentes a los equipos de interés, además de toda la información teórica allí presente, con el fin de justificar los criterios y metodologías allí implementadas. De igual forma, se consultó la información contenida en las notas técnicas elaboradas en PDVSA INTEVEP, que incluyen comentarios con correcciones específicas de inconsistencias técnicas y errores de redacción en las normas.

III.2 PLANTEAMIENTO DEL ALGORITMO DE CÁLCULO

Se desarrollaron los algoritmos de diseño de tanques atmosféricos, separadores y compresores, los cuales fueron representados por medio de un diagrama de flujo de cálculo (DFC), siguiendo con la metodología presentada en el Manual de Ingeniería de Diseño y del Manual de Diseño de procesos de PDVSA, y a partir de los criterios y recomendaciones ahí expuestas, proporcionando así la información necesaria para el diseño desde el punto de vista de procesos de los equipos mencionados.

III.3 IDENTIFICACIÓN E IMPLEMENTACIÓN DE LAS FUNCIONES NECESARIAS

Dado que para una automatización efectiva de los diagramas de flujo de cálculo de cada equipo era necesaria la obtención de funciones matemáticas que permitieran su introducción en el ambiente de programación, se tuvo que identificar todas aquellas curvas, tablas y nomogramas presentes en las metodologías de cálculo y realizarle sus parametrizaciones y ajustes correspondientes por medio del uso de la herramienta Microsoft® Excel.

III.4 CODIFICACIÓN DE LAS HERRAMIENTAS

Se implementaron los algoritmos de diseño de separadores, compresores y tanques en el ambiente de programación de Visual Basic for Applications (VBA) en Excel, con el fin de automatizar el diseño de dichos equipos, conjuntamente con el manejo al acceso de datos desde el ambiente de programación, el cual incluye acceso a todas las tablas referentes a tamaños nominales, dimensiones de los equipos de proceso de interés, propiedades de compuestos, especificaciones de internos y recomendaciones de mejores prácticas de diseño, los cuales se encuentran almacenados en las hojas de cálculo de Excel. Adicionalmente se elaboró una interfaz amigable e intuitiva, haciendo uso de los formularios de VBA.

III.5 ELABORACIÓN DEL MANUAL DE USUARIO

El manual tiene como función familiarizar al usuario con la herramienta computacional y mostrar las diferentes pantallas que se le presentaran durante el recorrido, con el fin de guiarlo en el llenado de cada uno de los diferentes ítems y solventar alguna duda que se le pueda presentar. El usuario tiene acceso a él una vez inicie la herramienta, dicho manual fue elaborado por medio de imágenes ilustrativas de captura de las pantallas que se puedan presentar, añadiéndole su respectiva función y características.

III.6 VALIDACIÓN DE LAS HERRAMIENTAS

La herramienta se puso a prueba con casos reales de diseño en la Industria Petrolera, Petroquímica y Carbonífera Nacional, con lo cual se pudo contrastar los diseños obtenidos en dicho proyectos con los obtenidos por medio de las herramientas, los cuales obedecen a las normas PDVSA. Adicionalmente, para el caso de separadores bifásicos se dispuso de un software de una empresa de consultoría nacional, con la cual se realizó la comparación de los resultados obtenidos.

CAPÍTULO IV

RESULTADOS Y DISCUSIÓN DE RESULTADOS

IV.1 PLANTEAMIENTOS DE LOS ALGORITMOS DE CÁLCULO

A continuación se presenta un breve análisis de cada uno de los Diagramas de Flujo de Cálculo (DFC) elaborado para cada tipo de equipo, mediante la exposición de las variables requeridas para el dimensionamiento en cada caso y los criterios más importantes.

IV.1.1 Planteamiento del algoritmo de cálculo para el diseño de tanques atmosféricos

Las variables requeridas para el dimensionamiento de este equipo se enuncian en la Tabla Nº11, adicionalmente se señala en el tipo de cálculo en el que son utilizadas.

Tabla Nº 11. Variables requeridas para dimensionamiento de Tanques.

Variable	Cálculo
Temperatura de operación Máxima	Boquilla de venteo
Temperatura de diseño	Boquilla de venteo
Temperatura de diseño	Boquilla de inertización
Presión de operación interna	Boquilla de venteo
Presión externa	Boquilla de venteo
Temperatura de inflamación	Boquilla de venteo
Temperatura de inframación	Boquilla de inertización
Peso molecular (gas inertizante)	Boquilla de inertización
Rugosidad absoluta	Boquillas
Capacidad de almacenamiento	Capacidad neta requerida
Capacidad de affiliacenamiento	Dimensiones del tanque
Tiempo de almacenamiento	Capacidad neta requerida
Tiempo de annacenamiento	Dimensiones del tanque
Tiempos de respuesta del operador	Dimensiones del tanque
Peso molecular del compuesto	Boquilla de venteo
	Caudal de diseño
Caudal de entrada/Caudal de salida	Boquillas
	Dimensiones del tanque

Tabla Nº 11. (Continuación) Variables requeridas para dimensionamiento de tanques.

Variables	Cálculo
Viscosidad	Boquillas
Densidad	Boquillas
Sahra disaña	Boquillas
Sobre-diseño	Dimensiones del tanque
Tiempo de desalojo para el drenaje	Boquillas de drenaje

Las variables mostradas en la Tabla Nº11 son las necesarias para el dimensionamiento de tanques desde el punto de vista de ingeniería de procesos, posteriormente es necesario completar el diseño del equipo con otras especialidades de ingeniería, en las que será necesario especificar otros tipos de variables para completar el diseño del equipo.

El diagrama de flujo de Cálculo para tanques (Apéndice A) fue elaborado a partir de las metodologías, recomendaciones y criterios expuestos en las normas PDVSA. El criterio primordial para la selección del tipo de tanque necesario para el almacenamiento de un producto en específico es la presión de vapor, la cual determina la forma del techo y por ende el tipo de tanque necesario para el almacenamiento. Para el caso de tanques de techo fijo la presión del producto que se desea almacenar debe ser menor que 10,14 kPa, en este sentido se tienen disponible dos configuraciones que son los tanques con techo tipo cónico y los tanques con techo tipo domo, a mayor presión de vapor se recomienda un tanque con techo tipo domo, debido a que este tipo de techos poseen una menor relación superficie/volumen, lo cual les permite soportar presiones interna mayores , distribuyéndola uniformemente por toda el área superficial. Los tanques de techo flotante se utilizan para presiones internas aún mayores, entre 10,14 kPa y 75,98 kPa, con el fin de evitar pérdidas por evaporación y evitar la acumulación de vapores que podrían ocasionar daños debido a las altas presiones ejercidas por éstos.

Al momento de diseñar estos equipos hay que cumplir con distancias mínimas recomendadas para los diferentes niveles de operación y emergencia para un control adecuado de las operaciones por medio de una medición de los niveles del tanque. Para el caso de tanques de techo flotante las distancias mínimas recomendadas para

el nivel muy bajo, se encuentran a una distancia superior que los de techo fijo, esto con la finalidad de mantener el techo interno a una distancia segura del fondo del tanque. Los tanques de almacenamiento se encuentran restringidos igualmente por temperaturas máximas para evitar daños mecánicos en su estructura, la temperatura máxima estipulada en el API 650 es de 93°C.

IV.1.2 Planteamiento del algoritmo de cálculo para el diseño de separadores

Las variables requeridas para el dimensionamiento de estos separadores se enuncian en la Tabla N°12, adicionalmente se señala en el tipo de cálculo en el que son utilizadas.

Tabla Nº 12. Variables requeridas para el dimensionamiento de separadores.

Variable	Cálculo
Tiempo de residencia (Fase liviana)	Volumen de operación fase liviana
Tiempos de respuesta de NBBL-NBL	Volumen de emergencia inferior
Tiempos de respuesta de NAAL-NAL	Volumen de emergencia superior
Tiempo de residencia (Fase pesada)	Volumen de operación fase pesada
Presión de operación	Relación de esbeltez
Diámetro de la gota	Capacidad de decantación del separador
Nivel NBBL/ NBI	Altura de niveles de líquido Capacidad de decantación del separador
% Velocidad crítica	Velocidad permisible Espacio del vapor Dimensiones del tanque
Caudal de entrada/Caudal de salida	Volúmenes de operación y emergencia Velocidades de decantación
Tensión superficial	Boquillas Especificación de internos
Tipo de boquilla	Boquillas Especificación de internos
Tipo de tambor	Metodología a utilizar
Viscosidad	Boquillas Especificación de internos
Densidad	Velocidad permisible Boquillas Especificación de internos

Las variables mostradas en la Tabla N°12 son las necesarias para el dimensionamiento de los separadores desde el punto de vista de ingeniería de procesos, posteriormente es necesario completar el diseño del equipo con otras especialidades de ingeniería, en las que será necesario especificar otros tipos de variables para completar el diseño del quipo.

Se elaboró un Diagrama de flujo de cálculo para cada uno de los separadores alcance de este trabajo (Apéndices B-G), concretamente para: separadores horizontales líquido-vapor con una y dos boquillas de entrada, separadores verticales líquido-vapor, separadores horizontales líquido-líquido con bota decantadora, separadores horizontales líquido-líquido con ambos líquidos dentro del cuerpo principal del cilindro, separadores horizontales líquido-líquido-vapor con bota decantadora y por ultimo separadores horizontales líquido-líquido-vapor con ambas fases dentro del cuerpo principal del cilindro, a partir de las metodologías, recomendaciones y criterios expuestos en las normas PDVSA.

Hay aspectos que favorecen la utilización de un tipo de separador con respecto a otro, en el Apéndice H aparecen las recomendaciones respecto al tipo de separador necesario para los servicios más utilizados a nivel de la IPPCN, en materia de separadores líquido- vapor, en caso tal que el servicio necesario no aparezca en dicha tabla, se debe revisar el Apéndice I para las recomendaciones generales del tipo de tambor a utilizar. Para el caso de separadores líquido-líquido y líquido-líquido-vapor, es recomendable en primer lugar, intentar dimensionar separadores con bota decantadora, ya que son los arreglos más económicos. En caso tal que no se cumpla con los criterios requeridos de tamaño máximo permisible para diámetros de botas decantadoras, tal y como se señala en el diagrama, es necesario dimensionar separadores con ambas fases en el cuerpo principal.

Para el caso de separadores en los que la fase liviana sea el vapor, es decir, para separadores líquido-vapor y separadores líquido-líquido-vapor, el factor determinante para determinar el mínimo diámetro del equipo, es el criterio de % de velocidad crítica, ya que este criterio determina la velocidad permisible del vapor y por ende el área requerida para el flujo de vapor.

La relación de esbeltez se fija por medio de la presión de operación interna del separador, es decir, viene dada por las cargas y esfuerzos a las que estará sometido el equipo durante su vida útil. Éste criterio esta relacionando con el funcionamiento mecánico del equipo por medio del cálculo de tensiones e inestabilidades elásticas del separador, sin embargo, es necesario tomarlo en cuenta para la determinación de la longitud efectiva del separador, la cual es una especificación responsabilidad del ingeniero de procesos.

Todos los tipos de separadores poseen distancias mínimas recomendadas para un control adecuado de las operaciones por medio de una medición efectiva de los diferentes niveles. La altura de estos niveles se fija de acuerdo a los tiempos de residencia y de emergencia fijados por el ingeniero de procesos encargado del diseño del equipo. Los tamaños de las boquillas de entrada se dimensionan tomando como consideración velocidades máximas para evitar un arrastre excesivo de gotas de líquido, las cuales determinan el tipo de interno que se puede usar en la boquilla de entrada, que puede ser un codo de 90°, distribuidor ranurado o una boquilla simple, en cualquiera de los casos en el diagrama de flujo de cálculo se puede observar su especificación en base a las normas PDVSA. Para el caso de las boquillas de salida se toman en consideración las recomendaciones de mejores prácticas expuestas en los Manuales de Diseño de PDVSA.

IV.1.3 Planteamiento del algoritmo de cálculo para compresores

Las variables requeridas para la especificación de este tipo de equipos se enuncian en la Tabla N°13, adicionalmente se señala en el tipo de cálculo en el que son utilizadas.

Tabla Nº 13. Variables requeridas para la especificación de compresores.

Variable	Cálculo
Temperatura entrada	Cálculo de propiedades termodinámicas
T	Temperatura de salida
Temperatura máxima de salida	Cálculo de propiedades termodinámicas
Presión de entrada	Relación de compresión
	Cálculo de propiedades termodinámicas
Dungién de galida	Relación de compresión
Presión de salida	Cálculo de propiedades Termodinámicas

Tabla Nº 13. (continuación) Variables requeridas para la especificación de compresores

Variable	Cálculo
Flujo másico de salida	Flujo de volumétrico de salida Potencias Eficiencia politrópica
Caída de presión inter-etapas	Cálculo de presión de entrada en cada etapa
Temperatura de enfriamiento	Temperatura de entrada en cada etapa
Peso molecular	Eficiencia isoentrópica Cálculo de volumen especifico
Temperatura crítica	Cálculo de propiedades críticas o pseudocríticas
Presión crítica	Cálculo de propiedades críticas o pseudocríticas
Constantes	Cálculo de capacidades caloríficas

Las variables mostradas en la Tabla N°13 son las necesarias para la especificación de compresores desde el punto de vista de ingeniería de procesos, posteriormente es necesario completar el diseño del compresor con otras especialidades de ingeniería.

Se elaboró un Diagrama de flujo de cálculo para cada uno de los compresores alcance de este trabajo (Apéndices J y K), concretamente para: Compresores centrífugos y compresores reciprocantes de una y múltiples etapas, a partir de las metodologías, recomendaciones y criterios expuestos en las normas PDVSA. Es importante señalar que para la especificación de los tipos de compresores, el criterio primordial es la declaración de la temperatura de descarga máxima, ya que mientras más riguroso (menor) sea este valor, el número de etapas necesarias para lograr la compresión del gas será mayor. Para fijar este valor se utilizan criterios de temperatura de descarga máxima expuestos en las normas. Para la especificación de la caída de presión interetapas, se tienen valores comúnmente usados en el GPSA entre 7 y 10 psi, sin embargo, este valor depende del arreglo de tuberías, intercambiador de calor y del separador que se pretenda usar entre cada una de las etapas. Para el caso de la

temperatura de entrada en cada etapa de compresión dependerá del criterio de eficiencia energética asumido y el arreglo de enfriamiento. La temperatura de entrada a las etapas mayores que uno, un valor comúnmente utilizado es el recomendado por la norma internacional GPSA de 322,04 K, aunque éste pudiese ser menor si es asumido enfriamiento por aire y luego por agua alrededor de 313 K.

IV.2 IDENTIFICACIÓN E IMPLEMENTACIÓN DE LAS FUNCIONES NECESARIAS

En esta sección se presentan todos los ajustes necesarios de las tablas y gráficos presentes en las metodologías de cálculo, necesarios para el dimensionamiento y especificación de los equipos que son alcance de este trabajo

IV.2.1 Factor de disipación de la velocidad para chorros incidentes

A partir de los valores tomados del Apéndice L (Tabla N°14), se realizó una curva representativa de estos valores (Figura N°5) con su respectivo ajuste polinómico, presentado en la Tabla N°15.

Tabla N° 14. Valores de disipación de la velocidad en chorros incidentes para los separadores.

$\frac{x+dp}{dp}$ (Adim.)	F (Adim.)
3	0,9
3,6	0,8
4,8	0,7
6,2	0,6
8,6	0,5
11,9	0,4
15,8	0,3

Donde:

X: Distancia de la boquilla de entrada a la superficie de choque (m)

dp: Diámetro de la boquilla s de entrada (m)

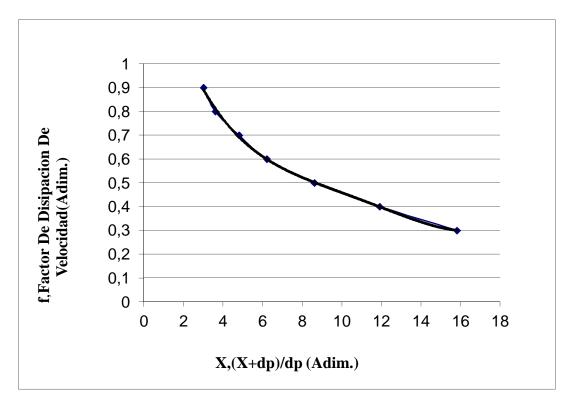


Figura Nº 5. Curva de disipación de la velocidad en chorros incidentes

Tabla N° 15. Ajuste polinómico de la curva de disipación de la velocidad en chorros incidentes.

Ajuste polinómico	$f = 6E^{-5}X^4 - 0,002X^3 + 0,042X^2 - 0,335X + 1,584$
\mathbb{R}^2	0,999

Este ajuste permite obtener el factor de chorros incidentes necesario para el cálculo de la velocidad máxima permitida para las boquillas simples, con codo de 90° o con distribuidores ranurados a la entrada de los separadores bifásicos y trifásicos en estudio. A medida que la superficie de choque se encuentre más alejada de la salida de la boquilla de entrada la disipación de la velocidad es menor, como se puede observar en la Figura N°5. El procedimiento utilizado para realizar este ajuste fue una regresión polinomial de orden n=4.

IV.2.2 Áreas de secciones circulares vs alturas de cuerda

A partir de los valores tomados del Apéndice M, se realizo el ajuste para A^* vs R^* ($A^* = \frac{Areasegmento}{AreaTrasversal}$ y $R^* = \frac{Alturasegmento}{Diametroseparador}$), la curva representativa de estos valores se presenta en la Figura Nº6, con su respectivo ajuste polinómico, en la Tabla Nº16.

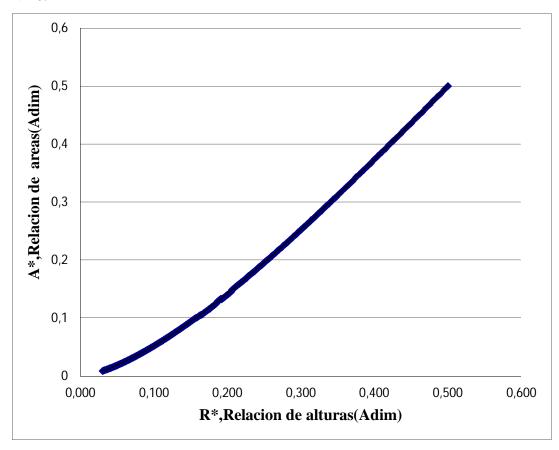


Figura Nº 6. Dimensiones de la cuerda

Tabla Nº 16. Ajuste polinómico para las dimensiones de la cuerda

Ajuste polinómico	$A = 1,6896R^4 - 3,3291R^3 + 2,6075R^20,3243R - 0,003$
\mathbb{R}^2	1

El ajuste presentado en la Tabla N°16 está relacionado con el cálculo de las aéreas de los diferentes niveles de los separadores, específicamente para los niveles muy bajo, bajo, alto, muy alto y el espacio para el vapor de los separadores bifásicos y

trifásicos, pudiendo especificar así cada una de las aéreas, a partir de las alturas de cada nivel y el diámetro del separador. El procedimiento utilizado para realizar este ajuste fue una regresión polinomial de orden n=4.

IV.2.3 Propiedades termodinámicas de los gases para los cálculos de compresión y expansión

IV.2.3.1 Cálculos del factor RZ

A partir de valores tomados de los Apéndices N y O, se realizaron los ajustes necesarios para determinar los valores RZ en función de la presión reducida (P_r), para cada una de las temperaturas reducidas (T_r) disponibles en dichos apéndices. Las curvas representativas de estos valores se muestran a continuación, con la Figura N°7, Figura N°8, y la Figura N°9, con sus respectivos ajustes polinómicos, presentados en la Tabla N°17, Tabla N°18 y Tabla N°19.

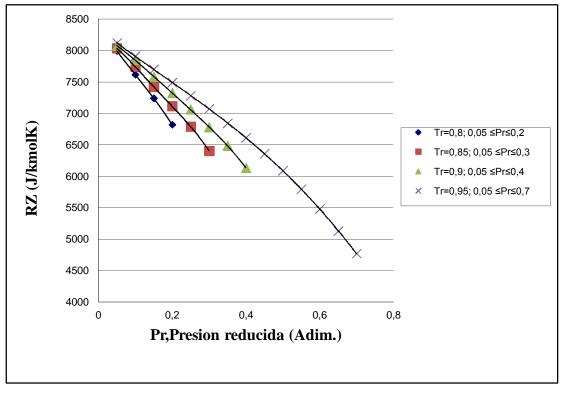


Figura Nº 7. Curvas de RZ para temperaturas reducidas de [0,8-0,95]

Tabla N° 17. Ajustes para el cálculo de RZ para temperaturas reducidas de [0,8-0,95]

Ajuste polinómico	$RZ = -55600P_r^3 + 16640P_r^2 - 9055P_r + 8414.7$
Tr=0,8; 0,05 \(\lefta \)Pr\(\lefta \).	$RZ = -33000F_{\rm r} + 10040F_{\rm r} - 9033F_{\rm r} + 0414,7$
\mathbb{R}^2	1
Ajuste polinómico	$RZ = -279000P_r^4 + 176048P_r^3 - 39835P_r^2$
Tr=0,85; 0,05 \(\lefta \)Pr\(\lefta \)0,3	$-2484.5P_{\rm r} + 8242.6$
\mathbb{R}^2	1
Ajuste polinómico	$RZ = -72197P_r^4 + 56616P_r^3 - 16926P_r^2$
Tr=0,9; 0,05 \(\lefta \)Pr\(\lefta \),4	- 2998,7P _r +8266,4
\mathbb{R}^2	1
Ajuste polinómico	$RZ = 1847,3P_r^4 - 6898,2P_r^3 + 3292,7P_r^2$
Tr=0,95; 0,05 <pr 0,7<="" <="" th=""><th>- 4676P_r + 8351,1</th></pr>	- 4676P _r + 8351,1
\mathbb{R}^2	1

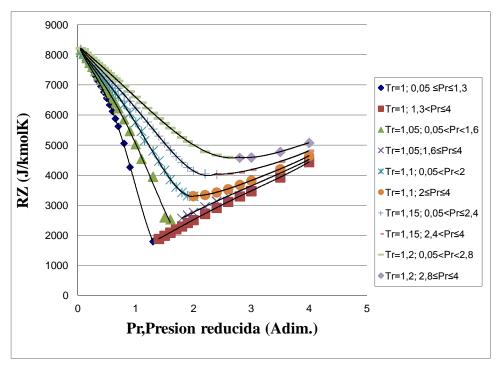


Figura Nº 8. Curvas de RZ para temperaturas reducidas de [1-1,2]

Tabla N° 18. Ajustes para el cálculo de RZ para temperaturas reducidas de [1-1,2]

Ajuste polinómico	$RZ = 4409,7P_r^4 - 10883P_r^3 + 6327,5P_r^2$
Tr=1; $0.05 \le Pr \le 1.3$ R^2	- 4586,6P _r + 8382,6 0,999
Ajuste polinómico Tr=1; 1,3 <pr≤4< th=""><th>$RZ = 23.891P_r^4 - 228.07P_r^3 + 735.52P_r^2 + 67.067P_r + 882.42$</th></pr≤4<>	$RZ = 23.891P_r^4 - 228.07P_r^3 + 735.52P_r^2 + 67.067P_r + 882.42$
\mathbb{R}^2	1,000
Ajuste polinómico Tr=1,05; 0,05 <pr<1,6< th=""><th>$RZ = 706,53P_r^4 - 2147P_r^3 + 1232,1P_r^2 -3061,7P_r + 8329$</th></pr<1,6<>	$RZ = 706,53P_r^4 - 2147P_r^3 + 1232,1P_r^2 -3061,7P_r + 8329$
\mathbb{R}^2	0,997
Ajuste polinómico Tr=1,05;1,6≤Pr≤4	$RZ = 2,9116P_r^4 + 5,1853P_r^3 - 206,91P_r^2 + 1624,1P_r + 258,83$
\mathbb{R}^2	1,000
Ajuste polinómico Tr=1,1; 0,05 <pr<2< th=""><th>$RZ = 637,78P_r^4 - 1930,6P_r^3 + 1383,7P_r^2 - 2651,7P_r + 8301,8$</th></pr<2<>	$RZ = 637,78P_r^4 - 1930,6P_r^3 + 1383,7P_r^2 - 2651,7P_r + 8301,8$
\mathbb{R}^2	0,999
Ajuste polinómico Tr=1,1; 2≤Pr≤4	$RZ = 80,894P_r^4 - 1039,6P_r^3 + 5061,4P_r^2 - 10296P_r + 10678$
\mathbb{R}^2	1,000
Ajuste polinómico Tr=1,15; 0,05 <pr≤2,4< th=""><th>$RZ = 259,84P_r^4 - 848,54P_r^3 + 727,99P_r^2 - 2232,1P_r + 8329,3$</th></pr≤2,4<>	$RZ = 259,84P_r^4 - 848,54P_r^3 + 727,99P_r^2 - 2232,1P_r + 8329,3$
\mathbb{R}^2	0,999
Ajuste polinómico Tr=1,15; 2,4 <pr≤4< th=""><th>$RZ = 83,922P_r^4 - 1135,3P_r^3 + 5908,9P_r^2 - 13414P_r + 15099$</th></pr≤4<>	$RZ = 83,922P_r^4 - 1135,3P_r^3 + 5908,9P_r^2 - 13414P_r + 15099$
\mathbb{R}^2	0,999
Ajuste polinómico Tr=1,2; 0,05 <pr<2,8< th=""><th>$RZ = 31,473P_r^4 + 7,035P_r^3 - 177,05P_r^2 - 1577,4P_r + 8311$</th></pr<2,8<>	$RZ = 31,473P_r^4 + 7,035P_r^3 - 177,05P_r^2 - 1577,4P_r + 8311$
\mathbb{R}^2	0,999
Ajuste polinómico Tr=1,2; 2,8≤Pr≤4	$RZ = -217,07P_r^3 + 2497P_r^2 - 8962P_r + 14866$
\mathbb{R}^2	1,000

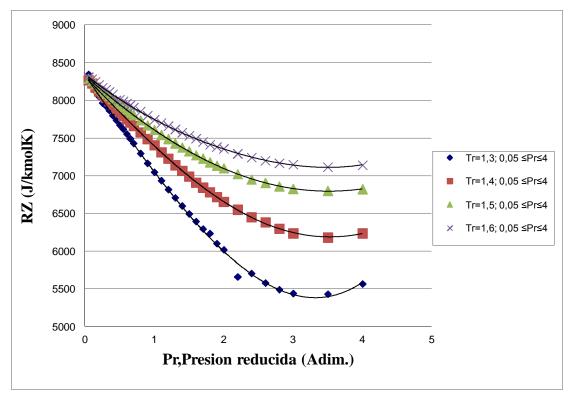


Figura Nº 9. Curvas de RZ para temperaturas reducidas [1,3-1,6]

Tabla N° 19. Ajustes para el cálculo de RZ para temperaturas reducidas [1,3-1,6]

Ajuste polinómico	$RZ = 0.2345P_r^4 + 40.777P_r^3 - 11.531P_r^2$
Tr=1,3; 0,05 <pr<4< th=""><th>- 1307,7P_r + 8332,2</th></pr<4<>	- 1307,7P _r + 8332,2
\mathbb{R}^2	0,995
Ajuste polinómico	$RZ = -3.3289P_r^4 + 44.717P_r^3 - 20.872P_r^2$
Tr=1,4; 0,05 \(\lefta \)Pr\(\lefta \)	$-939,4P_{\rm r}+8316,7$
\mathbb{R}^2	0,999
Ajuste polinómico	$RZ = -0.8371P_r^4 + 11.025P_r^3 + 77.47P_r^2$
Tr=1,5; 0,05 \le Pr\le 4	$-808,63P_{\rm r}+8330,6$
\mathbb{R}^2	0,999
Ajuste polinómico	$RZ = 2,8885P_r^4 - 22,307P_r^3 + 150,34P_r^2$
Tr=1,6; 0,05 ≤Pr≤4	$-729,37P_{\rm r} + 8346,1$
\mathbb{R}^2	0,999

Los ajustes presentados anteriormente permiten obtener los valores de RZ para la especificación de compresores centrífugos. Este factor se utiliza para el cálculo el exponente politrópico a la succión y descarga en los servicios de compresión. Los ajustes polinómicos mostrados son de orden n=3 o n= 4, tomando como referencia el coeficiente de determinación R². Para los casos en los que había cambio de tendencia de los valores experimentales graficados de los Apéndices N y O (Figura N°8), fue necesario realizar dos ajustes para una misma temperatura reducida, uno para la parte creciente y otro para la parte decreciente de la curva (Tabla N°18).

IV.2.3.2 Cálculos del factor $RT_r(\frac{\partial Z}{\partial T_r})_{P_r}$

A partir de valores tomados de los Apéndices N y O, se realizaron los ajustes necesarios para determinar los valores de $RT_r(\frac{\partial Z}{\partial T_r})_{P_r}$ en función de la presión reducida (P_r) , para cada una de las temperaturas reducidas (T_r) disponibles en dicho apéndice. Las curvas representativas de estos valores se muestran a continuación con la Nº 10, Figura Nº11, y Figura Nº12, con sus respectivos ajustes polinómicos, presentados en la Tabla N°20, Tabla N°21 y Tabla N°22.

Figura Nº 10. Curvas de $\mathsf{RT_r}(\frac{\partial \mathsf{Z}}{\partial \mathsf{T_r}})_{\mathsf{P_r}}$ para temperaturas reducidas de [0,8-0,95]

Tabla N° 20. Ajustes para el cálculo de $RT_r(\frac{\partial Z}{\partial T_r})_{P_r}$ para temperaturas reducidas [0,8-0,95]

Ajuste polinómico	$RT_r(\frac{\partial Z}{\partial T_r})_{P_r} = 279200P_r^3 - 50260P_r^2 + 25261P_r - 251$
Tr=0,8; 0,05 ≤Pr≤0,2	$\partial T_r^{\gamma p_r}$ 27720017 3023017 2020
\mathbb{R}^2	1,000
Ajuste polinómico	$RT_r \left(\frac{\partial Z}{\partial T_r}\right)_{P_r} = 1000000P_r^4 - 866941P_r^3 + 226684P_r^2$
Tr=0,85; 0,05 \(\lefta \)Pr\(\lefta \)0,3	- 6261,1P _r + 682,73
\mathbb{R}^2	1,000
Ajuste polinómico	$RT_r(\frac{\partial Z}{\partial T_r})_{P_r} = 40696P_r^2 + 4426,3P_r + 418,29$
Tr=0,9; 0,05 \(\lefta \)Pr\(\lefta \),4	∂T_r^{yr}
\mathbb{R}^2	0,998
Ajuste polinómico	$RT_r(\frac{\partial Z}{\partial T_r})_{P_r} = -40879P_r^4 + 102547P_r^3 - 36415P_r^2$
Tr=0,95; 0,05 \(\lefta \)Pr\(\lefta \),7	+ 17962P _r – 291,89
\mathbb{R}^2	0,999

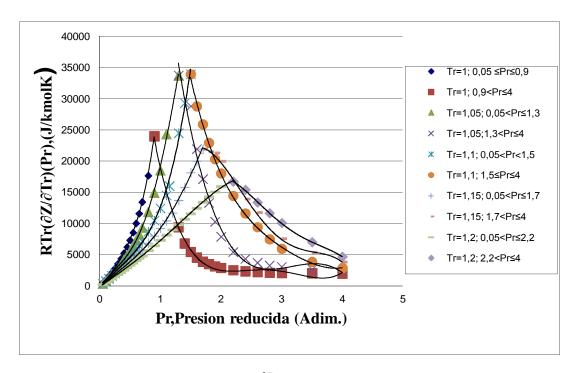


Figura Nº 11. Curvas de $\, \mathsf{RT}_r (\frac{\partial \mathsf{Z}}{\partial \mathsf{T}_r})_{\mathsf{P}_r} \,$ para temperaturas reducidas [1-1,2]

Tabla N° 21. Ajustes para el cálculo de $RT_r(\frac{\partial Z}{\partial T_r})_{P_r}$ para temperaturas reducidas [1-1,2]

σ_{Γ}		
Ajuste polinómico	$RT_r(\frac{\partial Z}{\partial T_r})_{P_r} = 34938P_r^4 - 34811P_r^3 +$	
Tr=1; 0,05 <pr<0,9< th=""><td>$26097P_r^2 + 5574,5P_r + 221,6$</td></pr<0,9<>	$26097P_r^2 + 5574,5P_r + 221,6$	
\mathbb{R}^2	0,999	
Ajuste polinómico Tr=1; 0,9 <pr≤4< th=""><th>$RT_r \left(\frac{\partial Z}{\partial T_r}\right)_{P_r} = 2000P_r^4 - 22752P_r^3 + 94746P_r^2$</th></pr≤4<>	$RT_r \left(\frac{\partial Z}{\partial T_r}\right)_{P_r} = 2000P_r^4 - 22752P_r^3 + 94746P_r^2$	
	- 171590P _r + 116713	
\mathbb{R}^2	0,995	
Ajuste polinómico Tr=1,05; 0,05 <pr≤1,3< th=""><th>$RT_{r}(\frac{\partial Z}{\partial T_{r}})_{P_{r}} = -11054P_{r}^{4} + 40993P_{r}^{3} - 27315P_{r}^{2}$</th></pr≤1,3<>	$RT_{r}(\frac{\partial Z}{\partial T_{r}})_{P_{r}} = -11054P_{r}^{4} + 40993P_{r}^{3} - 27315P_{r}^{2}$	
	+ 17050P _r - 593,02	
\mathbb{R}^2	0,999	
Ajuste polinómico Tr=1,05;1,3 <pr≤4< th=""><th>$RT_r(\frac{\partial Z}{\partial T_r})_{P_r} = 459.72P_r^4 - 10518P_r^3 + 72257P_r^2$</th></pr≤4<>	$RT_r(\frac{\partial Z}{\partial T_r})_{P_r} = 459.72P_r^4 - 10518P_r^3 + 72257P_r^2$	
	- 197720P _r + 192436	
\mathbb{R}^2	0,983	
Ajuste polinómico	$RT_r(\frac{\partial Z}{\partial T_r})_{P_r} = 3862P_r^4 + 3071P_r^3 - 5138.4P_r^2 +$	
Tr=1,1; 0,05 <pr<1,5< th=""><th>11142P_r – 350,12</th></pr<1,5<>	11142P _r – 350,12	
\mathbb{R}^2	0,997	
Ajuste polinómico	$RT_r(\frac{\partial Z}{\partial T_r})_{P_r} = 1534.2P_r^4 - 19514P_r^3 + 95480P_r^2$	
Tr=1,1; 1,5 <pr<4< th=""><td>- 218116P_r + 203880</td></pr<4<>	- 218116P _r + 203880	
\mathbb{R}^2	0,999	
Ajuste polinómico	$RT_r \left(\frac{\partial Z}{\partial T_r}\right)_{P_r} = -922,04P_r^4 + 5308,7P_r^3 - 3799P_r^2$	
Tr=1,15; 0,05 <pr≤1,7< th=""><td>$+8820,3P_{\rm r}^2-224,98$</td></pr≤1,7<>	$+8820,3P_{\rm r}^2-224,98$	
\mathbb{R}^2	0,999	
Ajuste polinómico	$RT_r(\frac{\partial Z}{\partial T_r})_{P_r} = -3265P_r^4 + 38343P_r^3 - 161179P_r^2$	
Tr=1,15; 1,7 <pr≤4< th=""><td>+ 277294P_r - 144611</td></pr≤4<>	+ 277294P _r - 144611	
\mathbb{R}^2	0,998	
Ajuste polinómico	$RT_r(\frac{\partial Z}{\partial T_r})_{P_r} = -594.9P_r^4 + 1806.9P_r^3 - 735.93P_r^2$	
Tr=1,2; 0,05 <pr≤2,2< th=""><th>+ 6944,1P_r – 155,16</th></pr≤2,2<>	+ 6944,1P _r – 155,16	
\mathbb{R}^2	0,999	
Ajuste polinómico	$RT_r(\frac{\partial Z}{\partial T_r})_{P_r} = -2283P_r^4 + 28657P_r^3 - 131235P_r^2$	
Tr=1,2; 2,2 <pr≤4< th=""><th>+ 252556P_r – 155332</th></pr≤4<>	+ 252556P _r – 155332	
\mathbb{R}^2	0,999	

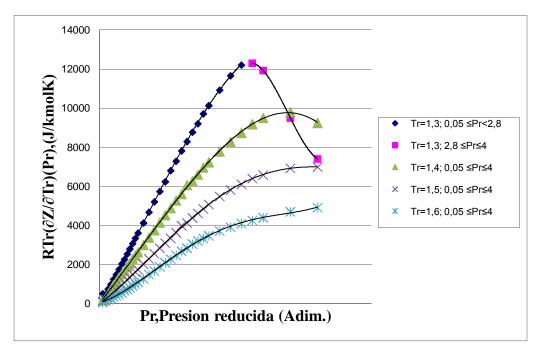


Figura Nº 12. Curvas de $\,\mathsf{RT}_r(\frac{\partial Z}{\partial T_r})_{P_r}\,$ para temperaturas reducidas [1,3-1,6]

Tabla N° 22. Ajustes para el cálculo de $RT_r(\frac{\partial Z}{\partial T_r})_{P_r}$ para temperaturas reducidas [1,3-1,6]

Ajuste polinómico	$RT_r(\frac{\partial Z}{\partial T_r})_{P_r} = 51,037P_r^4 - 590,77P_r^3 + 1339,1P_r^2$	
Tr=1,3; 0,05 ≤Pr<2,8	+ 4272P _r + 134,76	
\mathbb{R}^2	0,999	
Ajuste polinómico Tr=1,3; 2,8 ≤Pr≤4	$RT_r \left(\frac{\partial Z}{\partial T_r}\right)_{P_r} = 4099P_r^3 - 42407P_r^2 + 140651P_r - 139039$	
\mathbb{R}^2	1,000	
Ajuste polinómico Tr=1,4; 0,05 ≤Pr≤4	$RT_r(\frac{\partial Z}{\partial T_r})_{P_r} = -12,624P_r^4 - 74,805P_r^3 + 152,1P_r^2 +$	
	3709,5P _r + 18,238	
\mathbb{R}^2	0,999	
Ajuste polinómico Tr=1,5; 0,05 ≤Pr≤4	$RT_r(\frac{\partial Z}{\partial T_r})_{P_r} = 30,508P_r^4 - 333,24P_r^3 + 751,75P_r^2$	
	+ 2119,9P _r + 3,2686	
\mathbb{R}^2	0,999	
Ajuste polinómico Tr=1,6; 0,05 <pr<4< th=""><th>$RT_{r}(\frac{\partial Z}{\partial T_{r}})_{P_{r}} = -56,587P_{r}^{3} + 72,271P_{r}^{2}$</th></pr<4<>	$RT_{r}(\frac{\partial Z}{\partial T_{r}})_{P_{r}} = -56,587P_{r}^{3} + 72,271P_{r}^{2}$	
	+ 1850,3P _r - 137,9	
\mathbb{R}^2	0,997	

Los ajustes presentados anteriormente permiten obtener los valores de $RT_r(\frac{\partial Z}{\partial T_r})_{P_r}$ para la especificación de compresores centrífugos. Este factor se utiliza para el cálculo el exponente politrópico a la succión y descarga en los servicios de compresión centrífugos. Los ajustes polinómicos mostrados son de orden n=3 o n= 4, tomando como referencia el coeficiente de determinación R^2 . Para los casos en los que había cambio de tendencia de los valores experimentales graficados de los Apéndices N y O (Figura N°11 y N°12), fue necesario realizar dos ajustes para una misma temperatura reducida, uno para la parte creciente y otro para la parte decreciente de la curva (Tabla N° 21 y 22).

IV.2.3.3 Cálculos del factor Δ_{Cp}

A partir de valores tomados de los Apéndices N y O, se realizaron los ajustes necesarios para determinar la diferencia de Δ_{Cp} en función de la presión reducida (P_r) , para cada una de las temperaturas reducidas (T_r) disponibles en dichos apéndices. Las curvas representativas de estos valores se muestran a continuación con la Figura N°13, Figura N°14, y Figura N°15, con sus respectivos ajustes polinómicos, presentados en la Tabla N°23, Tabla N°24 y Tabla N°25.

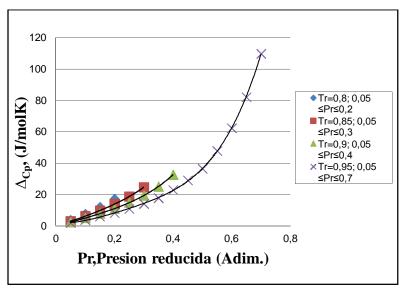


Figura Nº 13. Curvas de Δ_{Cp} para temperaturas reducidas de [0,8-0,95]

Tabla Nº 23. Ajustes para el cálculo de Δ_{Cp} para temperaturas reducidas de [0,8-0,95]

Ajuste polinómico	$\Delta \text{Cp} = 493.33 \text{P}_r^3 - 62 \text{P}_r^2 + 79.067 \text{P}_r - 0.24$	
Tr=0,8; 0,05 \(\lefta \)Pr\(\lefta \).	$\Delta CP = 475,551_{\rm r} = 02F_{\rm r} + 77,007F_{\rm r} = 0,24$	
\mathbb{R}^2	1,000	
Ajuste polinómico	$\Delta Cp = 1733,3P_r^4 - 902,22P_r^3 + 261,33P_r^2$	
Tr=0,85; 0,05 \le Pr\le 0,3	+ 35,796P _r + 0,64	
\mathbb{R}^2	1,000	
Ajuste polinómico	$\Delta Cp = 715,15P_r^4 - 267,47P_r^3 + 95,364P_r^2$	
Tr=0,9; 0,05 \(\lefta \)Pr\(\lefta \),4	+ 39,845P _r + 0,1757	
\mathbb{R}^2	1,000	
Ajuste polinómico	$\Delta \text{Cp} = 1157,2P_r^4 - 1031P_r^3 + 398,09P_r^2$	
Tr=0,95; 0,05 <pr 0,7<="" <="" th=""><th>- 17,114P_r + 2,051</th></pr>	- 17,114P _r + 2,051	
\mathbb{R}^2	0,999	

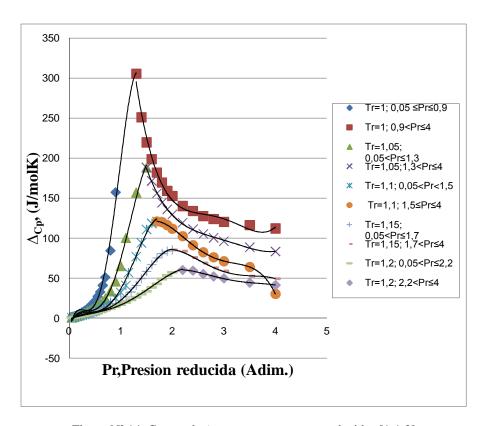


Figura Nº 14. Curvas de Δ_{Cp} para temperaturas reducidas [1-1,2]

Tabla N° 24. Ajustes para el cálculo de Δ_{Cp} para temperaturas reducidas [1-1,2]

Ajuste polinómico Tr=1; 0,05 ≤Pr≤0,9	$\Delta \text{Cp} = -775,61P_r^4 + 1969,7P_r^3 - 1311,3P_r^2 + 329,08P_r - 17,601$	
\mathbb{R}^2	0,993	
Ajuste polinómico Tr=1; 0,9 <pr≤4< th=""><th colspan="2">$\Delta \text{Cp} = 25,113P_r^4 - 297,16P_r^3 + 1299,7P_r^2 - 2508,6P_r + 1941,4$</th></pr≤4<>	$\Delta \text{Cp} = 25,113P_r^4 - 297,16P_r^3 + 1299,7P_r^2 - 2508,6P_r + 1941,4$	
\mathbb{R}^2	0,992	
Ajuste polinómico Tr=1,05; 0,05 <pr≤1,3< th=""><th colspan="2">$\Delta Cp = -210,41P_r^4 + 649,63P_r^3 - 523,33P_r^2 + 167,98P_r - 10,547$</th></pr≤1,3<>	$\Delta Cp = -210,41P_r^4 + 649,63P_r^3 - 523,33P_r^2 + 167,98P_r - 10,547$	
\mathbb{R}^2	0,995	
Ajuste polinómico Tr=1,05;1,3 <pr≤4< th=""><th>$\Delta \text{Cp} = 10,617P_r^4 - 130.86P_r^3 + 602,54P_r^2 - 1248P_r + 1091,8$</th></pr≤4<>	$\Delta \text{Cp} = 10,617P_r^4 - 130.86P_r^3 + 602,54P_r^2 - 1248P_r + 1091,8$	
\mathbb{R}^2	0,999	
Ajuste polinómico Tr=1,1; 0,05 <pr<1,5< th=""><th colspan="2">$\Delta Cp = -71,445P_r^4 + 254,41P_r^3 - 229,22P_r^2 + 87,84P_r - 5,6227$</th></pr<1,5<>	$\Delta Cp = -71,445P_r^4 + 254,41P_r^3 - 229,22P_r^2 + 87,84P_r - 5,6227$	
\mathbb{R}^2	0,995	
Ajuste polinómico Tr=1,1; 1,5≤Pr≤4	$\Delta \text{Cp} = -21,406P_r^4 + 232,66P_r^3 - 916,71P_r^2 + 1513,6P_r - 766,92$	
\mathbb{R}^2	0,999	
Ajuste polinómico Tr=1,15; 0,05 <pr≤1,7< th=""><th colspan="2">$\Delta Cp = -31,307P_r^4 + 117,27P_r^3 - 113,58P_r^2 + 53,398P_r - 3,504$</th></pr≤1,7<>	$\Delta Cp = -31,307P_r^4 + 117,27P_r^3 - 113,58P_r^2 + 53,398P_r - 3,504$	
\mathbb{R}^2	0,995	
Ajuste polinómico Tr=1,15; 1,7 <pr≤4< th=""><th colspan="2">$\Delta \text{Cp} = -12,832P_r^4 + 156,36P_r^3 - 692,22P_r^2 + 1296,8P_r - 784,37$</th></pr≤4<>	$\Delta \text{Cp} = -12,832P_r^4 + 156,36P_r^3 - 692,22P_r^2 + 1296,8P_r - 784,37$	
\mathbb{R}^2	0,997	
Ajuste polinómico Tr=1,2; 0,05 <pr≤2,2< th=""><th colspan="2">$\Delta \text{Cp} = -8.6546P_r^4 + 35.121P_r^3 - 33.942P_r^2 + 25.368P_r - 1.3972$</th></pr≤2,2<>	$\Delta \text{Cp} = -8.6546P_r^4 + 35.121P_r^3 - 33.942P_r^2 + 25.368P_r - 1.3972$	
\mathbb{R}^2	0,995	
Ajuste polinómico Tr=1,2; 2,2 <pr≤4< th=""><th colspan="2">$\Delta \text{Cp} = -6.6316P_r^4 + 84.619P_r^3 - 395.65P_r^2 + 791.21P_r - 510.9$</th></pr≤4<>	$\Delta \text{Cp} = -6.6316P_r^4 + 84.619P_r^3 - 395.65P_r^2 + 791.21P_r - 510.9$	
\mathbb{R}^2	0,995	

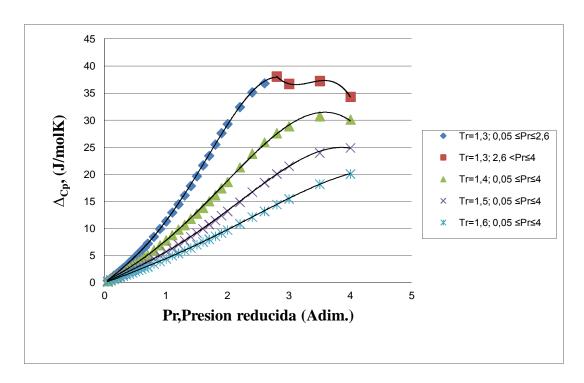


Figura Nº 15. Curvas de Δ_{Cp} para temperaturas reducidas [1,3-1,6]

Tabla N° 25. Ajustes para el cálculo de Δ_{Cp} para temperaturas reducidas [1,3-1,6]

Ajuste polinómico Tr=1,3; 0,05 ≤Pr≤2,6	$\Delta Cp = -1.044P_r^4 + 3.5772P_r^3 - 0.2453P_r^2 + 9.1282P_r - 0.0786$	
\mathbb{R}^2	0,999	
Ajuste polinómico Tr=1,3; 2,6 <pr≤4< th=""><th>$\Delta \text{Cp} = -15,183P_r^3 + 152,5P_r^2 - 508,15P_r + 598,59$</th></pr≤4<>	$\Delta \text{Cp} = -15,183P_r^3 + 152,5P_r^2 - 508,15P_r + 598,59$	
\mathbb{R}^2	1,000	
Ajuste polinómico Tr=1,4; 0,05 ≤Pr≤4	$\Delta Cp = -0.1971P_r^4 + 0.5029P_r^3 + 1.5627P_r^2 + 5.7525P_r + 0.1409$	
\mathbb{R}^2	0,999	
Ajuste polinómico Tr=1,5; 0,05 ≤Pr≤4	$\Delta Cp = -0.1687P_r^4 + 0.7886P_r^3 - 0.2271P_r^2 + 5.3027P_r - 0.0328$	
\mathbb{R}^2	0,999	
Ajuste polinómico Tr=1,6; 0,05 ≤Pr≤4	$\Delta Cp = -0.051P_r^4 + 0.2349P_r^3 + 0.0907P_r^2 + 4.1868P_r - 0.0423$	
\mathbb{R}^2	1,000	

Los ajustes presentados anteriormente permiten obtener los valores de Δ_{Cp} para la especificación de compresores centrífugos y reciprocantes. Este factor se utiliza para el cálculo el exponente politrópico a la succión y descarga en los servicios de compresión centrífugos, y para el caso compresores reciprocantes se utiliza en el cálculo de la relación de calores específicos. Los ajustes polinómicos mostrados son de orden n=3 o n= 4, tomando como referencia el coeficiente de determinación R^2 . Para los casos en los que había cambio de tendencia de los valores experimentales graficados de los Apéndices N y O (Figura N°14 y N°15), fue necesario realizar dos ajustes para una misma temperatura reducida, uno para la parte creciente y otro para la parte decreciente de la curva (Tabla N°24 y 25).

IV.2.3.4 Cálculos del factor C_P-C_V

A partir de valores tomados de los Apéndices N y O, se realizaron los ajustes necesarios para determinar la diferencia de C_P - C_V en función de la presión reducida (P_r) , para cada una de las temperaturas reducidas (T_r) disponibles en dichos apéndices. Las curvas representativas de estos valores se muestran en la Figura N°16, Figura N°17, y Figura N°18, con sus respectivos ajustes, en la Tabla N°26, Tabla N°27 y Tabla N°28.

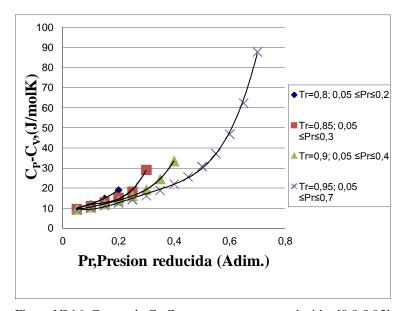


Figura Nº 16. Curvas de C_P-C_V para temperaturas reducidas [0,8-0,95]

Tabla N° 26. Ajustes para el cálculo de C_P-C_V para temperaturas reducidas [0,8-0,95]

Ajuste polinómico	$C_p - C_v = 1013.3P_r^3 - 170P_r^2 + 49.567P_r + 7.83$
Tr=0,8; 0,05 \(\lefta \)Pr\(\lefta \).	
\mathbb{R}^2	1,000
Ajuste polinómico	$C_p - C_v = 9253,3P_r^3 - 5400P_r^2 + 1080,1P_r - 58,76$
Tr=0,85; 0,05 \(\lefta \)Pr\(\lefta \),3	ор оу 7200,011 отоот тооо, 11 оо, 10
\mathbb{R}^2	1,000
Ajuste polinómico	$C_p - C_v = 2986.4P_r^4 - 1839.8P_r^3 + 457.59P_r^2$
Tr=0,9; 0,05 \(\lefta \)Pr\(\lefta \),4	- 19,838P _r + 9,4941
\mathbb{R}^2	1,000
Ajuste polinómico	$C_p - C_v = 1696.8P_r^4 - 1884.1P_r^3 + 771.82P_r^2$
Tr=0,95; 0,05 \(\lefta \)Pr\(\lefta \)0,7	$-93,073P_{r}+12,745$
\mathbb{R}^2	0,995

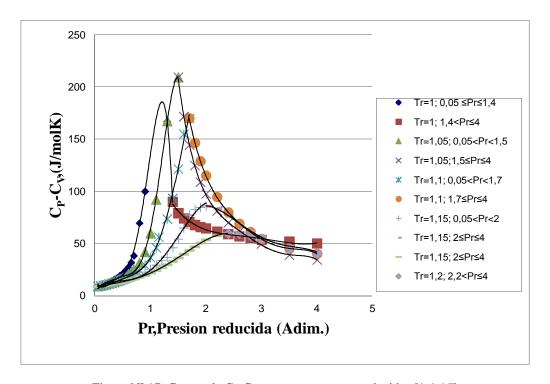


Figura Nº 17. Curvas de C_P-C_V para temperaturas reducidas [1-1,15]

Tabla N° 27. Ajustes para el cálculo de C_{P} - C_{V} para temperaturas reducidas [1-1,2]

Ajuste polinómico Tr=1; 0,05 ≤Pr≤1,4	$C_{p} - C_{v} = -813,13P_{r}^{5} + 1961,9P_{r}^{4} - 1387,8P_{r}^{3} + 381,45P_{r}^{2} - 15,978P_{r} + 8,7047$		
, ,			
\mathbb{R}^2	0,995		
Ajuste polinómico Tr=1;	$C_p - C_v = -7,0668P_r^5 + 99,078P_r^4 - 544,74P_r^3$		
1,4 <pr≤4< th=""><th>+ 1471,4P_r² - 1966,9P_r + 1110,8</th></pr≤4<>	+ 1471,4P _r ² - 1966,9P _r + 1110,8		
\mathbb{R}^2	0,995		
Ajuste polinómico Tr=1,05;	$C_p - C_v = -535,69P_r^5 + 1823,8P_r^4 - 2046,3P_r^3$		
0,05 <pr<1,5< th=""><th>$+ 969,5P_r^2 - 165,04P_r + 17,242$</th></pr<1,5<>	$+ 969,5P_r^2 - 165,04P_r + 17,242$		
R ²	0,999		
Ajuste polinómico	$C_p - C_v = -16.719P_r^5 + 251.16P_r^4 - 1494.2P_r^3$		
Tr=1,05;1,5 \(\)Pr\(\)4	$+ 4416,1P_r^2 - 6536,1P_r + 3974,9$		
R ²	0,999		
Ajuste polinómico Tr=1,1; 0,05 <pr<1,7< th=""><th>$C_p - C_v = -81.918P_r^5 + 341.63P_r^4 - 445.67P_r^3$</th></pr<1,7<>	$C_p - C_v = -81.918P_r^5 + 341.63P_r^4 - 445.67P_r^3$		
	$+ 255,12P_r^2 - 44,776P_r + 11,552$		
\mathbb{R}^2	0,997		
Ajuste polinómico Tr=1,1; 1,7≤Pr≤4	$C_p - C_v = -23,227P_r^5 + 324,27P_r^4 - 1809,5P_r^3$		
	$+5073.4P_{r}^{2} - 7222.8P_{r} + 4298.3$		
R ²	1,000		
Ajuste polinómico Tr=1,15;	$C_p - C_v = -29.979P_r^4 + 119.97P_r^3 - 128.24P_r^2$		
0,05 <pr<2< th=""><td>+ 58,82P_r + 3,8609</td></pr<2<>	+ 58,82P _r + 3,8609		
R ²	0,993		
Ajuste polinómico Tr=1,15;	$C_p - C_v = -12,662P_r^4 + 156,77P_r^3 - 706,57P_r^2$		
2≤Pr≤4	+ 1347,1P _r - 833,43		
\mathbb{R}^2	0,999		
Ajuste polinómico Tr=1,2;	$C_p - C_v = -5.6135P_r^4 + 21.86P_r^3 - 17.438P_r^2$		
0,05 <pr≤2,4< th=""><th>+ 15,137 P_r + 7,716</th></pr≤2,4<>	+ 15,137 P _r + 7,716		
\mathbb{R}^2	0,999		
Ajuste polinómico Tr=1,2;	$C_p - C_v = -1.282P_r^4 + 27.232P_r^3 - 183.17P_r^2$		
2,2 <pr≤4< th=""><th>+ 484,79P_r - 382,9</th></pr≤4<>	+ 484,79P _r - 382,9		
\mathbb{R}^2	0,999		
-			

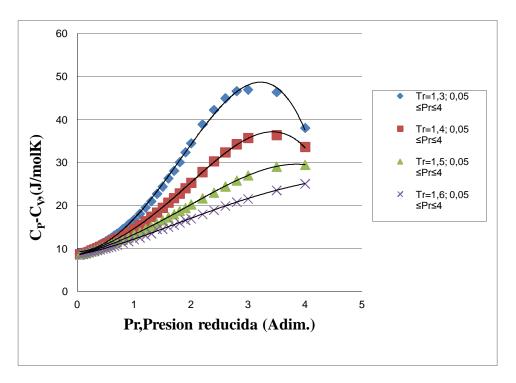


Figura N^o 18. Curvas de C_{P} - C_{V} para temperaturas reducidas [1,3-1,6]

Tabla N° 28. Ajustes para el cálculo de C_{P} - C_{V} para temperaturas reducidas [1,3-1,6]

Ajuste polinómico Tr=1,3; 0,05 ≤Pr≤4	$C_p - C_v = -0.3269P_r^4 - 0.2047P_r^3 + 7.6724P_r^2 + 0.593P_r + 9.234$	
\mathbb{R}^2	0,995	
Ajuste polinómico Tr=1,4; 0,05 ≤Pr≤4	$C_p - C_v = -0.2791P_r^4 + 0.8061P_r^3 + 1.8803P_r^2 + 3.6622P_r + 8.5721$	
\mathbb{R}^2	0,999	
Ajuste polinómico Tr=1,5; 0,05 ≤Pr≤4	$C_p - C_v = -0.0736P_r^4 + 0.0567P_r^3 + 1.4086P_r^2 + 3.4293P_r + 8.4749$	
\mathbb{R}^2	1,000	
Ajuste polinómico Tr=1,6; 0,05 ≤Pr≤4	$C_p - C_v = 0.0206P_r^4 - 0.3572P_r^3 + 1.5076P_r^2 + 2.5202P_r + 8.5072$	
\mathbb{R}^2	0,999	

Los ajustes presentados anteriormente permiten obtener la diferencia de la capacidad calorífica a presión constante con la capacidad calorífica a volumen constante (C_P-C_V), para la especificación de compresores reciprocantes. Los ajustes polinómicos mostrados son de orden n=3, n= 4 y n=5, tomando como referencia el coeficiente de determinación R². Para los casos en los que había cambio de tendencia de los valores experimentales graficados de los Apéndices N y O (Figura N°17), fue necesario realizar dos ajustes para una misma temperatura reducida, uno para la parte creciente y otro para la parte decreciente de la curva (Tabla N°27).

IV.2.4 Eficiencia isentrópica

A partir de los valores tomados de la Figura N°4 se elaboró la Tabla N°29 y se realizaron curvas representativas de estos valores (Figura N°19), con sus respectivos ajustes polinómicos, presentados en la Tabla N°30.

Tabla N° 29. Eficiencias isentrópicas

		Porcentaje	de eficiencia %	
Relación de compresión	PM=2	PM=10	PM=20	PM=30
1,3	90	81	76	73
1,4	91	83,5	79,5	77
1,5	92	85	82	79
1,7	92,5	87,5	85	82,5
1,8	93	88	86	84,5
1,9	93	88,5	87,5	85,5
2	93	88,5	87,5	85,5
2,3	93,5	90,5	89	87,5
2,6	94	91,5	90	89
3	94,3	92,5	91	90
3,3	94,5	93	92	91
3,6	94,5	93	92,5	91,5
4	94,5	93,5	92,5	91,5
4,3	94,5	93,5	92,5	91,5
4,6	94,8	93,5	92,5	91,5
5	95	94	93	91,5
5,3	95	94	93	92
5,6	95	94	93,5	92,5
6	95	94	93,5	92,5

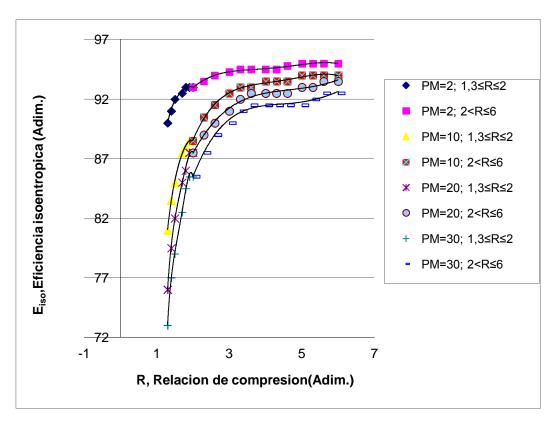


Figura Nº 19. Curvas de eficiencias isoentrópicas

Tabla N° 30. Ajustes para el cálculo de la eficiencia isoentrópica

Ajuste polinómico PM=2; 1,3≤R≤2	$E_{iso} = 24,85R^4 + 172,76R^3 - 454,41R^2 + 538,36R - 150,52$
\mathbb{R}^2	0,990
Ajuste polinómico PM=2; 2 <r≤6< th=""><th>$E_{iso} = -0.061R^4 + 1.052R^3 - 6.627R^2 + 18.48R + 75$</th></r≤6<>	$E_{iso} = -0.061R^4 + 1.052R^3 - 6.627R^2 + 18.48R + 75$
\mathbb{R}^2	0,990
Ajuste polinómico PM=10; 1,3≤R≤2	$E_{iso} = 30,95R^4 + 212,46R^3 - 560,06R^2 + 678,71R - 233,18$
\mathbb{R}^2	0,999
Ajuste polinómico PM=10; 2 <r≤6< th=""><th>$E_{iso} = -0.119R^4 + 2.146R^3 - 14.29R^2 + 42.46R + 45.56$</th></r≤6<>	$E_{iso} = -0.119R^4 + 2.146R^3 - 14.29R^2 + 42.46R + 45.56$
\mathbb{R}^2	0,996

Tabla N° 30. (Continuación). Ajustes para el cálculo de la eficiencia isentrópica

Ajuste polinómico PM=20; 1,3≤R≤2	$E_{iso} = -131,7R^4 + 889,7R^3 - 2256,4R^2 + 2560,2R - 1017,5$
\mathbb{R}^2	0,998
Ajuste polinómico PM=20; 2 <r≤6< th=""><th>$E_{iso} = -0.021R^4 + 0.583R^3 - 5.315R^2 + 20.69R + 63$</th></r≤6<>	$E_{iso} = -0.021R^4 + 0.583R^3 - 5.315R^2 + 20.69R + 63$
\mathbb{R}^2	0,990
Ajuste polinómico PM=30; 1,3≤R≤2	$E_{iso} = -224,96R^4 + 1488,3R^3 - 3684,5R^2 + 4062,6R - 1608,8$
\mathbb{R}^2	0,999
Ajuste polinómico PM=30; 2 <r≤6< th=""><th>$E_{iso} = -0.054R^4 + 1.231R^3 - 9.891R^2 + 34.46R + 47.13$</th></r≤6<>	$E_{iso} = -0.054R^4 + 1.231R^3 - 9.891R^2 + 34.46R + 47.13$
\mathbb{R}^2	0,992

Los ajustes presentados anteriormente permiten obtener los valores de la eficiencia isentrópica para compresores reciprocantes por medio del método isentrópico. Esta eficiencia es necesaria para calcular la temperatura real de descarga de cada etapa de compresión y la potencia de gas necesaria. Los ajustes polinómicos mostrados son de orden n= 4, tomando como referencia el coeficiente de determinación R². El valor de la eficiencia está en función de las propiedades del gas y de la relación de compresión. Para cada curva fue necesario realizar dos ajustes, uno para la relaciones de compresiones menores que 2 (R<2) y otro para relaciones de compresiones mayores a 2 (R≥2), esto con la finalidad de obtener un coeficiente de determinación cercano a la unidad (Tabla N°30).

IV.2.5 Eficiencia Politrópica

A partir de los valores tomados de la Figura N°3, se elaboro la Tabla N°31 y se realizaron curvas representativas de estos valores (Figura N°20) con su respectivos ajustes, presentados en la Tabla N°32.

Tabla Nº 31. Eficiencias politrópicas

Flujo $\left(\frac{m^3}{h}\right)$	Eficiencia politrópicas (Adim.)
170	0,64
2880	0,72
3600	0,725
5040	0,73
7200	0,735
11520	0,74
18720	0,745
36000	0,75
180000	0,783



Figura Nº 20. Curvas de eficiencias Politrópica

Tabla N° 32. Ajustes para el cálculo de la eficiencias politrópicas

Ajuste Lineal 170<=V<2880	$E_{pol} = 3E^{-5}V + 0.635$
\mathbb{R}^2	1,0
Ajuste polinómico 2880<=V<36000	$E_{\rm pol} = -4E^{-11}V^2 + 2E^{-6}V + 0.717$
\mathbb{R}^2	0,9
Ajuste Lineal 36000<=V<=180000	$E_{pol} = 2E^{-7}V + 0.741$
\mathbb{R}^2	1,0

Los ajustes presentados anteriormente permiten obtener los valores de la eficiencia politrópica para compresores centrífugos por medio del método politripico. Esta eficiencia es necesaria para calcular la temperatura real de descarga de cada etapa de compresión y la potencia de gas necesaria. En la Figura N°20 se pueden observar tres tendencias, por tanto fue necesario realizar tres ajustes distintos mostrados en la Tabla N°32, los cuales dependen del flujo volumétrico de gas.

IV.3 ELABORACIÓN DE LAS HERRAMIENTAS AUTOMATIZADAS PORTÁTILES PARA EL DISEÑO DE TANQUES, SEPARADORES Y COMPRESORES

El lenguaje empleado para elaborar la herramienta computacional fue Visual Basic para Aplicaciones (VBA), que se encuentra integrado a la suite de Microsoft® Office. El uso que se le dio fue directamente en Excel. Este ambiente de programación permite llevar a cabo una gran variedad de tareas a la herramienta como:

a) Efectuar una gran variedad de iteraciones con gran rapidez, esto es de vital importancia para la obtención de las dimensiones finales de los equipos basados en los tamaños nominales y criterios expuestos en las normas PDVSA.

- b) Reflejar de una manera organizada los valores obtenidos como cálculos intermedios y las dimensiones finales de los equipos en las hojas de cálculo de Excel.
- c) Copiar valores contenidos en las hojas de otros libros, y pegarlos en libro de la herramienta. Se utiliza para poder hacer lectura de la hoja de reporte de corrientes.
- d) Permitió crear un ambiente amigable para la introducción y visualización de los datos requeridos.

Se elaboraron tres archivos, uno para cada tipo de equipo; para el caso de tanques, la herramienta permite el dimensionamiento de tanques atmosféricos de techo tipo domo o cónico con o sin sistema de recuperación de vapor y tanques de techo flotante externo o interno. Para el caso de separadores, el alcance de la herramienta es el dimensionamiento de los separadores líquido-vapor verticales, horizontales y con una o dos boquillas de entrada, separadores líquido-líquido con o sin bota decantadora y separadores líquido-líquido-vapor con o sin bota decantadora, así como las especificación de los internos de mayor uso de industria en materia de separadores. Para el caso de compresores, la herramienta permite la especificación de los compresores centrífugos de una etapa y los compresores reciprocantes de una y múltiples etapas.

Los tres archivos poseen una ventana de bienvenida en la cual se puede tener acceso al manual de usuario, diagrama de flujo y la introducción manual de datos por medio de un formulario. Para el caso especial de tanques y separadores, se tiene adicionalmente la opción de lectura de datos de una hoja de reportes de corrientes, este último ítem permite copiar los valores de las propiedades obtenidas por un simulador y pegarlas directamente en la hoja de introducción de datos de la herramienta, sin necesidad de hacer la transcripción de cada valor, lo cual reduce el error y el tiempo necesario para esta tarea, el formato de esta hoja de reporte se encuentra en el Apéndice P. Las hojas de cálculo se pueden dividir en tres secciones principales, la primera de ellas es en la que se pueden visualizar y modificar los datos introducidos para los cálculos, la cual incluye un botón mediante el cual se inicia el

dimensionamiento o especificación del equipo requerido, la segunda sección incluye un conjunto de hojas en las que se visualizan los cálculos intermedios realizados a nivel interno por el VBA y la tercera con las hojas de especificaciones de procesos de cada equipo, en los Apéndices Q-U se muestra el formato de dichas hojas.

Con la elaboración de esta herramienta, se establece un ambiente basado en información confiable y real del cumplimiento con las metodologías y criterios expuestos en los manuales de diseño de PDVSA.

IV.4 ELABORACIÓN DEL MANUAL DE USUARIO

Los Manuales de Usuario tienen como finalidad dar a conocer de una manera detallada y sencilla, el uso y manejo de las herramientas para el dimensionamiento y especificación de tanques, separadores y compresores. Los manuales de usuario incluyen las imágenes de las distintas pantallas, hojas y botones que se puedan presentar durante el uso de la herramienta, añadiéndole su respectiva función y características.

El manual de usuario de la herramienta de Tanques se puede visualizar en el apéndice V, se puede tener acceso a él una vez se abra el archivo de Excel. En este manual se pueden detallar cada una de las opciones disponibles en la herramienta, a continuación se listan las más resaltantes:

- a) Introducción manual de datos, en la cual el usuario transcribe las propiedades de las corrientes involucradas desde la hoja de reporte de simulación.
- b) Lectura de reporte local, con la cual el usuario puede hacer lectura automática de las corrientes involucradas directamente de la hoja de reportes de corrientes, evitando así los errores de transcripción.
- c) Acceso al Manual de usuario
- d) Acceso al Diagrama de flujo de cálculo
- e) Inicio del dimensionamiento

Los datos introducidos se mostraran en un formulario de VBA en la cual se podrá hacer revisión y modificación de los mismos, además de introducir los datos faltantes

de diseño necesarios para el dimensionamiento del equipo. A partir de allí se podrá proceder al dimensionamiento del tanque.

Una vez que se realice el cálculo, la herramienta portátil generará una hoja de especificaciones con el dibujo del equipo y con las dimensiones necesarias que son responsabilidad del ingeniero del proceso. El usuario tiene la posibilidad de realizar un paseo por las diferentes memorias de cálculo con la finalidad de visualizar los cálculos intermedios realizados a nivel interno por el VBA, estos cálculos se encuentran disponibles en hojas de cálculo de Excel, las cuales son de sólo lectura, se puede navegar a través de ellas por medio del botón "Menú", tal y como se explica en el manual.

La herramienta de separadores es un solo archivo de Excel, sin embargo, dependiendo del servicio requerido, el usuario una vez iniciada la herramienta puede elegir el dimensionamiento de cualquiera de los tres tipos de separadores que son alcance de este trabajo (líquido-vapor, líquido - líquido - líquido - líquido-vapor) y tener acceso a su respectivo manual de usuario, en el Apéndice W se puede visualizar el manual de usuario para liquido-vapor. En él se pueden observar los distintos formularios que pueden aparecer durante el manejo de la herramienta, ya sea para introducir los datos manualmente o hacer lectura de ellos de la hoja de reporte de simulación, en cualquiera de los casos los datos introducidos se mostrarán en un formulario de VBA en el cual se podrá hacer revisión y modificación de los mismos, además de introducir los datos faltantes de diseño necesarios para el dimensionamiento del equipo. El manual refleja igualmente el formulario de VBA que permite tener acceso a las recomendaciones de mejores prácticas basado en la experiencia de los servicios ofrecidos y más comunes de la IPPCN en materia de separadores. Las memorias de cálculos se presentan en hojas típicas de Excel, se puede navegar a través de ellas por medio del botón "Menú".

El manual de usuario para la herramienta de compresores se puede visualizar en el Apéndice X, se puede tener acceso a él una vez se abra el archivo de Excel. En este manual se pueden observar las distintas características del programa, se tienen que introducir los datos requeridos a la succión y descarga del compresor, así como

también indicar el tipo de servicio requerido que tendrá el compresor, esto con la finalidad de fijar criterios de temperatura. El ingeniero de procesos tendrá una serie de compuestos disponibles entre los cuales deberá elegir los gases involucrados y agregar los flujos o proporción en la que se encuentran estos. Una vez introducidos los datos necesarios será posible la especificación del compresor y el programa le mostrara la hoja de especificación de procesos del equipo. El usuario tiene la posibilidad de realizar un paseo por las diferentes memorias de cálculo con la finalidad de visualizar los intermedios realizados a nivel interno por el VBA, estos cálculos se encuentran disponibles en hojas de cálculo de Excel, las cuales son de sólo lectura, se puede navegar a través de ellas por medio del botón "Menú", tal y como se señala en el respectivo manual.

Cada uno de los manuales muestra los diferentes errores que se pueden presentar durante la ejecución de las herramientas, señalando la posible causa que lo origina. Adicionalmente, se señalan cada una de las restricciones que tienen los datos de entrada.

IV.5 VALIDACIÓN DE LAS HERRAMIENTAS

Con la finalidad de comprobar el funcionamiento correcto de las herramientas, éstas fueron utilizadas con el objetivo de dimensionar y especificar los equipos en estudio a partir de casos reales de proyectos elaborados en la industria. En todos los casos se extrajeron los datos disponibles, para utilizarlos en la herramienta, pudiendo así contrastar los resultados obtenidos por medio de la herramienta con los obtenidos en dichos proyectos. Para el caso de separadores se comparó adicionalmente con un software perteneciente a una consultora nacional.

IV.5.1 Validación De La Herramienta De Tanques Atmosféricos

En la Tabla N°33 se pueden observar los datos extraídos del proyecto de "Construcción De Dos Tanques En La Planta De Distribución De Carnero", los tanques T-22-01 y T-22-02 eran para el almacenamiento de gasolina de 95 Octanos Sin Plomo que llegaba a la Planta de Distribución Carenero, dicho proyecto se llevó a

cabo en el año 2008, por PDVSA, debido a la creciente demanda que hubo de combustible en el mercado interno.

Tabla Nº 33. Datos iniciales para el dimensionamiento de los tanques T-22-01 y T-22-02

Dato	T-22-01	T-22-02
Presión externa (kPa)	100	100
Temperatura de operación (K)	291	291
Temperatura Máxima(K)	300	300
Temperatura de diseño(K)	307	307
Densidad $(\frac{kg}{m^3})$	760	760
Viscosidad (Pa.s)	7,6*10 ⁻⁴	7,6*10 ⁻⁴
Punto de inflamación (K)	307	307
Tiempo de drenaje (h)	3,31	2,95
Tiempo de respuesta de los operadores (min)	5	5
Flujo de entrada máximo (BPD)	7000	7000
Flujo de salida máximo (BPD)	6000	6000
Capacidad operativa del tanque (m3)	5047	6355

A continuación se muestran las Tablas N°34 y 35 con los resultados obtenidos para los tanques T-22-01 y T-22-02, respectivamente, conjuntamente con los porcentajes de desviación entre los valores obtenidos por medio de la herramienta, con los reportados en el proyecto.

Tabla Nº 34. Comparación entre los resultados obtenidos con la herramienta y los del proyecto para el tanque T-22-01.

Dimensiones	Herramienta	Proyecto	Porcentaje de desviación (%)
Tipo de tanque	Flotante	Flotante	-
Capacidad neta de trabajo del tanque (m³)	5047,00	5047,00	-
Capacidad nominal del tanque (m³)	6871,00	6560,00	4,53
Altura del tanque (m)	12,00	14,50	20,83

Tabla N° 34. (Continuación) Comparación entre los resultados obtenidos con la herramienta y los del proyecto para el tanque T-22-01.

Dimensiones	Herramienta	Proyecto	Porcentaje de desviación (%)
Diámetro del tanque (m³)	27,00	24,00	11,11
Nivel bajo del tanque (NBBL)	1,20	1,20	0,00
Boquilla de entrada (pulg)	12,00	12,00	0,00
Boquilla de salida (pulg)	16,00	12,00	25,00
Numero de boquillas de drenaje (Adim.)	3,00	1,00	66,67
Tamaño de boquillas de drenaje (pulg)	6,00	6,00	0,00
Tamaño boquilla de venteo	No aplica	No aplica	-
Tamaño boca de Visita (pulg)	30,00	No especificado	-

El porcentaje de desviación entre la capacidad nominal obtenida por medio de la herramienta y del proyecto, es de 4,53 %, lo cual refleja una proximidad aceptable entre ambos valores como se puede observar en la Tabla N°34. Para el caso de la altura y del diámetro, la diferencia es de 11,11 % y de 20,83 %, respectivamente. Es importante resaltar que la relación de altura y diámetro utilizada por el programa es a partir del Apéndice Y, el cual pertenece al API 650, con las capacidades nominales, alturas y diámetros, más comunes en la industria petrolera, tal y como está estipulado en la norma. La capacidad, altura y diámetro reportado por el proyecto no se encuentra en dicho Apéndice. Para el caso del tamaño de la boquilla de entrada no hay diferencia entre el valor obtenido por la herramienta y el proyecto, para el tamaño de la boquilla de salida el porcentaje de desviación es de 25%, la norma establece que la caída de presión para la succión de bombas cada 100 pies, debe de estar entre 0,25 a 0,4 psi, el valor obtenido en el proyecto es de 0,11 psi (fuera de dicho rango), el utilizado por la herramienta fue de 0,33 psi. El tamaño de las boquillas de drenaje es el mismo en ambos casos, no obstante, el número de boquillas necesarias varía en 66,67 %, la herramienta para el reporte de la cantidad de boquillas necesarias se basa en las mejores prácticas de ingeniería, las cuales dependen del diámetro del tanque. La boquilla de venteo no aplica y las bocas de visita no se especifican en el proyecto.

Tabla Nº 35. Comparación entre los resultados obtenidos con la herramienta y los del proyecto para el tanque T-22-02.

Dimensiones	Herramienta	Proyecto	Porcentaje de desviación (%)
Tipo de tanque	Flotante	Flotante	-
Capacidad neta de trabajo del tanque (m³)	6355,00	6355,00	-
Capacidad nominal del tanque (m³)	8716,00	8727,00	0,13
Altura del tanque (m)	9,60	12,11	26,15
Diámetro del tanque (m ³)	34,00	30,29	10,91
Nivel bajo del tanque (NBBL)	1,20	1,20	0,00
Boquilla de entrada (pulg)	12,00	12,00	0,00
Boquilla de salida (pulg)	16,00	12,00	25,00
Numero de boquillas de drenaje (Adim.)	3,00	1,00	66,67
Tamaño de boquillas de drenaje (pulg)	8,00	8,00	0,00
Tamaño boquilla de venteo	No aplica	No aplica	-
Tamaño boca de Visita (pulg)	30,00	No especificado	-

El porcentaje de desviación entre la capacidad nominal obtenida por medio de la herramienta y del proyecto para el tanque T-22-02, es de 0,13 % como se puede observar en la Tabla N°35. Para el caso de la altura y del diámetro, la diferencia es de 26,15 % y de 10,91 %, respectivamente. Es importante resaltar que a pesar de la coincidencia entre las capacidades nominales, los porcentajes de desviación que respectan a la altura y el diámetro difieren en gran medida, esto es debido a la relación altura-diámetro utilizada, para el caso de la herramienta se hace uso del Apéndice Y, los valores reportados en el proyecto no pertenecen a dicho Apéndice. Los demás porcentajes de desviación calculados coinciden con los del tanque T-22-01, por ende aplica lo comentado anteriormente.

En la Tabla N°36 se pueden observar los datos extraídos del proyecto de "Infraestructura De Desarrollo Área Liviano San Tome, Bloque Oeste / Etapa I", el cual contempló el dimensionamiento de tres tanques de igual dimensión (T-3001/02/03), para el almacenamiento de crudo en especificación por parte de una consultora para Petróleos de Venezuela en el Edo. Anzoátegui.

Tabla Nº 36. Datos iníciales para el dimensionamiento de tres tanques de almacenamiento T-3001/02/03.

Dato	T-3001/02/03
Presión externa (kPa)	100
Temperatura de operación (K)	305,37
Temperatura de diseño(K)	360,93
Densidad $(\frac{kg}{m^3})$	922
Viscosidad (Pa.s)	0,06
Tiempo de drenaje (h)	5
Flujo de entrada máximo (m³/h)	430,4
Flujo de salida máximo (m³/h)	516,71
Capacidad operativa del tanque (m ³)	3600
Presión interna (kPa)	0,25
Sobre-diseño (%)	10
Presion de vapor (kPa)	9,51

A continuación se presenta la Tabla N°37 con las dimensiones principales de los tanques objetos de estudios, conjuntamente con los porcentajes de desviación entre los valores obtenidos por medio de la herramienta, con los reportados en el proyecto.

Tabla N° 37. Comparación entre los resultados obtenidos con la herramienta y los del proyecto para los tanques T-3001/02/03.

Dimensiones	Herramienta	Proyecto	Porcentaje de desviación (%)
Tipo de tanque	Techo fijo	Techo fijo	-
Capacidad neta de trabajo del tanque (m³)	3600,00	3600,00	-
Capacidad nominal del tanque (m³)	4275,00	4356,00	1,90

Tabla Nº 37. (Continuación) Comparación entre los resultados obtenidos con la herramienta y los del proyecto para los tanques T-3001/02/03

Dimensiones	Herramienta	Proyecto	Porcentaje de desviación (%)
Altura del tanque (m)	16,80	12,19	27,44
Diámetro del tanque (m³)	18,00	21,33	18,50
Nivel bajo del tanque (NBBL)	1,20	1,20	0,00
Boquilla de entrada (pulg)	10,00	12,00	20,00
Boquilla de salida (pulg)	16,00	12,00	25,00
Numero de boquillas de drenaje (Adim.)	2,00	2,00	0,00
Tamaño de boquillas de drenaje (pulg)	4,00	4,00	0,00
Tamaño boquilla de venteo(pulg)	10,00	10,00	0,00
Numero de bocas de visita en el cuerpo	2,00	2,00	0,00
Bocas de Visita en el cuerpo (pulg)*	24, 00 y 30,00	24,00	0,00 – 20,00
Numero de bocas de visita en el techo	2,00	2,00	0,00
Bocas de Visita en el techo (pulg)	24,00	24,00	0,00
Escotilla (pulg)	7,00	8,00	14,29

Para los tanques de almacenamiento T-3001/02/03, el porcentaje de desviación entre la capacidad nominal obtenida por medio de la herramienta y del proyecto es de 1,9 %, lo cual refleja una proximidad aceptable entre ambos valores como se puede observar en la Tabla N°37. Por su parte, la diferencia entre la altura y el diámetro es de 27,44 % y 18,5 %, respectivamente, dicha diferencia es debido a la relación altura-diámetro utilizada, para el caso de la herramienta es de los valores del API 650, como se establece en los Manuales de PDVSA. La boquilla de entrada y salida difieren en los tamaños nominales, debido a los criterios utilizados para su cálculo, la herramienta se basa en el LTP de cálculos hidráulicos de PDVSA. El número de boquillas de drenaje, así como sus tamaños nominales son completamente

coincidentes, al igual que las boquillas utilizadas para la ventilación del tanque (boquillas de venteo). El número de bocas de visita del cuerpo coincide con las reportadas por el proyecto, sin embargo, la norma F-201 del MID establece que al menos una de las bocas utilizadas para este fin tiene que tener el tamaño de 30 pulg tal como lo reporta la herramienta, en el proyecto todas son de un tamaño estándar de 24 pulg Para el caso de las bocas de visita del techo coinciden en tamaño y número necesario. El tamaño de la escotilla difiere en 14,29 %, la herramienta reporta el tamaño mínimo necesario en este caso, que es 7pulg.

En la Tabla N°38 se pueden observar los datos extraídos del proyecto de "Ingeniería Básica Del Mejorador De Crudo De La Empresa Mixta Petromiranda", en el que se dimensionó un tanque para almacenamiento de Nafta.

Tabla Nº 38. Datos iníciales para el dimensionamiento del tanque de almacenamiento de Nafta.

Dato	T-3001/02/03
Presión externa (kPa)	101,33
Temperatura Máxima(K)	319
Temperatura de diseño(K)	366,15
Densidad $(\frac{kg}{m^3})$	678
Viscosidad (Pa.s)	0,92
Tiempo de drenaje (h)	8
Flujo de entrada máximo $(\frac{m^3}{h})$	22719
Flujo de salida máximo (BPD)	24991
Presion de vapor (kPa)	50
Tiempo de respuesta del operador (min)	10
Tiempo de almacenamiento bruto (h)	24
Sobre-diseño (%)	10

A continuación se presenta la Tabla N°39 con las dimensiones principales del tanque de almacenamiento de Nafta, conjuntamente con los porcentajes de desviación entre los valores obtenidos por medio de la herramienta, con los reportados en el proyecto.

Tabla Nº 39. Comparación entre los resultados obtenidos con la herramienta y los del proyecto para el tanque de almacenamiento de Nafta.

Dimensiones	Herramienta	Proyecto	Porcentaje de desviación (%)
Tipo de tanque	Techo flotante	Techo flotante	-
Capacidad neta de trabajo del tanque (m³)	3973,70	3973,70	0,00
Capacidad nominal del tanque (m³)	5429,00	5429,00	0,00
Altura del tanque (m)	12,00	12,00	0,00
Diámetro del tanque (m ³)	24,00	24,00	0,00
Boquilla de entrada (pulg)	12,00	8,00	33,33
Boquilla de salida (pulg)	20,00	8,00	60,00
Tamaño de boquillas de drenaje (pulg)	5,00	5,00	0,00

Los valores reportados para la capacidad nominal, altura y diámetro del tanque de almacenamiento de nafta por parte de la herramienta, coinciden en su totalidad con los reportados en el proyecto, como se puede observar en la Tabla Nº39. Por su parte, los tamaños de la boquilla de entrada y salida del tanque difieren en un 33,33% y 60%, respectivamente, esto se debe a que las caídas de presión utilizadas por el proyecto están muy por encima del criterio permitido en la norma LTP de cálculos hidráulicos de PDVSA, obteniendo así tamaños muy pequeños para las boquillas de entrada y salida del tanque, en comparación a los obtenidos por medio de la herramienta, los cuales corresponden a los criterios señalados en dicha norma.

En la Tabla N°40 se pueden observar los datos extraídos del proyecto "Infraestructura Desarrollo Área Liviano San Tome, Bloque Oeste / Etapa I", realizado por una consultora para PDVSA, en este caso se diseñaron 2 tanques con las mismas dimensiones (T-3004 / 05) para el almacenamiento de crudo.

Tabla Nº 40. Datos para el Dimensionamiento de los tanques T-3003 / 04

Dato	T-3004 / 05
Presión externa (kPag)	101,33
Temperatura de operación (K)	338,48
Temperatura Máxima(K)	349,82
Temperatura de diseño (K)	360,93
Densidad $(\frac{kg}{m^3})$	887
Viscosidad (Pa.s)	0,0018
Flujo de entrada máximo $(\frac{m^3}{h})$	9,94
Flujo de salida máximo $(\frac{m^3}{h})$	11,92
Presión de vapor (Kpa)	5
Capacidad requerida (m ³)	222,29
Sobre-diseño	10%

A continuación se presenta la Tabla Nº41 con las dimensiones principales de los tanques de almacenamiento de crudo T-3004 / 05, conjuntamente con los porcentajes de desviación entre los valores obtenidos por medio de la herramienta, con los reportados en el proyecto.

Tabla N° 41. Comparación entre los resultados obtenidos con la herramienta y los del proyecto para los tanques T-3003 / 04.

Dimensiones	Herramienta	Proyecto	Porcentaje de desviación (%)
Tipo de tanque	Techo fijo	Techo fijo	-
Capacidad neta de trabajo del tanque (m³)	222,29	222,29	-
Capacidad nominal del tanque (m³)	282,00	284,00	0,71
Altura del tanque (m)	10,00	9,75	2,50
Diámetro del tanque (m³)	6,00	6,09	1,50

La capacidad nominal de la herramienta difiere de la reportada en el proyecto por un 0,71 % como se puede observar en la Tabla N°41. La altura y el diámetro difieren en 2,5 % y 1,5 % respectivamente. Los resultados aunque no son idénticos se aproximan considerablemente. Solo se comparan estos valores dado que son los disponibles en la información proporcionada acerca del diseño de este equipo.

IV.5.2 Validación de la herramienta de Separadores

En la Tabla N°42 se pueden observar los datos extraídos del proyecto de "Untreated Distillates Separator", en el cual se requirió el diseño de dos separadores horizontales con bota decantadora del mismo tamaño (D-7627/7647), para separar una corriente de hidrocarburo, agua y gas en la refinería de Puerto La Cruz.

Tabla Nº 42. Datos para el dimensionamiento de los separadores D-7627/7647

Dato	D-7627/7647
Presión de operación (kPag)	1413,43
Temperatura de operación (°F)	130
Flujo volumétrico a la entrada(pie3/h)	7366
Densidad a la entrada $(\frac{kg}{m^3})$	27,12
Flujo volumétrico de fase liviana $(\frac{pie^3}{h})$	196,2
Densidad de fase liviana $(\frac{pie^3}{h})$	881
Flujo volumétrico de fase pesada $(\frac{pie^3}{h})$	9,8
Densidad fase pesada($\frac{kg}{m^3}$)	1000
Flujo volumétrico fase gas $(\frac{pie^3}{h})$	7160
Densidad fase gas $(\frac{kg}{m^3})$	2,4
Deflector	Codo de 90
Tiempo de retención (min)	15
Nivel fondo-NBI (m)	0,4

A continuación se presenta la Tabla Nº43 con las dimensiones principales de los separadores D-7627/7647, conjuntamente con los porcentajes de desviación entre los valores obtenido por medio de la herramienta, con los reportados en el proyecto.

Tabla Nº 43. Comparación entre los resultados obtenidos con la herramienta y los del proyecto para los separadores D-7627/7647.

Dimensiones	Herramienta	Proyecto	Porcentaje de desviación (%)
Diámetro del cuerpo principal (m)	1,80	1,80	0,00
Longitud T/T(m)	4,40	4,90	11,36
Longitud de la bota decantadora (m)	0,93	0,91	2,15

Tabla Nº 43. (Continuación) Comparación entre los resultados obtenidos con la herramienta y los del proyecto para los separadores D-7627/7647.

Diámetro máximo de la bota decantadora (m)	0,60	0,63	5,00
Boquilla de entrada (pulg) *	3,33	4,00	-
Boquilla de salida de liviano (pulg)*	1,77	2,00	-
Boquilla de salida de pesado (pulg)*	0,36	1,00	-
Boquilla de salida de gas (pulg)*	1,77	2,00	

*Los tamaños mostrados en la columna "Herramienta" corresponden a tamaños internos de las boquillas, para el caso de la columna "Proyecto" son los tamaños nominales.

El diámetro del equipo tiene una correspondencia exacta entre el valor reportado por el proyecto y la herramienta. En el caso de la longitud tangente-tangente, la diferencia es de 11,36 % como se puede observar en la Tabla Nº43, siendo la longitud mayor la reportada en el caso del proyecto, esto es debido a que en la metodología utilizada por las normas PDVSA, la longitud efectiva se aproxima a la longitud tangente-tangente, sin embargo, para que esto sea completamente cierto se tienen que sumar otras tolerancias asociadas a otras disciplinas en el diseño del equipo, lo cual aumentaría el tamaño de la longitud reportada por la herramienta y por ende disminuiría el porcentaje de desviación obtenido. Los porcentajes de desviación para el diámetro y la longitud de la bota decantadora son muy cercanos entre sí. Referente a las boquillas del separador, en el caso de la herramienta se señalan los tamaños internos, esto con la finalidad de constatar la cercanía que tienen dichos valores con los tamaños nominales reportados en el proyecto, los cuales se encuentran por encima y son elección final del diseñador de procesos.

En la Tabla N°44 se pueden observar los datos extraídos del proyecto de "Untreated Distillates Drum", en el cual se requirió el diseño de dos separadores bifásicos horizontales del mismo tamaño (D-7638/7658), para separar una corriente de hidrocarburo y gas en la refinería de Puerto La Cruz.

Tabla Nº 44. Datos para el dimensionamiento de los separadores D-7638/7658.

Dato	D-7638/7658
Presión de operación (kPag)	1482
Temperatura de operación (°F)	754
Flujo volumétrico a la entrada $(\frac{pie^3}{h})$	14592
Densidad a la entrada $(\frac{kg}{m^3})$	20,89
Flujo volumétrico del líquido $(\frac{pie^3}{h})$	172
Densidad del líquido $(\frac{kg}{m^3})$	856
Flujo volumétrico del gas $(\frac{pie^3}{h})$	14420
Densidad del gas $(\frac{kg}{m^3})$	11
Deflector	Codo de 90
Tiempo de retención (min)	5
Nivel fondo-NBI (m)	0,23
% Velocidad crítica	100

A continuación se presenta la Tabla Nº45 con las dimensiones principales de los separadores D-7638/7658, conjuntamente con los porcentajes de desviación entre los valores obtenidos por medio de la herramienta, con los reportados en el proyecto. Adicionalmente, se muestran los resultados obtenidos por medio de un software de una consultora.

Tabla Nº 45. Comparación entre los resultados obtenidos con la herramienta, proyecto y software de consultora para los separadores D-7638/7658.

Dimensiones	Herramienta	Proyecto	Porcentaje de desviación (%)	Software de consultora	Porcentaje de desviación (%)
Diámetro del cuerpo principal (m)	1,10	1,00	9,09	1,10	0,00
Longitud T/T(m)	2,95	2,90	1,70	3,01	2,03
Boquilla de entrada (pulg) *	5,35	6,00	-	3,00	43,92

Tabla Nº 45. (Continuación) Comparación entre los resultados obtenidos con la herramienta, proyecto y software de consultora para los separadores D-7638/7658.

Dimensiones	Herramienta	Proyecto	Porcentaje de desviación (%)	Software de consultora	Porcentaje de desviación (%)
Boquilla de salida del líquido (pulg)*	1,50	2,00	-	1,57	4,67
Boquilla de salida de gas (pulg)*	3,33	4,00	-	3,14	5,71

^{*}Los tamaños mostrados en las columnas "Herramienta" y "Software de consultora" corresponden a tamaños internos de las boquillas, para el caso de la columna "Proyecto" son los tamaños nominales.

Los resultados obtenidos entre la herramienta, el proyecto y el software de consultora son muy cercanos entre sí. La deviación del diámetro del equipo es de 9,09 % con el proyecto y de 0 % con la consultora, como se puede observar en la Tabla Nº45. Por su parte, para la longitud tangente-tangente del separador la diferencia es de 1,70% con el proyecto y de 2,03 % con el software de la consultora. Se puede observar que los tamaños nominales presentados para las boquilla en el proyecto, corresponden a tamaños nominales por encima de los tamaños internos obtenidos por medio de la herramienta, es importante resaltar que el diámetro interno obtenido en los cálculos no corresponde en la mayoría de los casos a un tamaño comercial disponible, por tanto el ingeniero de procesos tiene que hacer elección de esté a partir de tamaños nominales disponibles al momento del diseño del equipo. La boquilla de entrada obtenida por medio del software discrepa en 43,92 % del valor obtenido por medio de la herramienta, es importante resaltar que el criterio de dimensionamiento de las boquillas de la herramienta esta de acorde a las normas PDVSA, y que las discrepancias con el software corresponden a diferencia entre las metodologías y criterios utilizados, ya que muchas consultoras manejan criterios propios basados en su experiencia práctica.

En la Tabla N°46 se pueden observar los datos extraídos del proyecto de "Make-Up Hydrogen Compressor Suction Drum", en el cual se requirió el diseño de un separador bifásico vertical (D-7801) para separar una corriente de hidrocarburo y gas en la refinería de Puerto La Cruz.

Tabla Nº 46. Datos para el dimensionamiento de los separadores D-7801

Dato	D-7801	
Presión de operación (kPag)	2119	
Temperatura de operación (K)	316,68	
Flujo volumétrico a la entrada $(\frac{pie^3}{h})$	719651,19	
Densidad a la entrada $(\frac{kg}{m^3})$	1,6	
Flujo volumétrico del líquido $(\frac{pie^3}{h})$	1278,22	
Densidad del líquido $(\frac{kg}{m^3})$	318,61	
Flujo volumétrico del gas $(\frac{pie^3}{h})$	719615	
Densidad del gas $(\frac{kg}{m^3})$	1,6	
Deflector	Distribuidor con ranuras	
Tiempo de retención (min)	15	
Nivel fondo-NBI (m)	0,23	
% Velocidad critica	220	

A continuación se presenta la Tabla Nº47 con las dimensiones principales del separador D-7801, conjuntamente con los porcentajes de desviación entre los valores obtenidos por medio de la herramienta, con los reportados en el proyecto. Adicionalmente, se presentan los resultados obtenidos por medio de un software de una consultora.

Tabla Nº 47. Comparación entre los resultados obtenidos con la herramienta, proyecto y software de consultora para el separador D-7801.

Dimensiones	Herramienta	Proyecto	Porcentaje de desviación (%)	Software de consultora	Porcentaje de desviación (%)
Diámetro del cuerpo principal (m)	2,40	2,40	0,00	2,26	5,83
Longitud (m)	7,13	7,32	2,67	6,81	4,49

Tabla Nº 47. (Continuación) Comparación entre los resultados obtenidos con la herramienta, proyecto y software de consultora para el separador D-7801.

Dimensiones	Herramienta	Proyecto	Porcentaje de desviación (%)	Software de consultora	Porcentaje de desviación (%)
Boquilla de	• • • • •	• • • • •		10.00	7 0.00
entrada	20,00	20,00	-	10,00	50,00
(pulg) *					
Boquilla de					
salida del	4,33	2,00	_	4,33	0,00
líquido	7,55	2,00	_	7,55	0,00
(pulg)*					
Boquilla de					
salida de gas	15,06	20,00	-	14,00	7,04
(pulg)*					

^{*}Los tamaños mostrados en las columnas "Herramienta" y "Software de consultora" corresponden a tamaños internos de las boquillas, para el caso de la columna "Proyecto" son los tamaños nominales.

El diámetro principal del quipo corresponde totalmente al reportado por parte del proyecto, y con una diferencia de 5,83 % con respecto al software de la consultora, como se puede observar en la Tabla Nº47. Por su parte, la longitud tangente-tangente discrepa en un porcentaje de 2,67 % y 4,49 % en comparación con el proyecto y el software, respectivamente. La boquilla de entrada corresponde con el tamaño reportado por el proyecto y con un porcentaje de 50 % en referencia al software comercial. El tamaño obtenido por medio del software indica una velocidad mayor por medio de la boquilla de entrada que la permitida basándose en las normas PDVSA. Es importante resaltar que el software de uso comercial responde a metodologías y criterios propios de las empresas que los elaboran y no cumplen en ciertos casos con los criterios expuestos en las normas PDVSA.

Para la boquilla de salida de líquido y gas reportada por el proyecto hay una diferencia considerable respecto a los valores obtenidos por medio de la herramienta, lo que señala criterios particulares del proyecto para el dimensionamiento de estas boquillas. Los porcentajes de desviación de las boquillas de salida de líquido y gas mantienen similitud con respecto a los obtenidos anteriormente con el uso del

software de la consultora, en este caso una coincidencia exacta para la boquilla del líquido con 0 % de desviación y 7,04 % para la boquilla de salida de gas.

IV.5.3 Validación de la herramienta de compresores

La validación de la herramienta de compresores se realizó por medio de la especificación de un compresor centrífugo presente en el MDP-02-K-04 de PDVSA, para una mezcla de C3 con trazas de otros hidrocarburos, etano y butano. Los datos necesarios para la especificación de dicho compresor se muestran en la Tabla N°48.

Tabla Nº 48. Datos para la especificación del compresor.

Dato	Valor
Temperatura de entrada (K)	294,26
Temperatura máxima de salida (K)	448,15
Presión de entrada (kPa(abs))	219
Presión de salida (kPa(abs))	1725
Flujo másico de la mezcla $(\frac{Kg}{h})$	52200
Fracción Molar Etano (Adim.)	0,01
Fracción Molar Propileno (Adim.)	0,34
Fracción Molar Propano (Adim.)	0,64
Fracción molar Butano (Adim.)	0,01

A continuación se presenta la Tabla N°49 con los resultados reportados en el MDP-02-K-04 y los obtenidos por medio de la herramienta para la especificación del compresor de C3.

Tabla Nº 49. Comparación entre los resultados obtenidos con la herramienta y los del MDP-02-K-04 para el compresor.

Propiedad	MDP-02-K-04	Herramienta	Porcentaje de desviación (%)
Exponente Politrópico (Adim.)	0,15	0,15	0,00
Temperatura de salida (K)	401,00	401,00	0,00
Eficiencia poli trópica (Adim.)	0,740	0,736	0,54
Potencia del gas (kW)	2445,00	2378,00	2,74

Tabla Nº 49. (Continuación) Comparación entre los resultados obtenidos con la herramienta y los del MDP-02-K-04 para el compresor.

Propiedad	MDP-02-K-04	Herramienta	Porcentaje de desviación (%)
Cabezal Politrópico $(\frac{kJ}{kg})$	124,70	120,70	3,21
Potencia al freno (kW)	2495,00	2400,30	3,80

El exponente y la eficiencia politrópica poseen una desviación de 0 % y de 0,54 %, respectivamente. La variable crítica en la especificación de compresores es el cálculo de la temperatura de salida, la cual coincide entre el valor reportado en el MDP-02-K-04 y la herramienta. Para el caso del cabezal politrópico se señala una desviación de 3,21 % y para la potencia del gas una desviación de 2,74 %, como se puede observar en la Tabla N°49, es importante resaltar que en la actualización de la metodología realizada por Mateo y Pernalete (2014), por tanto aplicada en la herramienta de compresores, se utiliza el término $(\frac{n-1}{n})$ para la determinación del cabezal politrópico y de la potencia del gas, el cual depende de las condiciones de operación del compresor, mientras que en el caso de estudio del MDP-02-K-04 no se toma consideración dicho factor, originando esta desviación entre ambos valores. La potencia al freno posee una diferencia de 3,8 %, esto se debe a que en la actualización de la metodología de cálculo y por ende en la herramienta, se toman en cuenta las perdidas mecánicas como una función de la potencia de gas, la cual tiene que ser corregida posteriormente por la especialidad mecánica, en el caso en estudio del MDP-02-K-04, este valor es fijo e independiente del servicio del compresor, lo cual es menos representativo de la realidad.

CAPÍTULO V

CONCLUSIONES Y RECOMENDACIONES

En este capítulo se presentan las conclusiones y recomendaciones establecidas por los resultados obtenidos.

V.1 CONCLUSIONES

- Los Diagramas de flujo de cálculo elaborados para tanques atmosféricos, separadores y compresores cumplen con los criterios, recomendaciones, metodologías y mejores prácticas expuestas en las normas PDVSA.
- Los ajustes lineales y polinomicos realizados permiten obtener las variables necesarias para la especificación de los equipos en estudio.
- El desarrollo de las herramientas portátiles permitió automatizar las metodologías de cálculo para tanques atmosféricos, separadores y compresores, lo cual contribuye a disminuir los tiempos de diseño para cada uno de los equipos estudiados.
- Los manuales de usuario elaborados permiten conocer el funcionamiento de cada una las herramientas portátiles, mediante la explicación de las diferentes secciones que las componen.
- La diferencia promedio entre los resultados obtenidos mediante la herramienta de separadores y los casos de estudio fue de 4,00 %. Para la herramienta de compresores fue de 1,72 % y para tanques de 11,76 %.
- Las desviaciones obtenidas respecto a los proyectos evaluados se deben a criterios particulares de cada proyecto los cuales no cumplen estrictamente con los expuestos en las normas PDVSA
- Las especificaciones obtenidas mediante el uso de las herramientas portátiles elaboradas, representan el diseño desde el punto de vista operacional del equipo,

- posteriormente se tienen que completar las dimensiones finales por medio de otras disciplinas de ingeniería, tales como instrumentación y mecánica.
- Se obtuvieron resultados aceptables mediante el uso de la herramienta en comparación al uso del software de la consultora asociada a PDVSA, las desviaciones presentadas se deben a que cada consultora posee criterios, metodologías y recomendaciones de mejores prácticas, basadas en su experiencia laboral.

V.2 RECOMENDACIONES

- Se recomienda elaborar un Diagrama de Flujo de Cálculo para la selección del tipo de compresor óptimo para un servicio específico y añadirlo a la herramienta de compresores.
- Se debe ampliar la información referente a la determinación de propiedades termodinámicas para cálculos de compresión presente en la norma, mediante la ampliación del rango de operación o algún modelo termodinámico.
- Se debe revisar y validar de la metodología de diseño de separadores líquidolíquido.
- Se debe ampliar el alcance de las herramientas mediante la inclusión de otras disciplinas de ingeniería, especialmente la mecánica.
- Tomar en consideración la relación longitud/diámetro en la metodología de separadores verticales para la obtención de diseños más apropiados.
- En el ajuste de curvas se estudió el coeficiente de determinación R² como medida de elección, se recomienda realizar el estudio de otros parámetros estadísticos como: la distribución de graficas residuales, los límites de confianza de los parámetros, la desviación y variación estándar del ajuste.
- Se deben efectuar una cantidad mayor de pruebas con las herramientas portátiles diseñadas, a partir de otros proyectos de PDVSA y con las personas encargadas

del diseño de equipos de la empresa, esto con la finalidad de ratificar el buen desempeño de las mismas.

- La persona delegada del uso de la herramienta tiene que ser el ingeniero de procesos encargado del diseño de los equipos.
- Se recomienda tener algún custodio de las herramientas portátiles con la finalidad de garantizar su correcto funcionamiento.

BIBLIOGRAFÍA

Álvarez, J., & Gutiérrez, N. (2011). Revisón de normas técnicas y selección de hoja(s) de especificaciones de proceso y hoja(s) de cálculo asociadas a tanques. Los Teques: PDVSA, INTEVEP.

API Standar 2000. (2009). Venting Atmospheric and Low-pressure Storage Tanks. Washington, D.C.: American Petroleum Institute.

API Standar 2350. (2005). Overfill Protection for Storage. Washington, D.C.: American Petroleum Institute.

API Standar 650. (2001). Welded Steel Tanks for Oil Storage (Décima ed.). Washington, D.C.: American Petroleum Institute.

Azócar, K. (2010). Evaluación del Sistema de Separación de la Estación de Descarga Guara14, Perteneciente a la Unidad de Producción Liviano-Mediano, de PDVSA Exploración y Producción. Distrito San Tomé. Puerto La Cruz: Trabajo Especial de Grado, Escuela de Ingeniería y Ciencia Aplicadas, Universidad de Oriente.

Carreño, G., & Luna, J. (2008). Diseño y cálculo de un tanque de almacenamiento para nafta con un diámetro de 70ft x 30ft de altura. Bajo la norma api 650. Mexico D.F: Trabajo Especial de grado, Escuela Superior de Ingenieria Mecánica y Eléctrica, Instituto Politecnico Nacional. Recuperado el 10 de 12 de 2013, de http://tesis.ipn.mx/jspui/handle/123456789/2699

Goméz, A., & Ximena, J. (2007). Definición de estándares operativos para tanques atmosféricos y vasijas de almacenamieto de líquidos a presión, Bucaramanga: Trabajo Especial de Grado, Facultad de Ingenirías Fisicoquimicas, Universidad Industrial de Santander. Recuperado el 15 de Mayo de 2014, de http://repositorio.uis.edu.co/jspui/bitstream/123456789/603/2/124049.pdf

Gonzales, I., & Mateo, P. (2011). Revisón de normas técnicas y selección de hoja(s) de especificaciones de proceso y hoja(s) de cálculo asociadas a compresores. Los Teques: PDVSA,INTEVEP.

GPSA. (1998). Engineering Data Book (Vol. I). Oklahoma: Gas Processors Association.

Heydari, A., & Kalat, H. (2006). Improve selection and sizing of storage tanks. Hydrocarbon Processing, 95-101.

Kolmetz, K., & Jaya, A. (Junio de 2011). Storage Tank Selectión and Sizing (Engineering Design Guideline). Recuperado el 15 de Mayo de 2013, de www.klmtechgroup.com

Mateo, P., & Pernalete, C. (2014). Elaboración de Metodologías de cálculos estándares para el diseño de compresores centrífugos de una sola etapa y compresores reciprocantes de una y multiples etapas. Los Teques: PDVSA, INTEVEP.

Méndez, V. (2005). Mejoramiento de la Red de Aire Comprimido en la Planta de Clavo y Alambre de la empresa Aceros de Guatemala, Guatemala: Trabajo Especial de Grado, Facultad de Ingeniería, Universidad de San Carlos de Guatemala. Recuperado el 12 de junio de 2014, de http://biblioteca.usac.edu.gt/tesis/08/08_0462_M.pdf

Oliveira, B. (2003). Desarrollo de una Metodología de Cálculo que Permita Diseñar o Evaluar los Separadores a ser Instalados en la Estación de Flujo. Caracas: Trabajo Especial de Grado, Facultad de Ingeniería, Universidad Central de Venezuela.

PDVSA- MDP 02-K-04. (1996). Manual de Diseño de Procesos.Compresores:Cálculo en Sistemas de Compresión. Petróleos de Venezuela S.A.

PDVSA-MDP-02-K-03. (1996). Manual de Diseño de Procesos.Compresores:Selección del tipo de compresor. Petróleos de Venezuela S,A.

PDVSA- F-201. (2000). Manual de ingeniería de diseño. Atmospheric Storage Tanks. Petróleos de Venezuela S.A.

PDVSA- MDP-03-S-03. (2005). Manual de Diseño de Proceso. Tambores Separadores: Separadores Líquido-Vapor. Petróleos de Venezuela S,A.

PDVSA Nº 10603.2.309. (1999). Manual de Ingeniería de diseño. Rompe Vortices-Tipo Rejilla. . Petróleos de Venezuela S,A.

PDVSA-LTP-1.5. (1994). Cálculo Hidráulico de Tuberias. Petroleos de Venezuela. PDVSA-MDP-02-K-03. (1996). Manual de Diseño de Proceso. Compresores:Selección del Tipo de Compresor. Petroleos de Venezuela.

PDVSA-MDP-03-S-01. (1995). Manual de Diseño de Proceso. Tambores Separadores: Principios Básicos. Petróleos de Venezuela S,A.

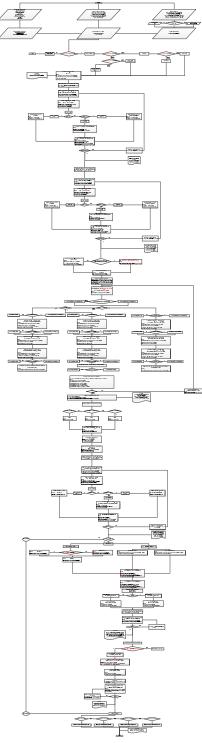
PDVSA-MDP-03-S-04. (1996). Manual de Diseño de Procesos. Tambores Separadores: Separadores líquido-líquido. . Petróleos de Venezuela S,A.

PDVSA-MDP-03-S-05. (1995). Manual de Diseño de Procesos. Tambores Separadores Líquido-Líquido-Vapor. . Petróleos de Venezuela S,A.

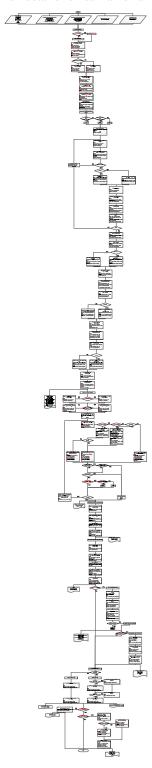
Peña, J., Perozo, M., & y Toyo, K. (2011). Revisón de normas técnicas y selección de hoja(s) de especificaciones de proceso y hoja(s) de cálculo asociadas a tambores separadores. Los Teques: PDVSA,INTEVEP.

Pilacuán, J. (2009). Análisis de Pérdidas por Evaporación en el Tanque de Techo FIjo de Almacenamiento de Gasolina Súper TB.1012 del Terminal de Productos Limpios Beaterio (Petrocomercial). Quito: Tesis de Grado, Facultad de ciencias de la Ingeniería, Universidad Tecnólogica Equinoccial. Recuperado el 20 de Abril de 2014, de http://repositorio.ute.edu.ec/bitstream/123456789/5743/1/41682_1.pdf

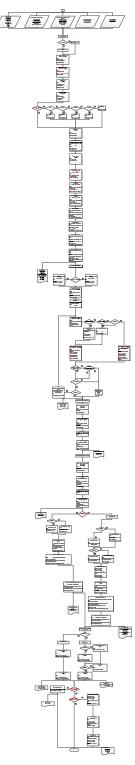
Requena, J., & Rodríguez, M. (2009). Diseño y Evaluación de Separadores Bifásicos y Trifásicos. Caracas: Trabajo Especial de Grado, Facultad de Ingeniería, Universidad Central de Venezuela.

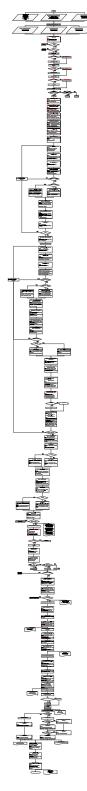

Toapanta, O. (2009). Implementación de un análisis de mantenimiento basado en condición de los compresores reciprocantes y de tornillo. Riobamba:Tesis de Grado,Escuela Superior Politécnica de Chimborazo. Recuperado el 14 de Enero de 2014, de http://dspace.espoch.edu.ec/handle/123456789/260

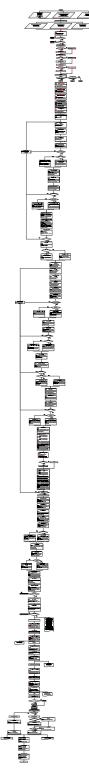
Tyco Flow Control. (s.f.). Sistemas para Inertización de Tanques Anderson Greenwood. Protección Ambiental. Recuperado el 10 de Mayo de 2014, de www.tycovalves-eu.com

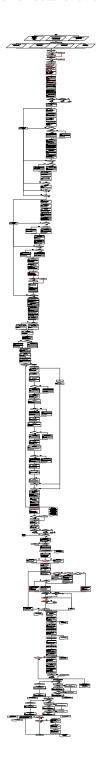

Villarrel, A., Cedeño, Y., & Martínez, C. (2009). Estudio de los Procesos de Optimización del Fenómeno de Surge en Compresores Centrífugos. Puerto La Cruz: Tesis de Grado, Departamento de Petóleo, Universidad de oriente.

APÉNDICES


APÉNDICE A. Diagrama de flujo de Cálculo para el diseño de tanques atmosféricos (para una visualización en detalle revisar la herramienta de tanques).


APÉNDICE B. Diagrama de flujo de cálculo para el diseño de separadores líquido-vapor horizontales (para una visualización en detalle revisar la herramienta de separadores).

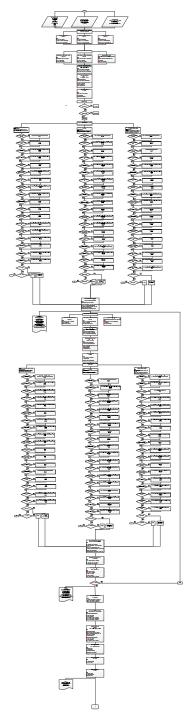

APÉNDICE C. Diagrama de flujo de cálculo para el diseño de separadores líquido-vapor verticales (para una visualización en detalle revisar la herramienta de separadores).


APÉNDICE D. Diagrama de flujo de cálculo para separadores líquido-líquido con bota decantadora (para una visualización en detalle revisar la herramienta de separadores).

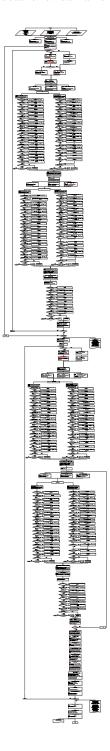
APÉNDICE E. Diagrama de flujo de cálculo para separadores líquido-líquido con ambas fases en el cuerpo principal (para una visualización en detalle revisar la herramienta de separadores).

APÉNDICE F. Diagrama de flujo de cálculo para separadores líquido-líquido-vapor con bota decantadora (para una visualización en detalle revisar la herramienta de separadores).

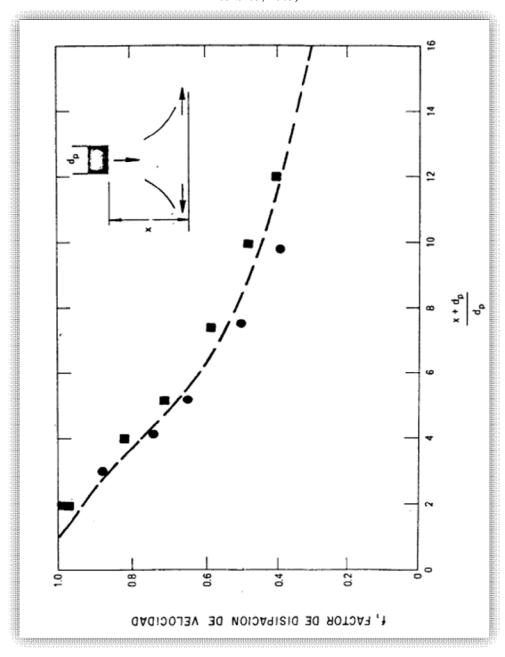
APÉNDICE G. Diagrama de flujo de cálculo para separadores líquido-líquido-vapor con ambas fases en el cuerpo principal (para una visualización en detalle revisar la herramienta de separadores).


APÉNDICE H. Servicios más comunes de la industria Petrolera, Petroquímica y Carbonífera Nacional (PDVSA- MDP-03-S-03, 2005).

	Orientación del	Velocidad crítica
Servicio	tambor	(%)
Tambores de abastecimiento de	Horizontal con	125
líquido.	malla	123
Tambores interetapas de	Vertical con malla	125
compresores.		-
Separadores de gas combustible	Vertical con malla	100
Tambores de vapor para servicios	Horizontal con	100
de calderas	malla	
Tambores de separación de agua.	Horizontal sin malla	100
Tambores de descarga de no	Havinantal sin malla	100
condensables	Horizontal sin malla	100
Tambores de descarga de	Vertical sin malla	100
condensables	Vortical sin mana	100
Tambores de alimentación para	Vertical con malla	100
depuradores de MEA.	. 02 02 001 Thailu	
Tambores separadores de alta	Horizontal sin malla	100
presión		100


APÉNDICE I. Recomendaciones genéricas del tipo de separador a utilizar (PDVSA- MDP-03-S-03, 2005)

Situación	Vertical sin	Vertical con	Horizontal sin	Horizontal con
	malla	malla	malla	malla
Alta relación	Muy	Muy	Madamada	Moderado
Vapor/líquido	recomendable	recomendable	Moderado	Moderado
Alto "Turdown"	Muy	Muy	Moderado	Moderado
en el flujo de gas	recomendable	recomendable		
Baja relación	Moderado	Moderado	Muy	Muy
Vapor líquido			recomendable	recomendable
Alto "Turdown"	Moderado	Moderado	Muy	Muy
en el flujo de			recomendable	recomendable
líquido			recomendable	recomendable
Presencia de	Recomendable	Moderado	Moderado	Moderado
solidos				
Materiales	Recomendable	No Recomendable	Recomendable	No
pegajosos				Recomendable
Separacion				
líquido-líquido	No Recomendable	No Recomendable	Recomendable	No aplica
solamente				
Separacion			Muy	Muy
líquido-líquido-	Moderado	Moderado	recomendable	recomendable
vapor			recomendable	recomendable
Limitaciones en	Recomendable	Recomendable	No recomendable	No recomendable
area de planta				
Limitaciones en	No recomendable	No recomendable	Recomendable	Recomendable
espacio vertical				


APÉNDICE J. Diagrama de flujo de flujo para la especificación de los compresores centrífugos (para una visualización en detalle revisar la herramienta de compresores).

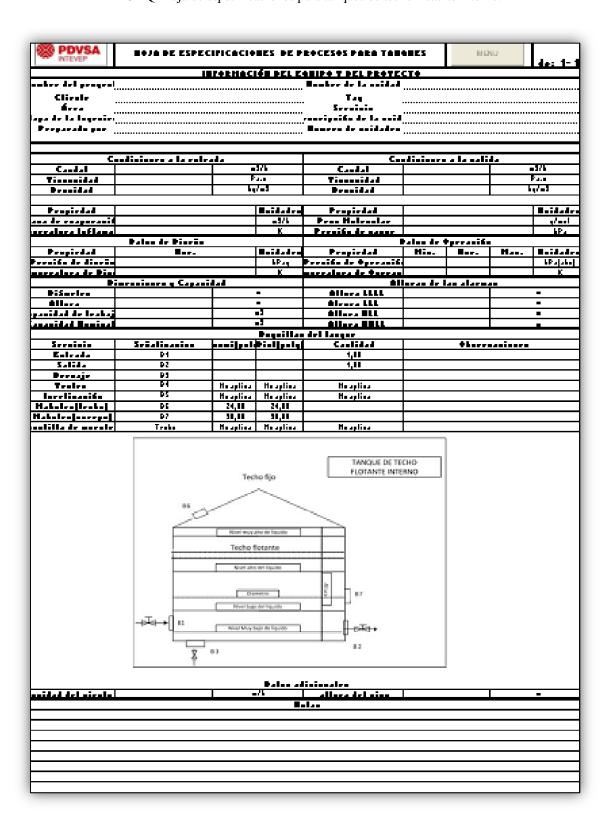
APÉNDICE K. Diagrama de flujo de flujo para la especificación de los compresores reciprocantes (para una visualización en detalle revisar la herramienta de compresores).

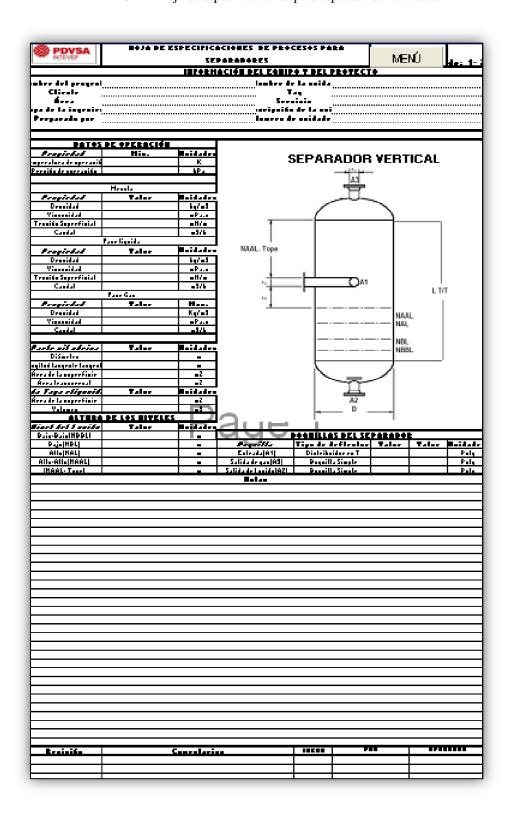
APÉNDICE L. Disipación de la velocidad en chorros incidentes para los separadores (PDVSA- MDP- 03-S-03, 2005)

APÉNDICE M. Longitudes de cuerdas y áreas de las secciones circulares vs. Alturas de la cuerda (PDVSA- MDP-03-S-03, 2005)

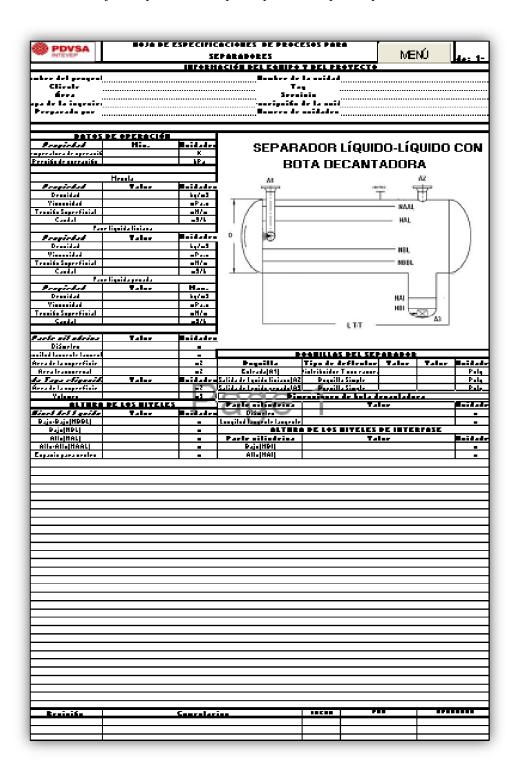
R*	Ţ.	Α.	R*	L.	Α*	R*	۲.	Α*	R*	į.	٠	n.		4.			
		0.0087			0.0446			0.0941		0.815	A.	R.	L.	A*	R*	Г.	Α.
		0.0092			0.0446		417	0.0950			0.153 0.154		0.872 0.873			0.947	
		0.0096			0.0460			0.0959		0.817			0.874			0.950	
		0.0101			0.0468			0 0968	0.213	0.819	0.156	0.258	0.875	0.204		0.951	
0.034	0.362	0.0105			0.0475	0.154	0.722	0.0977	0.214	0.820	0.157	0.259	0.876	0.205		0.953	
		0.0110			0.0483			0.0986		0.822			0.877			0.954	
		0.0115			0.0490			0.0996		0.823			0.879		0.355	0,957	0.31
		0.0119			0.0498			0.1005 0.1014		0.824			0.882 0.884		0.300	0.000	
		0.0129			0.0513			0.1023		0.827			0.886			0.960	
0.040	0.392	0.0134	0.100	0.600	0.0520	0.160	0.733	0.1033	ı	0.828			0.888		J		
		0.0139			0.0528			0.1042		0.830			0.890			0.966 0.968	
		0.0144			0.0536			0 1051	0.222	0.831	0.165		0.892			9,000	0.54
		0.0149			0.0544			0.1061		0.833			0.894			0.971	
		0.0155			0.0651			0.1070	1	0.834			0.896		0.385	0.973	0.35
		0.0160			0.0559			0.1080		0.835			868.0			0.975	
		0.0165			0.0567 0.0575			0.1089		0.836			0.900 0.902		0.395	0.978	0.367
		0.0176			0.0583			0.1108		0.839			0.902		0.400	0.980	0 27
		0.0181			0.0591			0.1118		0.840			0.906			0.982	
0.050	0.436	0.0187	0.110	0.626	0.0598	0.170	0.751	0.1127		0.842			0.908			0.984	
0.051	0.440	0.0193	0.111	0.628	0.0606	0.171	0.753	0.1137	0.231	0.843	0.175		0.909			0.985	
		0.0198			0.0614			0.1146	0.232	0.844	0.176	0.294	0.911	0.245			
		0.0204			0.0623			0.1156		0.845 0.847			0.913			0.987	
																0.989	
		0.0215			0.0639			0.1175		0.848		0.300	0.917			0.990	
		0.0227			0.0655			0.1195		0.849			0.918		0,435	0.992	U.417
0.058	0.467	0.0233	0.118	0.645	0.0663	0.178	0.765	0.1204	0.238	0.852	0.182	0.306			0.440	0.993	0.424
0.059	0.471	0.0239	0.119	0.548	0.0671	0.179	0.767	0.1214	0.239	0.853	0.183	0.308	0.923	0.262		0.994	
		0.0245			0.0680			0.1224		0.854		0.310				0,995	
		0.0251			0.0688			0.1234		0.855		0.312			0.455	0.996	0.443
		0.0257			0.0696			0.1244		0.857 0.858		0.314 0.316			0.460	0.003	0.440
		0.0270			0.0713			0.1253		0.859		0.318				0.997 0.998	
0.065	0.493	0.0276			0.0721	0.185	0.777	0.1273		0.860		0.320				0.998	
		0.0282			0.0730			0.1283		0.861		0.322				0.999	
0.067	0.500	0.0288	0.127	0.666	0.0738	0.187	0.780	0.1293	0.247	0.863	0.192	0,324	0.936	0.281	4,	J.233	J. 700
		0.0295			0.0747			0.1303		0.864		0.326			0.480		
		0.0301			0.0755			0.1313		0.865		0.328	0.939	0.285	0.485	1.000	0.481
		0.0308			0.0764			0.1323		0.866		0.330			0.490		
		0.0314			0.0773			0.1333		0.867 0.868		0.332			0.495	1.000	0.494
		0.0327			0.0790			0.1353		0.869		0.334			0.500	1.000) 5M
		0.0334			0.0798			0.1363	0.254	0.871	0.200	0.338			2,000		
0.075	0.527	0.0341	0.135	0.683	0.0807	0,195	0.792	0.1373									-
		0.0347			0.0816			0.1383	-			DIAM	ETRO	. b .			اــ
		0.0354			0.0825			0.1393	Ì					, -			7
		0.0361 0.0368			0.0833		411 41	0.1403			-		# -			_	٦
		0.0375			0.0851			0.1424	1			/3	-				1
		0.0375			0.0860			0.1434	/			/ *	į.				
0.082	0.549	0.0389	0.142	0.698	0.0869	0.202	0.803	0 1444	\	_	/	ONC N	. I	IE DOA			/
		0.0396			0.0878			0.1454	\			LONG. DI	ו	ZERDA,	. —	7	1
		0.0403			0.0886			0.1465	\							1/	
		0.0410			0.0895			0.1475		V	7777	7777	777	777	7777	77	
		0.0417 0.0424			0.0904 0.0913	0.206		0.1485		V	/// {	LTURA (ELA C	ÚEROA	[]]]		
		0.0431			0.0922			0.1506		•	Y//	////	111	1//	Y//		
		0.0439			0.0932	0.209					~\\	4///	N//	1//	~ 46	EA DE	L

APÉNDICE N. Propiedades termodinámicas de los gases para los cálculos de compresión y expansión (Tr: 0,8-1,15) (PDVSA- MDP 02-K-04, 1996)

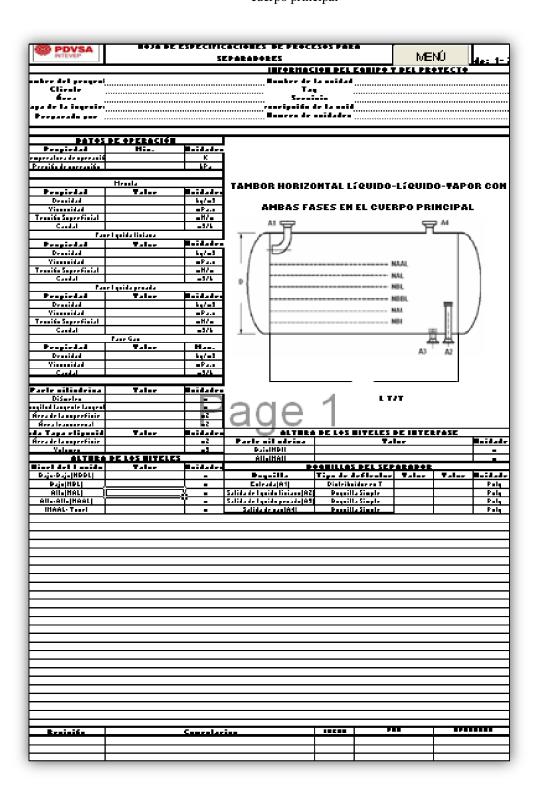

τ,	٠.	RZ	$RT_r\left(\frac{\rho Z}{\rho T_r}\right)\rho_r$	د, ۰۵,	۵۵,	-ДН/Т,	-28'	7,	٠,	RZ	$RT_{r}\left(\frac{\rhoZ}{\rhoT_{r}}\right)_{P_{r}}$	c, .c.	ΔC,	-4H/T.	-cs·
	u.0>	7996.6	921.1	10.01	3.62	0.89	0.78	1.0>	1.10		24346.2	92.11	100.48	14.36	10.26
		7620.0	5021.2	15.10	7.54	1.85	1.65	1.05	1.20	2595.8	33724.7	204.36	188-41	20.38	20.52
		7243.2	3344.4	14.86	11.89	4.07	3.72		1.50	2533.0	21959.8	171.66	171.66	27.21	21.27
	0.20	0824.5	5024.2	19.05	17.04	***	3.72	1.05	1.70	2533.0	17144-9	144.44	171.66	28.47	21.98
	0.05	8038.7	637.4	9.71	2.98	0.77	0.62	1.05	1.80	2574.9	13335.0	124.77	144.44 136.07 129.79	29.10	22.44
	0.10	7745.6	1591.0	11.14	6.11	1.59	1.30	1.05	1.90	2671.2	10307.9	108.50	136.07	29.73	22.57
	0.15	7423.2	2625.1	12.98	9.71	2.46	2.03	1.05	4.00	2703.3	7913.1	97.55	114.32	30.14	22.65
.85	0.20	7117.6	3766.1	15.28	13.82	3.39	2.63	1.05	2.20	2451.7	5421.9	61.22	111.37	30.98	22.82
		6791.0	5141.4	18.34	18.59	4.40	3.77	1.05	2.40	3140.1	3/26.3	41.55	105.51	32.24	22.82
.85	0.30	6405.8	0992.0	29.10	24.58	5.57	4.62	1.05	2.60	3475.0	3107.6	34.43	100.48	32.66	22.82
!			. 36 6	ا د د د ا	2.37	0.06	0.50	1.05	3.00	3644.5	30>6.4	49.82	96.30	33.08	22.69
		7450.2	1310.8	10.59	4.94	1.34	1.04	1.05	3.50	4064.6	2671.2	38.94	68.76	53.49	22.61
		7586.5	2126.9	12.10	7.75	2.06	1.59			4521.7	2428.3	34.33	83.32	33.70	22.40
		7,20.4	3014.5	13.82	10.93	2.83	2.19					l			- 24
		1067.3	4069.6	16.12	14.74	3.04	2.00			6185.2	355.9	6.92	0.71		
.90	0.30	6782.6	5275.4	19.26	19.30	4.52	3.62			8080.7	795.5	9.34	2.22	0.80	0.75
	0.35	6489.5	6740.7	24.49	25.04	5.51	4.46	1.10	0.15	7963.3	1620.3	9.88		1.62	1.00
.90	U. 4U	6133.7	8896.9	33.49	32.57	6-29	5.42			7841.9	2030.6	11.22		2.00	1.26
				ا در ه	1.61	0.56	C.40			7599.0	2491.1	11.89	4.86	2.45	1.51
	0.03	7913.1	1174.3	9.13	3.71	1.13	0.81	1.10	U.35	7469.2	2497.7	12.00	5.86	2.66	1.76
		7703.7	.1842.2	11.39	5.62	1.72	1.25	1.10	3.43	7334.>	3504.4	13.48	6.95	3.32	2.05
	4.20	7494.4	2595.8	12.73	8.16	2.43	1.70	1.10	0.45	7442-2	3998.4	14.44	8.10	3.71	2.34
.95	0.25	7494.4	3433.2	14.32	10.84	2.98	2.20	1.10	0.50	7100.8	+>60.4	15.49	9.29		2.64
3.95	0.30	7075.7	4312.4	16.29	13.98	3.68	2.71	1.10	4.55	6979.4	5162.3	16.54	12.14		3.27
.95	U.35	6845.4	5.80.0	18.84	17.63	4.37	3.32	1.10	J.60	6054.0	5826.0	17.75	13.02		3.60
		6615-1	0531.4	22.02	22.82	4.37	3.98	1.10	0.65	6732.4	7154.4	20.52			3.94
		6363.9	9776.2	30.77	36.38	6.99	5.55	11.10	0.80	6355.6	8716.9	24.28	19.85	7.23	4.65
.95	0.50	6091.8 5796.7	11469-6	37.26	47.69	8.08	0.45	1:::0	0.90	0070.9	10508.9	29.31	25.12	8.37	5.44
	0.33	5484.7	14277.0	46.89	62.17	9.29	7.54	1.10	11.00	5769.4	12443.2	30.63	32.28	9.63	6.32
	0.05	5120.8	16977.5	62.38	82.06	10.70	8.79	1.10	1.10	5463.8	14507.3	46.05		10.89	7.24
		4774.9	19719.8	87.92		12.48	10.36			>149.8	10021.0	56.20		12.>2	8.37
							l l	1.10	1.30	4814.8	24492.8	73.69		14.24	7.63
.00	U.05	8143.3	523.3	9.13	1.21	0.48	0.32	1-10	1.40	4479.9	29307.6	93.37	110.55	18.00	12.81
		7975.9	1025.8	9.92	2.51	0.96	0.65	1.10	11.50	4105.9	28796.8	144.91	118.49	20.10	14.6
		7824.3	1591.0	10.80	3.94	1.95	1.36	1:-:0	1.00	3660.2			121.00		
1.00	0.23	7661.8	2877.0	11.76	7.33	2.49	1:72	1:10	1.40	3433.2		146.34	120.10	22.90	17.00
		7494.4	3567.2	14.24	9.34	3.06	2.14	1.10	1.90	3328.5		1 24 65	114-30	23.86	17.71
	0.30	7136.5	4375.2	15.70	11.72	3.62	2.55	1.10	12.00	3307.6		115.14	111.79	24.70	18.4
1.00	0.40	6958.5	5267.0	17.33	14.95	4.25	3.01	11.10	2.20	3349.4	14444.5	94.62	91.27	26.17	19.20
		0770.1	6250.9	19.26	18.00	4.80		1.10	2.40	3433.2	11639.3	19.97	91.27	27.84	20.5
		6564.5	7335.3	21.44	21.73	5.54		1-10	2.63	3542.0	9437.0	69.08	74.20	28.47	20.54
		0347.2	8557.8	24.12	27.21	6.28	4.52	11-10	12.83	3622.5		54.43		29.10	20.77
		6129.5	10039.9	27.21		7.03	5.07			4207.7		45.24		29.81	20.74
1.00	0.65	5880.6	11614.2	31.82			6.49	11:10	16.00	4647.3	2088.9	40.19		30.35	20.60
		5066.0	17068.3	69.50	84.57	10.91	6.37	1	1	1		1	1		l
1.00	0.90	4270.5	23990.4	167.47	157.42	14.24	11.51	1.15	ذن و ن	b206.1	293.1	8.88			
		1800.3	9420.3	167.47	305.64	35.17	25.96	1.15	0.15	8130.8	661.5	9.25	1.24	0.73	0.6
	1.40		6824.5	90.02	251.21	36.01	34.33	1.15	0.15	6017.7	1025.8	9.76		1.11	
1.00	1.50	1988.7	5443.8	79.13	414.81	36.43	25.96	1.15	0.20	7913.1	1381.6	10.26	3.3		1.1
1.00	1.60	2093.4	4563.6		198.87			1.15	0.25	7804.2	2135.3	11.47			
1.00	1.70	2206.4	3906.3	70.76	162.13	37.26	22.07	1.15	0.39	7703.7	2533.0	12.02			1.5
1.00	1.00	2302.7	3516.9	07.03	159.10	37.46	25.70	1:15	U. 6	7502.1	2964.3	12.69	5.78	2.98	1.8
		2415.8		44.48	152-82	37-68	25.75	11-15	10.42	7402.3	3399.7	13.44	6.78		
		2512.1		01.55	146.24	37.89	25.67	1.15	0.56	7293.4	3843.5	14.24			2.3
1.00	2.20	2916.2		59.03	133.98	38.10	25.62	1.17	0.55	7201.3	+312.4	15.07	6.75	4.22	
1.00	2.60	3119.2		56.94	1127.70	38.31	25.40	1.15	0.60	7105.0	4765.5	15.95	9.80	5.07	
1.00	2.00	3299.2	2143.6	35.27	143.93	38.52	25.33	1,4.15	10.05	6996.1	5790.3	17.92	12.1		
1.00	3.00	3475.0	2093.4		120.58			1.13	10.75	6895.7		20.10			
		3935.6		51.92	116.39	38.73	24.70	14.43	0.00	6468.	8017.7	22.6			4.5
1.00	4-00	4438.0	1967.8	30.24	115.51	30.74	44.20	1 1 1 1	1.00	6230.	9211.0	25.54		8.28	5.2
		l	376.8	9.00	0.86	0.43	0.28	1.1	11.10	6008		29.31	26.8	9.29	
05	10.05	8167.3		9.59	1.70	0.86	0.57	1.1	4.20	5777.6	11061.4	33.70	32.8	10.43	6.7
1.05	10.12	7504.7	1348.1	10.20			0.86	1 1.15	1.3	1 > 5 4 3 - 3	13716.0	36.84			7.4
1.05	0.2	7745.0		11.01		1.74		11.15	1.4.	3 30b.6	15792.4	46.0	49.40	12.77	9.1
1.3	0.25	7015.8	2432.5	11.81	5.11	2.20	1.51	1 1 4 - 4 2	1.5	1 5078-6	18156-1	54.43		15.28	10.2
1.03	0.30	7407.2	3037.0	12.69	6.44	2-70	1.78	1.1	1 - 2	4444.	19983.0	77.44	75.3	16.54	ii.i
1.05	0.35	7320.9	3042.5	13.69	7.95	3.16	2.14	1 1 1 1 1	11:00	4620.4	21524.3	82.90		17.75	12.0
1.05	U.40	7180.4	4249.0	14.78	9.55	3.08	2.61	1 1 1 1 1	11.0	4260.	21315.0	84.5		14.01	12.7
1.05	0.43	7033.8	4940.4	10.04	11.30	4.19	3.19	1 1 1 1 1 1	2.0	4136-	19974.4	85.43	85.4	19.93	13.4
1.0	0.50	6878-9	5035.6	17.36	13.31	5.28		1 1.15	12.4	3 4 35 とっと	16671.8	83.74	83.7	21.77	14.5
		6724.0		20.72	18.21	5.84		1 11.15	12.4.	3 + 03 k −1	9 13971.3	76.6		23-19	15.2
		0+01.0		22.69		0.45		1 4.1	2.61	4052-	11773.3	69.0	69.3	24.28	1:2.9
1.05	6.7	6225.0		25.12	24.79	7.08	4.86	1 1:	2.8		10337.2	61.9	63.2	25.12	16.3
1.0	0.8	5865.1	11886.3	31.82	33.79	8.45	5.85	1.1	3.0	4186-	3.73.6	47.3	1 33.0	26.80	10.6
1.05	10.90	15470.3	14455.2	41.67	46.05	9.94		1 1.1	3.5	4454.		41.8	1 49.4	27.63	17.0
4-35	11.00	5032-	18539.1	59.67	65.31	11-61	8.46	1 11.1	4.0	4814.	3651.9	7	1	12,13,	1

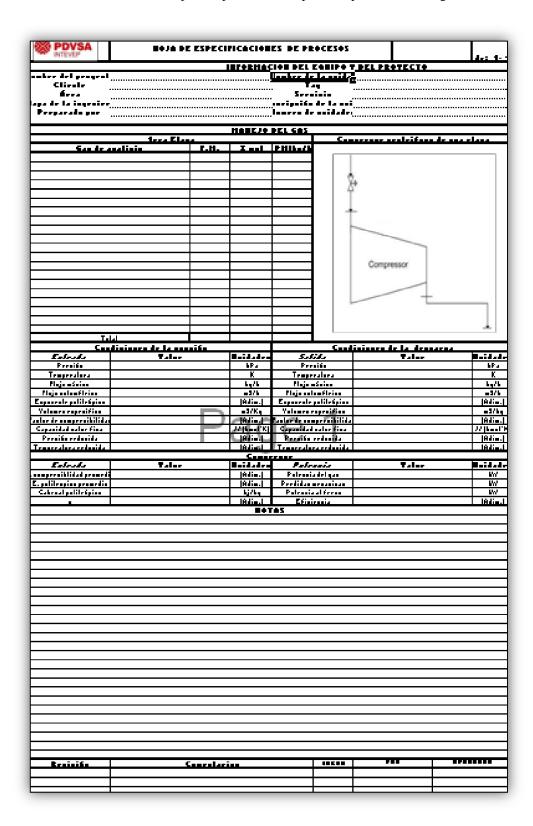

APÉNDICE O. Propiedades termodinámicas de los gases para los cálculos de compresión y expansión (Tr: 1,20-1,60) (PDVSA- MDP 02-K-04, 1996)

τ,	٠.	RZ	$RT_{r}\left(\frac{d^{2}}{dT_{r}}\right)_{P_{r}}$	C ₉ - C ₄	۵۵,	-SWT.	-45	τ,	٠,	RZ	$RT_{r}\left(\frac{A^2}{aT_{r}}\right)_{P_{r}}$	چ- <i>د</i>	۵C,	-4WT.	-45
.20	u.05	8227.1	472.1	8.83	0.53	0.33	0.19	1.40		7314.3	4157.5	15.49	8.79	5.45	2.7
:20	3.13	8166.4	582.0	9.13	1-10	0.67	0.38	1.40	1.30	7142.7	4534.3	17.42	10.68	6.45	3.2
.20	0.15	8676.3	841.5	10.05	1.67	1.36	0.77	1.40		7067.3	5283.7	18.42	11.61	7.08	3.5
.20	0.20	7988.4	1180.7	10.51	2.27	1.69	0.98	1.40	1.50	6992.0	5610.3	19.55	12.77	7.54	3.7
		7816.7	1854.8	11.01	3.58	2.03	1.16	1.40	1.60	6912.4	6066.7	20.72	13.82	8.00	4.1
.20	0.35	7733.0	2189.7	11.50	4.27	2.39	1.36	1.40	1.70	6845.4	6280.2	21.77	15.07	9.04	*.*
-20	0.40	7649.5	2558.1	12.10	5.02	2.73	1.57	1.40		6719.8	6971.0	24.07	17.46		4.9
• < 0	0.45	7561.4	2947.5	12.69	5.74	3.10	L.77	1.40	4.00	6657.0	1243.2	25.33	18.63	12.14	5.2
.20	0.50	7473.4	3328.5	13.36	7.41	3.63	2.20	1.40	2.20	0552.3	7787.4	27.84	21.35	11.14	>.6
-20	0.55	7297.6	4090.5	14.65	8.21	4.19	2.41	1.40	2.40	6451.9	8285.7	30.35	23.84	12.14	6.3
.20	0.65	7418.0	4463.1	15.32	9.21	4.55	2.64	1.40		0368.1	8746.2	32.45	25.96	13.15	7.4
.20	0.73	7136.5	4835.7	16.04	10.24	4.94	2.89	1.40		0238.3	9190.0	34.33		15.28	7.9
.20	0.80	0962.0	5681.5	17.75	12.06	5.65	3.35	1.40		0183.9	10066.9	30.43		17.50	9.0
.20	0.90	6786-8	7334.5	21.77	14:44	7.29	4.35	1:40		6236.3	9252.8	33.70		18.84	9.6
.23	1.03	6418.4	8151.7	24.28	19.89	8.14	4.94					1 1			
		6238.3	9001-6	26.92	22.86	9.00	5.44	1.50	0.0>	8289.9	125.6	8.67	0.25	0.21	0.1
.20	1.33	6070.9	9839.0	29.73	26.38	10.05	6.03	1.50	0.10	8256.4	201.0	8.83	0.50		0.2
.20	1.40	5895.0	13726.6	32.87		10.89	6.66	1.50	0.13	8218.7	322.4 460.5	9.17	1.03		0.3
	1.50	5735.9	11597.4	36.22	33.91	11.85	7.24			8122.4	286.2	9.42	1.30	1.06	0.5
-20	1.00	5421.9	13416.7	43.54	43.12	13.42	8.37	1.50	0.30	8093.1	699.2	9.63	1.35	1.26	0.5
.20	1::53	5267.0	14285.4	47.10	48.99	14.86	9.04	1.50	6.35	8059.6	816.4	5.88	1.80	1.47	0.7
.20	1.93	5128.8	15072.5	50.00	53.59	15.70	6.63	1.50	10.40	8021.9	937.8	10.09	2.07	1.90	0.7
-20	2.00	4994.8	15939.1	53.59	57.36	16.75	10.24	1.50	10.43	7984.2	1216.4	10.55	2.64		0.4
.20	4.20	4/61-3	16736.8	>7.76		19.93	12.48			7913.1		10.84	4.93		1.1
-20	14.+3	4676.7	15420.0	59.45		21.02	15.23			7875.4	1503.1	11.05	3.20	2.53	1.1
.20	2.60	4584.5	11660.2	57.36	52.33	21.86	13.77	1.50	J-63	7637.7	1624.5	11.30	3.52		1.3
.20	3.00	4592.9	10102.7	54.43	49.82		14.24			7838.4		11.60	3.81		1.5
.20	3.50	4781.5	7025.4	45.22		24.07	14.91	1.50	0.80	1737.2	2294-4	12.14	5.02		1.6
.20	4.00	5078.6	4700.4	40.19	41.43	25.12	1>.10	1.30	1.00	7611.0		13.27	5.74	4.22	2.0
		8248.0	251.2	8.75	0.42	0.28	0.15	11-50	11-10	7544.6	2838.4	13.82	6.32	4.67	2.2
.30	0.13	8193.6		9.00	0.84	0.50	G. 30	1.50	1.20	7490.2	3102.4	14.57	7.38		2.4
	0.15	8122.4	753.6	9.29	1.30	0.85	0.45	1.50	1.30	7431-6	3349.4	15.20	7.75		2.6
.30	10.20	8051.2	992.3	9.59	1.74	1.12	0.60	1.50	11.23	7377-1	3034.1	15.91	9-21		3.0
.30		7996.6		9.92	2.18	1.42	0.75	1.50	1::23	7320.9	+134.4	17.33	9.96	6.74	3.3
	0.30			10.26	2.70	1.69	1.06	11.50	1.73	7276.7	4387.8	18.05	10.76		3.5
	3.46			10.59	3.18	2.27	1.21	1.24	1.80	7180.4	1020.4	18.84	11.51		3.7
:30				11.35	4.27	2.59	1.36	1.50	1.40	7134.5	4056.7	19.51	12.39		3.5
	0.50		2541.4	11.72	4.81	2.86	1.55			1100.8		20.31	13.19		4.1
	U.55	7620.0		12.14	5.40	3.16		14.50	2.20	7025.4	5493.1	21.73	14.86		5.0
0		7557-2	3077.3	12.56	5.99	3.43		1::20	2.4	6954.3	6112.7	24.49	18.51		5.4
	0.63	7494.4		13.06	7.24	4.06		1.50	2.80	6908.4	6415.0	25.87	20.10	11.65	5.4
		7297.6		14.61	8.50	4.62	2.51	1.50	3.00	6428.7	6>09.1	27.05	21.56	12.64	6.
ل د د ا	0.93	7167.8	4680.8	15.66	9.96	5.23	2.45			6803.5		29.10	23.99	14.44	1::
1.30	1.00	7050.6	5216.8	16.83	11.35	5.84	3.18	1	14.30	6824.3	0992.0	29.52	24.71	15.91	l
1.30	1.10			18.13	14.49	6.51 7.14	3.56	1.4	10.0	8310.6	62.8	8.62	0.17	0.19	0.0
.30	1.20			21.06	16.12					8281.5		8.75	0.41		0.
.30				22.78	17.88		4.69	1.00	0.13	8248.0	209.3	8.85	0.61		0.
.30		6497.9	7820.9	24.45	19.68	9.13	5.07	11.60	10.20	1 8 206 - 1	293.1	9.09		0. 75	0.
.30	1.60	6397.4		26.38	21.69	9.84		1.60	10.2	8 168-4	351.7	9.42			0.
	1.73			28.14	23.45	10.51	5.90	11.00	10:3	6143.3	416.7	9.63	1 -44	1.32	
.30	1.83	6238.3	9211.0	30.14	27.61	11.30 12.06 12.73	6.74	1 1:00	13.6	4080.5	544.3	9.76		1.51	C.
.30	2.00	6020-6	10140.4	34.54	29.31	12.73	7.12 7.95 8.67 9.38	1.00	0.4	6 6001.0	080.6	4.96	1.84	1.70	0.
	2.23	5661.2	10927.5	38.94	32.45	14.03	7.05	1.60	U.5	0 4013.5	136.9	10.09	2-09	2.07	0.
.30	2.40	5700.0	11608.0	42.29	35.17	15.62	1 8-67	1.00	0.5	7988.4	916.9	10.30	2.30	2.26	
		>>81.0		45.01	30.44	10.75	10.05	1.60	0.00	7934.0	1004.8	10.68	2.76	2.43	i:
	1	5493.1	12300.8	46.68	1 30.10	160.00	10.59	11.00	10.7	17904.	1096.9	10.89	4.9	7 2.64	ι.
	3:50	5442.	9512.4	46.05	37.26	20.52	114.72	1 1.00	. 0.8	7 854.4	1272.8	11.30	3.40	1 2.97	1.
	4.00	5568.	7+10.6	38.10	34.33	41.73	12.43	1.60	0.9	1 600-0	1494.7	11.72		3.37	
				1		I	1	11.00	14.0	7745.	1884.1	12.56	4.9		
	0.00	8260-	188.4	8.71						7703.		13.00	3:4	1 7:44	
		8227.		9.04				1 1:4	11:3	7615.		13.52	5.9	4.81	
1.4	0.1	8172.0	795.5	9.29	1.34	0.40	0.47	1.00	16.4	7573.4	2-74-4	14.53	6.4	5-19	
::4	0.2	8122.	963.0	9.43	1.67	1.21	C.39	1.6	0 4.5	3 7532.	2683.7	14.57	7.3	5.57	2:
1.40	0.30	8034 .	5 1134.6	9.88	2.03	1.45	0.71	1.0		7494.		15.49	8.0	6.28	2.
1.40	0.3	7488.	1348.1	10.13	2.39			1.00				15.99	8.6	6.60	
		7542.4		10.47				1 1:00		7385		16.54	9.2	1 7.03	3.
1.4	13:3	7892.		11.01			1.19	1.0	2.0	7360.	1443.4	17.00	9.7	1 7.37	
		7800.		11.30	3.89	2.77	1 1.32	1.00	2.2	7293.	3717.9	18.00	10.8	8.08	3.
1.4	10.0	7754.	2294.4	11.72	4.3	2.94	1.44	1.0	0 2.4	7243.		18.97	12.1	8.79	1 ::
1.40	0.6	7707.	9 2466.0	12.02	4.7	3.1	1.56	1.6	2.6	7 201.	1 4103.1	20.85	13.1	10.13	1 ::
1.4	0.10	7661.	8 2637.7	12.35	5.11	3.4	1.67	1 1:0		7107.	1 4404.5	21.60	15.4	9 10.72	: 4.
•••	10.5	7578.	3395.5	13.02		3.9						23.57	16.2	1 12.14	٠, ١,
1:4	10:30	7490.	3777.3	14.63	7.8	1.9	2.47	1.0	4.4	0 7142.	7 4915.3	25.12	20.1	0 13.31	6.
	- 1			1	1	1	1	1.0		0 7142.	7 4915.3	25.12	1 20.1	0 13.31	١ ٥.


APÉNDICE P. Formato de modelo reporte de corrientes de PDVSA INTEVEP

The contribution of the co	ACCIONAL CONTINUES OF THE CONTINUES OF T
Tend Underlan Annualten Sakillan	-
Tred Untilling Square Play Sell-Play	Coverage 9
Total Constitutes	50 50 50 50 50 50

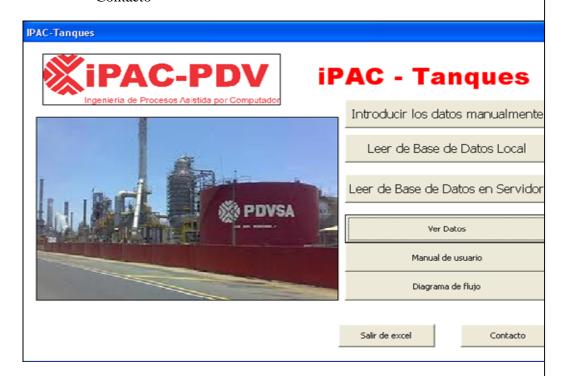



APÉNDICE S. Hoja de especificaciones para separadores líquido-líquido con bota decantadora

APÉNDICE T. Hoja de especificaciones para separadores líquido-líquido-vapor con ambas fases en el cuerpo principal

APÉNDICE U. Hoja de especificaciones para compresores centrífugos

Tabla de contenido	
Introducción	3
1. Bienvenida al software	4
1.1 Introducir los datos manualmente	4
1.1.1 Datos relativos al proyecto	5
1.1.2 Datos de diseño y condiciones a las que operara el tanque:	5
1.1.3 Más datos de diseño	6
1.1.4 Propiedades del líquido	7
1.1.5 Propiedades del fluido a la entrada	7
1.1.6 Propiedades del fluido a la salida	7
1.1.7 Datos adicionales acerca de las condiciones donde se encontrara el tanque:	
1.2 Lectura de reporte local.	8
1.2.1 introduzca las corrientes de entrada y salida del tanque	8
1.2.2 Botón: buscar archivo.	8
1.2 Lectura de reporte en servidor	0
1.4 Ver datos	
1.5 Manual de usuario	1
1.6 Diagrama de flujo	1
1.7 Salir de Excel	1
2. Funciones de los botones:	2
3. Hojas de cálculo	3
3.1 Lectura de datos:	3
3.2 Data sheet (contenido)	5
3.3 Tipo de tanque:	5
3.4 Boquilla de entrada	5
3.5 Boquilla de salida:	6
3.6 Boquilla de drenaje	6
3.7 Boquilla de venteo	6
3.8 Boquilla de inertizacion	7
3.9 Boquilla de visita	7
3.10 Tablas1	7
3.11 DATA SHEET	7
3.12 Diagrama de flujo1	7
3.13 Manual de usuario	7
4. Verificación de resultados1	8
5. Pasos para el dimensionamiento1	8
5.1 Introducir datos (ver sección 1.1)	8
5.2 Verificación de datos (Ver sección 3.1)	8
5.3. Verificación de resultados (Ver sección 4)	8
5.4 Data Sheet (sección 3.2)	8
5.5 Añadir comentarios	8
6. Alertas18	3.


Introducción

El presente manual de usuario, tiene como finalidad dar a conocer de una manera detallada y sencilla, el uso y manejo de la herramienta para el dimensionamiento de tanques, capturando las distintas pantallas y botones que se puedan presentar, añadiéndole su respectiva función y características.

Con el uso de esta aplicación, se busca establecer un ambiente basado en información confiable y real del cumplimiento con las metodologías y criterios expuestos en los manuales de diseño de PDVSA. EL manual cumple el propósito de familiarizar al usuario y disminuir las horas labor en diseño de tanques desde el punto de vista de ingeniería en proceso.

CONTENIDO

- 1. **Bienvenida al software:** Es la ventana de inicio de la herramienta. Se dispone de las siguientes opciones:
 - Introducir los datos manualmente
 - Lectura de reporte local
 - Lectura de reporte en servidor
 - Ver datos
 - Manual de usuario
 - Diagrama de flujo
 - Salir de Excel
 - Contacto

1.1 Introducir los datos manualmente: Se deben introducir todos los datos necesarios para el dimensionamiento y elaboración de la hoja de especificaciones correspondiente al diseño básico del tanque.

		proyecto			
	•	Fecha de elab	oración		
		Nombre del p			
	•	Numero del p	royecto		
		Numero del d	ocumento		
	•	Revisión			
	•	Etapa de la in	geniería		
	•	Preparado por	•		
	•	Nombre de la	unidad		
		Tag			
	•	Descripción d	e la unidad		
	•	Cliente			
	•	Área			
	•	Servicio			
	•	Numero de un	idades		
Datos del proyecto Fecha de elaboración		Etapa de la ingeniería		Cliente	
Mes-Año Nombre del Proyecto		Preparado por		Área	
		Nombre de la Unidad		Servicio	
Numero del Proyecto Numero del documento		Tag		Numero de unidades	
Revisión					
Keybioti		Descripcion de la unidad			
	_		cos. En caso de	_	-
<u>espacio</u> <u>informa</u>	vacío y continción) atos de diseño	núe con los o	demás ítems. (V	er sección 3	.1 para mayo
<u>espacio</u> <u>informa</u>	vacío y continción) atos de diseño • Ter	núe con los o y condiciones	demás ítems. (V s a las que opera operación Mínim	<u>er sección 3</u> ara el tanque	.1 para mayo
<u>espacio</u> <u>informa</u>	vacío y continción) atos de diseño Ter Ter	y condiciones mperatura de o mperatura de o	demás ítems. (V s a las que opera operación Mínim operación Norma	<u>er sección 3</u> ara el tanque na	.1 para mayo
<u>espacio</u> <u>informa</u>	vacío y continción) atos de diseño Ter Ter Ter	y condiciones nperatura de o nperatura de o nperatura de o	demás ítems. (V s a las que opera operación Mínim operación Norma operación Máxim	ver sección 3 ara el tanque a al	.1 para mayo
<u>espacio</u> <u>informa</u>	vacío y continción) atos de diseño Ter Ter Ter Ter Ter	y condiciones nperatura de o	demás ítems. (V s a las que opera operación Mínim operación Norma operación Máxim diseño: Td<=366	ver sección 3 ara el tanque a al al	.1 para mayo
<u>espacio</u> <u>informa</u>	vacío y continción) atos de diseño Ter Ter Ter Ter Pre	y condiciones mperatura de o	s a las que operación Mínimoperación Norma operación Máximoliseño: Td<=366 ción int. Pint<=1	ver sección 3 ara el tanque a al al	.1 para mayo
<u>espacio</u> <u>informa</u>	vacío y continción) atos de diseño Ter Ter Ter Ter Pre	y condiciones mperatura de o sión de operad sión externa:	s a las que operación Mínimoperación Máximoperación Máximoliseño: Td<=366 ción int. Pint<=1 Pe<= 101,33	ra el tanque la la la la ls,15 K ls,7 kPa	.1 para mayo
<u>espacio</u> <u>informa</u>	vacío y continción) atos de diseño Ter Ter Ter Pre Pre	y condiciones mperatura de o sión de opera sión externa:	s a las que operación Mínimoperación Norma operación Máximoliseño: Td<=366 ción int. Pint<=1	ra el tanque la la la la ls,15 K ls,7 kPa	.1 para mayo
<u>espacio</u> <u>informa</u>	vacío y continción) atos de diseño Ter Ter Ter Pre Pre	y condiciones mperatura de o sión de operad sión externa:	s a las que operación Mínimoperación Máximoperación Máximoliseño: Td<=366 ción int. Pint<=1 Pe<= 101,33	ra el tanque la la la la ls,15 K ls,7 kPa	.1 para mayo
<u>espacio</u> <u>informa</u>	vacío y continción) atos de diseño Ter Ter Ter Pre Pre	y condiciones mperatura de o sión de opera sión externa:	s a las que operación Mínimoperación Máximoperación Máximoliseño: Td<=366 ción int. Pint<=1 Pe<= 101,33	ra el tanque la la la la ls,15 K ls,7 kPa	.1 para mayo
espacio informa 1.1.2 D	vacío y continción) atos de diseño Ter Ter Ter Pre Pre Pre Sol	y condiciones mperatura de o sión de operad sión externa: sión de diseñ ore-diseño	s a las que operación Mínimoperación Máximoperación Máximoliseño: Td<=366 ción int. Pint<=1 Pe<= 101,33	ra el tanque la	.1 para mayo
espacio informa 1.1.2 D. Datos de diseño y operación Temperatura de	vacío y continción) atos de diseño Ter Ter Ter Pre Pre Pre Sol	y condiciones mperatura de o sión de operac sión de diseñ ore-diseño	s a las que operación Mínimoperación Máximoperación Máximoliseño: Td<=366 ción int. Pint<=1 Pe<= 101,33 o interna. Pint<=	rer sección 3 ara el tanque a al al a,15 K ,7 kPa =1,7 kPa.	.1 para mayo

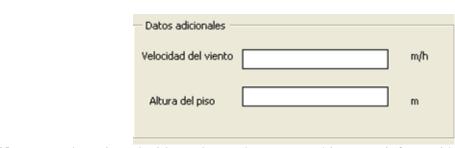
Nota: Los datos introducidos solo pueden ser numéricos. La información requerida en color rojo es necesaria para el dimensionamiento. En caso de no tener alguno de los otros datos, deje el espacio vacío y continúe con los demás ítems. (Ver sección 3.1 para mayor información)

1.1.3 Más datos de diseño

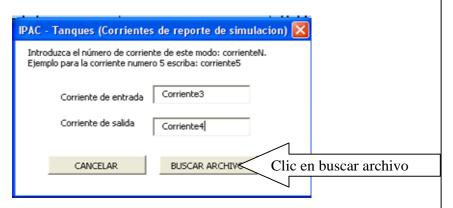
- Altura Fondo-nivel de muy bajo.
- Tiempo de desalojo del tanque.
- Tasa de evaporación.
- Peso molecular del gas inertizante.
- Rugosidad absoluta.
- Tiempo de respuesta para el nivel bajo
- Tiempo de respuesta para el nivel alto
- Capacidad del tanque:


Se tienen dos opciones:

Si se desea calcular la capacidad del tanque, es necesario introducir el tiempo de almacenamiento



Si ya se tiene la capacidad neta del tanque del tanque, es necesario introducir la capacidad requerida del tanque.

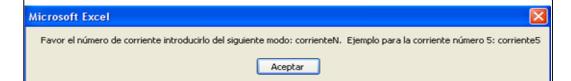

Nota: Los datos introducidos solo pueden ser numéricos. La información requerida en color rojo es necesaria para el dimensionamiento. En caso de no tener alguno de los otros datos, deje el espacio vacío y continúe con los demás ítems. (Ver sección 3.1 para mayor información)

1.1.4 Propiedade	s del líquido			
	• Pes	sión de vapor: Pv< 8 o molecular del com nperatura de inflam	puesto	
Propiedades del liquido	10.0			
Presión de Vapor	compi	molecular del uesto	g/mol Temperatura de inflamación	
Nota : Los datos in	troducidos solo p	ueden ser numérico:	s. La información requerio	da en
color rojo es neces	_		<u> </u>	
_	_			
1.1.5 Propiedades				
	 Viscosi 			
		de entrada		
	 Densid 	ad		
	Desir de de e del lieu ide	a la cabra da		
	 Popiedades del liquido Densidad 	a la entrada	kg/m3	
	Donisiaas		- Ingy inc	
			Pa.s	
	Viscosidad			
	Caudal de entrada		m3/h	
Notes I es detes in	du ada a a la m		. I a información nacuani	4
		dimensionamiento.	s. La información requerio	<u>ja en</u>
<u>color rojo e</u>	s necesaria para er	difficusionalificito.		
1.1.6 Propiedades	del fluido a la sal	lida		
_	 Viscosi 	idad		
	 Densid 	ad		
	 Caudal 	de salida		
	Propiedades del liqui	do a la salida		
	Densidad		kg/m3	
	Viscosidad		Pa.s	
	Caudal de Salida		m3/h	
\ <u>-</u>	_		s. La información requerio	<u>da en</u>
<u>color rojo e</u>	<u>s necesaria para el</u>	dimensionamiento.		
1 1 7 Dates adicio	nales acerca de la	s condiciones dend	e se encontrara el tanqu	<u>.</u>
1.1./ Datos auicio	naies acerca de la	is comunciones dona	e se encontrara er tanqu	c:
	•	Velocidad del vie	nto	
		Altura del tanqu		

Nota: Los datos introducidos solo pueden ser numéricos. La información requerida en color rojo es necesaria para el dimensionamiento. En caso de no tener alguno de los otros datos, deje el espacio vacío y continúe con los demás ítems. (Ver sección 3.1 para mayor información)

- **1.2 Lectura de reporte local:** Con esta opción el usuario tiene la posibilidad de hacer lectura de la hoja de reporte de la simulación la cual se encuentra guardada en el ordenador o una memoria extraíble y leer los datos directamente de ella sin necesidad de introducirlos manualmente.
- **1.2.1 introduzca las corrientes de entrada y salida del tanque** de almacenamiento correspondientes a la hoja de reporte de simulación**.

*Nota1: La corriente tiene que se introducida de la siguiente manera: corrienteN, Ejemplo para la corriente numero 5, escriba Corriente5


**Nota2: El formato de la hoja de reporte pertenece a PDVSA INTEVEP.

1.2.2 Presione el botón buscar archivo: Se le abrirá una consola de Windows en la cual deberá buscar el archivo Excel identificado como "modelo reporte de corrientes" y hacer clic en abrir.

Si se elige erróneamente el archivo de reporte de la simulación o se añade incorrectamente el numero de las corrientes aparecerán respectivamente cada uno de los siguientes mensajes, para los cual tendrá que volver al paso 2.2.1 y añadir correctamente las corrientes de entrada y salida a del separador y elegir el archivo deseado

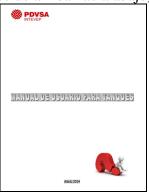
Si la lectura exitosa aparecerá el siguiente mensaje,

Y posteriormente deberá revisar los datos de los cuales se realizo la lectura e introducir manualmente aquellos datos de diseño faltantes (Ver sección 1.1 para mayor información).

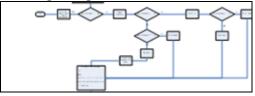
Los datos son los siguientes:

- Nombre de la unidad
- Tag

	•	Descripción de la unidad						
	•	Área						
	•	Servicio						
	•	Numero de	e unidades					
	•	Temperatu	ra de operació	on mínima				
	•	Temperatu	ra de operació	ón máxima				
	•	Temperatu	ra de diseño					
	•	Presión de	operación inte	erna				
	•	Sobrediseñ	ío					
	•	Altura For	Altura Fondo-nivel de muy bajo.					
	•		Tiempo de desalojo del tanque.					
	•	Tasa de evaporación.						
	•	Peso molecular del gas inertizante.						
	•	Rugosidad absoluta.						
	•	Capacidad del tanque						
	•	-	Tiempo de respuesta para el nivel bajo					
	•	-	Tiempo de respuesta para el nivel alto					
	•	Velocidad del viento						
	•	Altura del	tan que					
			-					
Datos del proyecto Fecha de elaboración	20/11/89	Etapa de la ingeniería	BÁSICA	Cliente	PETROMIRANDA	1		
Mes-Año Nombre del Proyecto	INGENIERIA BÁSICA DE PET	Preparado por	LERM	Área				
Numero del Proyecto	A2210	Nombre de la Unidad		Servicio				
Numero del documento	A1	Tag		Numero de unidades				
Revisión	В	Descripcion de la unidad						
Datos de diseño y operació	ón							
Temperatura de operación mínima		K Temperatura de Diseño		K Presión de diseño int.		kPag		
Temperatura de operación Normal	330	K Presion de operación int.	25	kPag		Adim.		
Temperatura de operación Máxima		K Presión Externa	101,33	kPa(abs) Sobrediseño				
Datos de diseño2								
Altura Fondo-nivel de muv baio		m Peso molecular(gas inertizante)		K Capacidad del tanque				
Tiempo de desalojo para drenaje		h Rugosidad Absoluta				ᆜ. │		
Tasa de evaporacion		m		Tiempo NBBL-NBL	min Tiempo NAL-NAAL	min		
Propiedades del liquido — Presión de Vapor	1	kPa Peso molecular del	120	g/mol Temperatura de	220	١٠		
		compuesto		inflamación		1 ,		
Popiedades del liquido a la Densidad		Propiedades del liqu kg/m3 Densidad	ido a la salida 670	kg/m3 Datos adicionales		_		
	0,000275	Pa.s Viscosidad	0,000026	Velocidad del viento		m/h		
Viscosidad Caudal de entrada		m3/h Caudal de Salida		Altura del piso		m		
Coods do cricidad	22000	moyn coods do salds	22000	moyn				
1.1 Lectura	de reporte en	servidor (N	O ES ALCA	NCE DE ES	TA VERSIÓN	1 DE		
	_	,			posibilidad de l			
					ientra alojada			
		1			.	_		

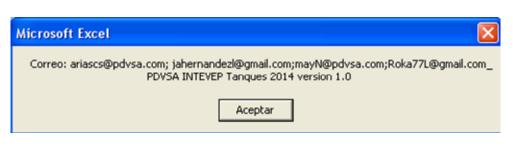

113

servidor utilizado para almacenar la información referente al proyecto y leer los


datos directamente de ella sin necesidad de introducirlos manualmente.

1.4 Ver datos: Muestra la hoja principal de la herramienta con los datos introducidos.

1.5 Manual de usuario: Aparecerá esté documento destinado a orientar acerca del uso del software, para su desplazamiento uso las barras inferior (para moverse de izquierda a derecha) y la lateral (para moverse de arriba hacia abajo).



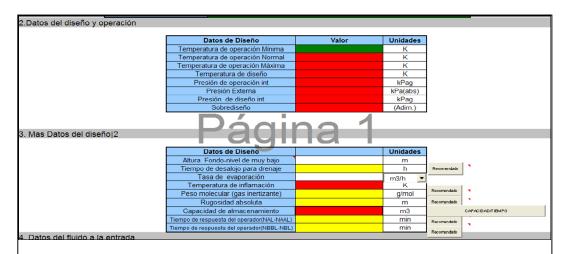
1.6 Diagrama de flujo: Con la metodología de calculo y todos los criterios utilizados para el dimensionamiento del tanque requerido.

1.7 Salir de Excel: En caso de querer salir de la herramienta.

1.8 contacto

2. Funciones de los botones:

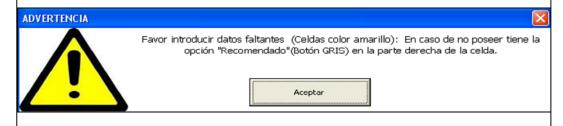
Tabla N°1: Función de los botones


Nombre	Ubicación	Función	Forma
Inicia/Reinicia calculo	Lectura de Datos	Inicia o reinicia el dimensionamiento del tanque.	Iniciar Cálculo Reiniciar Cálculo
Recomendado	Lectura de Datos	Recomienda un valor por defecto en caso de no poseerlo.	Recorrendado
MENÚ	Todas las hojas de cálculo.	Permite dar un paseo por todas las memorias de cálculo.	MENÚ
Ventana de inicio	Lectura de Datos	Permite regresarse a la pantalla de inicio	Ventana de Inicio
Limpiar Datos	Lectura de Datos	Permite borrar todos los datos introducidos	Limpiar Datos
CAPACIDAD /TIEMPO	Lectura de Datos	Modifica el dato requerido para la capacidad requerida del tanque.	CAPACIDAD/TIEMPO
Unidades	Lectura de Datos	Cambia las unidades de ese dato	m3/h ▼
MC(Tipo de Tanque)	Menú	Activa la hoja correspondiente al tipo de tanque necesario	MC(Tipo deTanque)
MC(Dimensio nes del tanque)	Menú	Activa la hoja correspondiente a las dimensiones del tanque	MC(Dimensiones del tanque)
MC(Boquilla de entrada)	Menú	Activa la hoja correspondiente a la boquilla de entrada	MC(Boquilla de entrada)
MC(Boquilla de salida)	Menú	Activa la hoja correspondiente a la boquilla de salida	MC(Boquilla de salida)

Continuación Tab	la N°1 Tabla N	°1: Función de los botone	es
Nombre	Ubicación	Función	Forma
MC(Boquilla de drenaje)	Menú	Activa la hoja correspondiente a la boquilla de drenaje	MC(Boquilla de drenaje)
MC(Boquilla de venteo)	Menú	Activa la hoja correspondiente a la boquilla para venteo	MC(Boquilla de venteo)
MC(Boquilla de inertizacion)	Menú	Activa la hoja correspondiente a la boquilla de inertizacion	MC(Boquilla de inertizacion
MC(Boquilla de visita)	Menú	Activa la hoja correspondiente a las bocas de visita	MC(Boquilla de visita)
Tablas y Gráficos	Menú	Activa la hoja correspondiente a las tablas necesarias	Tablas y Gráficos
DATA SHEET(Portada)	Menú	Activa la hoja correspondiente a la portada de la Data Sheets	DATA SHEET(Portada)
DATA SHEET	Menú	Activa la hoja correspondiente al dimensionamiento del tanque	DATA SHEET
Diagrama de flujo	Menú	Activa la hoja correspondiente a la metodología de calculo y criterios de diseño	Diagrama de flujo
Manual de usuario	Menú	Activa la hoja correspondiente al manual de usuario	Manual de usuario
Manual de usuario	Diagrama de flujo /Manual de usuario	Activa la hoja correspondiente	LECTURA DE DATOS/MENÚ

3. Hojas de cálculo

3.1 Lectura de datos:


Se muestran todos los valores introducidos en la parte 1.1 o 1.2, en dicha hoja se pueden modificar los valores directamente situando el Mouse sobre la celda ("Manera convencional").

- El color rojo significa que es un valor critico para el dimensionamiento, por ende tiene que introducir dicho valor (la herramienta no iniciara el calculo mientras alguna celda tenga dicho color).

El color amarillo significa que es un valor necesario para el dimensionamiento, por ende tiene que introducir dicho valor (la herramienta no iniciara el calculo mientras alguna celda tenga dicho color). Para estos datos se tiene un valor recomendado o por defecto el cual se obtiene oprimiendo el botón "Recomendado" que se encuentra a la derecha de la celda en cuestión.

- El color verde significa que dicho valor hará falta en la hoja de especificaciones del tanque, no obstante el programa podrá dimensionar así alguna celda tenga dicho color.
- Las celdas color blanco se pueden dejar sin ningún valor, el programa lo asume como 0 para el dimensionamiento del tanque.

 El color rojo se presenta de igual modo si hay algún tipo de inconsistencia como la mostrada en la figura, por ende es necesario que la solvente para poder continuar con el calculo.

Datos de Diseño	Valor	Unidades	
Temperatura de operación Minima	290	k	
Temperatura de operación Normal	300	rocale:	
Temperatura de operación Maxima	290	inconsistencia	a , revisar!
Temperatura de diseño	320,00		
Presion de operación int	-20,00		

Una vez que el calculo prosiga se mostrara la hoja de calculo con la DATA SHEET correspondiente.

3.2 Data sheet (contenido)

Es la hoja de especificaciones del equipo se muestran tanto los datos de operación y diseño, como el resultado del dimensionamiento del tanque. Es recomendable que en este punto revise la validez de los resultados.

Debe introducir los comentarios, notas y observaciones correspondientes directamente sobre la celda (De manera convencional).

3.3 Tipo de tanque:

Incluye:

- Tipo de tanque a utilizar
- Caudal de diseño a la entrada
- Caudal de diseño a la salida

Incluye:

- Diámetro
- Altura
- Capacidad neta de trabajo
- Capacidad Nominal
- Nivel muy bajo de liquido
- Nivel bajo de liquido
- Nivel alto de liquido
- Nivel muy alto de liquido

3.4 Boquilla de entrada

Incluye:

- Velocidad en la boquilla
- Numero de Reynolds

- Tipo de régimen
- Factor de fricción.
- Caída de presión
- Diámetro interno
- Diámetro nominal

3.5 Boquilla de salida:

Incluye:

- Velocidad en la boquilla
- Numero de Reynolds
- Tipo de régimen
- Factor de fricción.
- Caída de presión
- Diámetro interno
- Diámetro nominal

3.6 Boquilla de drenaje

Incluye:

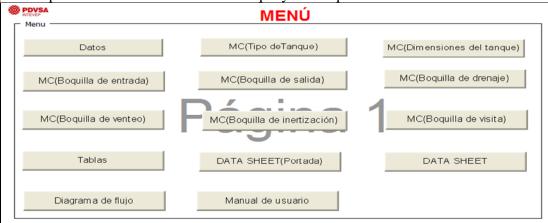
- Numero de boquillas
- Volumen muerto
- Caudal de drenaje
- Caudal de diseño
- Diámetro nominal
- Diámetro interno
- Velocidad de la boquilla
- Numero de Reynolds
- Tipo de régimen
- Factor de fricción
- Caída de presión

3.7 Boquilla de venteo

Incluye:

- Flujo de aire para el alivio por presión
- Flujo de aire para el alivio por vacío
- Flujo entrada respiración térmica
- Flujo salida respiración térmica
- Flujo de aire para el alivio por presión(Global)
- Flujo de aire para el alivio por vacío(Global)
- Flujo de aire de diseño
- Velocidad máxima permitida en la boquilla
- Diámetro nominal
- Diámetro interno

Velocidad de diseño


3.8 Boquilla de inertizacion Incluye: Flujo gas de blanketing Velocidad máxima permitida en la boquilla Diámetro nominal • Diámetro interno Velocidad de diseño 3.9 Boquilla de visita Incluye: Numero de boquillas en el cuerpo Numero de boquillas en el techo 3.10 Tablas Incluye: Tabla N°1 "Typical Sizes and Corresponding Nominal Capacities (m3) for Tanks with 2400 mm Courses", capacidades pequeñas de 34m3 a 16432m3 del API 650 Tabla Na2 Tamaños típicos y capacidades nominales para tanques de almacenamiento. Tabla N°3.1 D. nominales para las boquillas (in) Tabla N!3.2 D. nominales para las boquillas (m) Tabla N°4Numero de boquillas de drenaje Tabla N°5Numero de bocas de visita Tabla Na6 "Shell- Plate Thicknesses Based on the Variable- Desing- Point Method Using 2400 mm. Courses and Allowable Stress of 159 Mpa for the Test Condition", Capacidades de 47500m3 a 1321200m3 del API 650 3.11 DATA SHEET Incluye: Portada 3.12 Diagrama de flujo Incluye: Metodología de calculo y criterios 3.13 Manual de usuario

Incluye:

• Instrucciones y contenido del software

4. Verificación de resultados: Paseo por las memorias de cálculo

Por medio del botón "menú" Podrá acceder a la siguiente pantalla con las memorias de calculo para el dimensionamiento del tanque y sus boquillas.

5. Pasos para el dimensionamiento

- 5.1 Introducir datos (ver sección 1.1)
- 5.2 Verificación de datos (Ver sección 3.1)
- 5.3. Verificación de resultados (Ver sección 4)
- 5.4 Data Sheet (sección 3.2)
- 5.5 Añadir comentarios (Portada y contenido realizar de manera convencional)

6. Alertas

- Msg "Sobrepasa la capacidad de valores disponibles, recuerde que dicho programa esta basado en el API Std 650 (2010), la capacidad mínima es de 32 m3 y la máxima es de 16000m3, si necesita capacidades mayores pruebe con Tabla N°2(Ver la sección Tablas del menú)"
- Caso posible: El tiempo de almacenamiento, capacidad requerida, caudales o sobre diseño son muy grandes.
- Msg "Sobrepasa la capacidad de los 499 valores disponibles, recuerde que dicha tabla esta basada en la TABLA N°2 HYDROCARBON PROCESS (Ver sección Tablas en el menú), la capacidad mínima es de 7 m3 y la máxima es de 70685m3, si necesita capacidades mayores pruebe con Tabla N°3"

Caso posible: El tiempo de almacenamiento, capacidad requerida, caudales o sobre diseño son muy grandes.

Msg " Favor verificar validez de los datos, recuerde que dicho programa esta basado en el API Std 650 (2010) ANEXO K método de punto variable tiene una capacidad mínima de 47500 m3 y la máxima es de 1321200m3."

Caso posible: El tiempo de almacenamiento, capacidad requerida, caudales o sobre diseño son muy grandes.

Msg "Solo Ingrese números"

Consecuencia de: Letras en vez de números

Msg " Elegir archivo correcto de simulación: Modelo reporte de corrientes" Caso posible: No elige archivo con formato INTEVEP

Msg " Favor el número de corriente introducirlo del siguiente modo: corrienteN. Ejemplo para la corriente número 5: corriente5"

Consecuencia de: No cumplió con la nomenclatura indicada

Msg " Oprima aceptar y espere mientras se realiza el dimensionamiento Tiempo aproximado: 5 Segundos"

Consecuencia de: Al momento de comenzar el dimensionamiento.

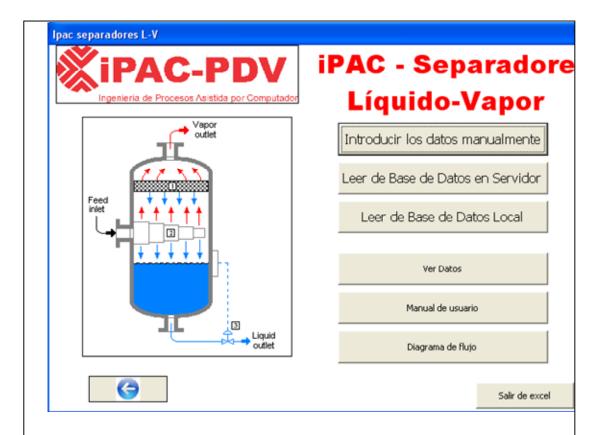
Tabla de contenido Introducción 1. Bienvenida al software..... 2. Pantalla de inicio 2.1 Introducir los datos manualmente. 2.5 Manual de usuario: 13 2.8 Contacto: 13


Introducción

El presente manual de usuario, tiene como finalidad dar a conocer de una manera detallada y sencilla, el uso y manejo de la herramienta para el dimensionamiento de separadores liquido-vapor, capturando las distintas pantallas y botones que se puedan presentar, añadiéndole su respectiva función y características.

Con el uso de esta aplicación, se busca establecer un ambiente basado en información confiable y real del cumplimiento con las metodologías y criterios expuestos en los manuales de diseño de PDVSA. El manual cumple el propósito de familiarizar al usuario y disminuir las horas labor en diseño de separadores desde el punto de vista de ingeniería en proceso.

CONTENIDO


1. **Bienvenida al software:** Es la ventana de inicio de la herramienta. Se debe hacer clic sobre la imagen del separador Liquido-Vapor

2. Pantalla de inicio del separador Liquido Vapor

Incluye:

- Introducir los datos manualmente
- Lectura de reporte local
- Lectura de reporte en servidor
- Ver datos
- Manual de usuario
- Diagrama de flujo
- Salir de Excel

1.1 Introducir los datos manualmente: Se deben introducir todos los datos necesarios para el dimensionamiento y elaboración de la Hoja de especificaciones correspondiente al diseño básico del separador.

1.1.1 Datos relativos al proyecto

- Fecha de elaboración
- Nombre del proyecto
- Numero del proyecto
- Numero del documento
- Revisión
- Etapa de la ingeniería
- Preparado por
- Nombre de la unidad
- Tag
- Descripción de la unidad
- Cliente
- Área
- Servicio
- Numero de unidades

Patos del proyecto Fecha de elaboración Mes-Año	Etapa de la ingeniería	Cliente
Nombre del Proyecto	Preparado por	
Numero del Proyecto	Nombre de la Unidad	Área
Numero del documento	Tag	Servicio
Revisión	Descripción de la unidad	Numero de unidades
_		aso de no tener algún dato deje el
- - -	ontinue con los demas itei	ms. (Ver sección 4.1 para mayor
<u>información)</u>		
2.1.2 Datos de disc	eño y condiciones a las que	e operara el separador:
	Temperatura de operación	
	Presión de operación	
	Nivel muy bajo del separac	dor
	Tittel may bajo del separac	101
Datos del diseño] K	
Temperatura de Operación	Presión de operación	KPa Nivel Bajo-Bajo m
· · · · · · · · · · · · · · · · · · ·	-	ricos. La información requerida en
· · · · · · · · · · · · · · · · · · ·	-	nto .En caso de no tener alguno de
sección 4.1 para m	• •	ntinúe con los demás ítems. (Ver
sección 4.1 para m	ayor iliformacion)	
2.1.3 Propiedades	de la mezcla, líquido y el g	gas
Incluye		
Propiedades de la mezcla		
	 Densidad 	
	• Viscosidad.	
	• Caudal	
Duomio do de e del 17 - 11	 Tensión superficial 	
Propiedades del líquido	- Daniel I I	
	• Densidad	
	• Viscosidad.	
	• Caudal	
Propiedades del gas	 Tensión superficial 	
i ropicuades dei gas	 Densidad 	
	DensidadViscosidad.	
	viscosidad.Caudal	
	• Caudal	

	Propiedades d	le la mezo	la, líquido y el gas		Propiedades del líquido			Propiedades del gas			
	Densidad de la	mezda		kg/m3	Densidad del líquido		kg/m3	Densidad del gas		kg/m3	
	Viscosidad de la	a mezda		mPa.s	Viscosidad del líquido		mPa.s	Viscosidad del gas		mPa.s	
	Caudal de la m	ezcla		m3/h	Caudal del líquido		m3/h	Caudal del gas		m3/h	
							,				
	Tension superf	icial		mN/m							
	2.1 Incluye		Fiempo de re		-	-			.,		
	Tiempo de nivel bajo al nivel alto de operación										
	 Tiempo del nivel muy bajo al nivel bajo 										
				•	Tiempo del	nivel alto al n	ivel	muy alto			
			na la opción po de residen	cia, 1	as opciones Alimentaci control)=20 Alimentaci =15min Alimentaci operación)=71 Alimentaci control)=71 Alimentaci = 5min Producto a tambor de a Producto a tambor de a A tanqueria que pasa a	ón desde otra u Omin ón desde otra u ón desde tanqu =20min ón a una colun	unida nina nna del lirec del lirec or del	ad (difere ad (misma (Lejos da (Diferent (mismo da área operato sin bora área operato con bora e alimenta	o cuarto de coel área de e cuarto de contrativa o a otromba=2min rativa o a otromba=5min ación, con boórico=5min	econtrol) trol) o	
	Tiempo de res		el líquido DUCTO DEL TAMBOR (FIJA E	L CRITERIO	DE TIEMPO DE RESIDEN	CIA)		ianno da socidando	sara Kasida (NEW ALAL)		
Clic	c.Alimentac	ión desi ión desc	de otra unidad (diferente de otra unidad (mismo cu de tanqueria (Lejos del á na columna (Diferente cu	arto de c ea de op	ontrol) eración)		Î	iempo de respuesta c	lera liquido (NBL-NAL) [el operador (NBBL-NBL) [el operador (NAL-NAAL)	20 min 5 min 5 min	
	:	pres requ	entados en l erida en colo	la tal or roj	bla solo p o es necesa	po residencia ueden ser dat ria para el din nendación gen	os nens	numérico sionamien	s. La infori	maciór	

2.1.5 Lista de servicios:

La lista de servicio permite fija criterios de recomendación del tambor a utilizar, la velocidad critica y el tipo de deflector para la boquilla de entrada

2.1.5.1 Lista de servicios mas comunes en la IPPCN

Incluye

• Tambores de abastecimiento de líquido y tambores de destilado.

Tipo de tambor: horizontal con malla

Velocidad crítica: 125

Tipo de boquilla de entrada: Distribuidor en T con ranuras

• Tambores separadores para la succión e inter-etapas de compresores

Tipo de tambor: Vertical con malla

Velocidad crítica: 125

Tipo de boquilla de entrada: Distribuidor con ranuras

• Separadores de gas combustible

Tipo de tambor: Vertical con malla

Velocidad crítica: 100

Tipo de boquilla de entrada: Distribuidor con ranuras

• Tambores de vapor para servicios de calderas

Tipo de tambor: horizontal con malla

Velocidad crítica: 100

Tipo de boquilla de entrada: Distribuidor en T con ranuras

.

• Tambores de separación de agua

Tipo de tambor: Horizontal sin malla

Velocidad crítica: 100

Tipo de boquilla de entrada: Codo de 90

Tambores de descarga de no condensables

Tipo de tambor: Horizontal sin malla

Velocidad crítica: 100

Tipo de boquilla de entrada: Codo de 90

• Tambores de descarga de condensables

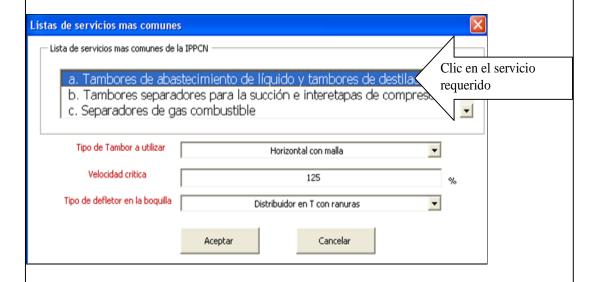
Tipo de tambor: Vertical sin malla

Velocidad crítica: 100

Tipo de boquilla de entrada: Codo de 90

• Tambores separadores de alimentación para depuradores de MEA

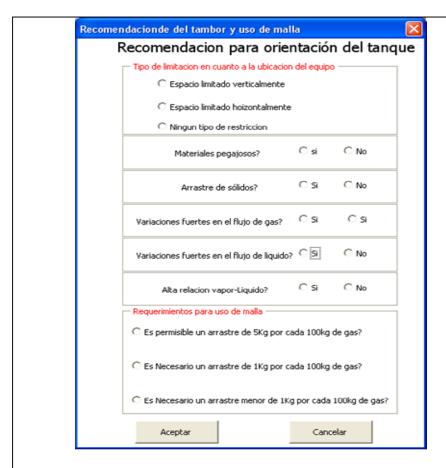
Tipo de tambor: Vertical con malla


Velocidad crítica: 100

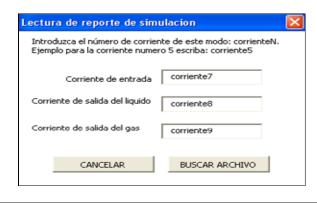
Tipo de boquilla de entrada: Codo de 90

 Tambores separadores de alta presión Tipo de tambor: Horizontal sin malla

Velocidad crítica: 100

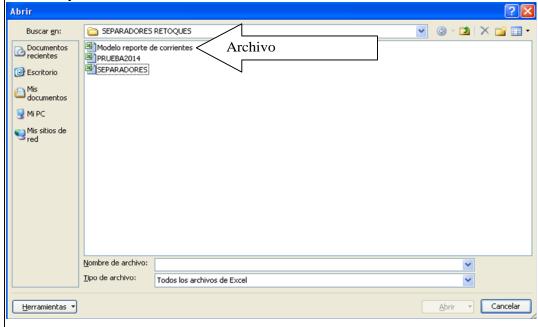

Tipo de boquilla de entrada: Distribuidor en T con ranuras

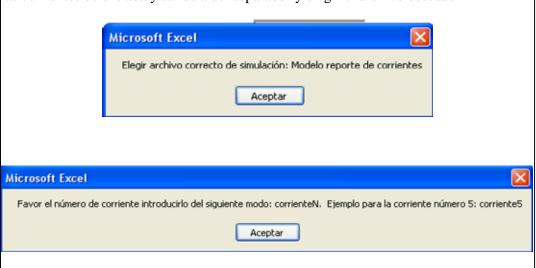
Nota: Los datos introducidos solo pueden ser numéricos. La información requerida en color rojo es necesaria para el dimensionamiento. El tipo de tambor recomendado y el tipo de boquilla puede cambiarse en las pestañas laterales

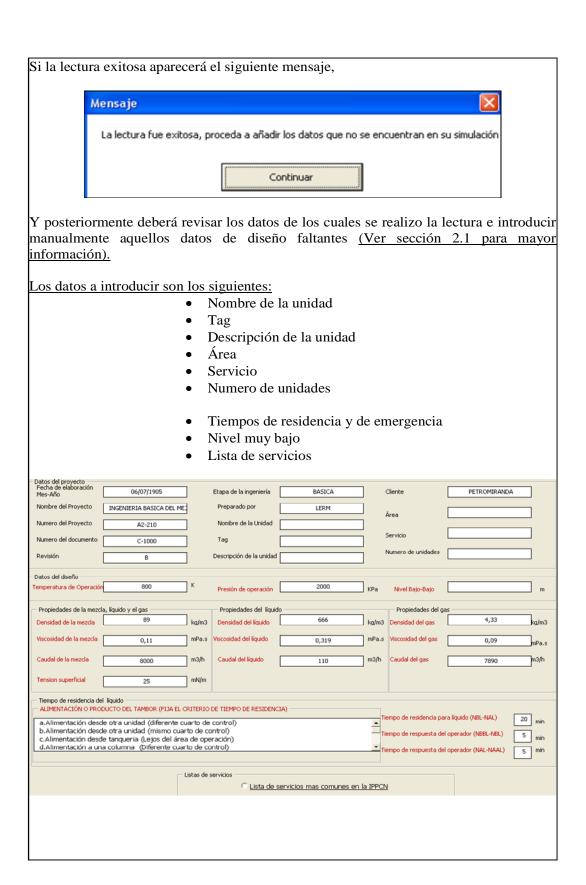

2.1.5.2 Otro tipo de servicio (en caso que no se encuentre tabulado en las opciones presentadas en la parte anterior)

Se tienen que responder las preguntas que se presentan en el formulario mostrado en la figura siguiente, solo se permite una respuesta por recuadro, dependiendo de las condiciones de operación dada por la combinación de respuestas se recomienda un tipo de tipo y orientación de separador con o sin requerimientos de mallas.

Nota: Es necesario responder al menos una de las 6 primeras preguntas y obligatoriamente la ultima.

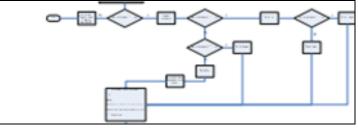

- **2.2 Lectura de reporte local:** Con esta opción el usuario tiene la posibilidad de hacer lectura de la hoja de reporte de la simulación la cual se encuentra guardada en el ordenador o una memoria extraíble y leer los datos directamente de ella sin necesidad de introducirlos manualmente.
- 2.2.1 introduzca la corriente de entrada de la mezcla y salida de liquido y gas del separador correspondientes a la hoja de reporte de simulación**.

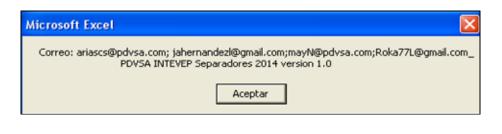

*Nota1: La corriente tiene que se introducida de la siguiente manera: corrienteN, Ejemplo para la corriente numero 5, escriba Corriente5


**Nota2: El formato de la hoja de reporte pertenece a PDVSA INTEVEP.

2.2.2 Presione el botón buscar archivo: Se le abrirá una consola de Windows en la cual deberá buscar el archivo Excel identificado como modelo reporte de corrientes y hacer clic en abrir.

Si se elige erróneamente el archivo de reporte de la simulación o se añade incorrectamente el numero de las corrientes aparecerán respectivamente cada uno de los siguientes mensajes, para los cual tendrá que volver al paso 2.2.1 y añadir correctamente las corrientes de entrada y salida a del separador y elegir el archivo deseado




- **2.3 Lectura de reporte en servidor (NO ES ALCANCE DE ESTA VERSIÓN DE LA HERRAMIENTA PORTATIL):** Con esta opción el usuario tendrá la posibilidad de hacer lectura de la hoja de reporte de la simulación la cual se encuentra alojada en el servidor utilizado para almacenar la información referente al proyecto y leer los datos directamente de ella sin necesidad de introducirlos manualmente.
- **2.4 Ver datos introducidos**: Muestra la hoja principal de la herramienta con los datos introducidos.
- **2.5 Manual de usuario**: Aparecerá esté documento destinado a orientar acerca del uso del software, para su desplazamiento uso las barras inferior (para moverse de izquierda a derecha) y la lateral (para moverse de arriba hacia abajo).

2.6 Diagrama de flujo: Con la metodología de calculo y todos los criterios utilizados para el dimensionamiento del separador requerido.

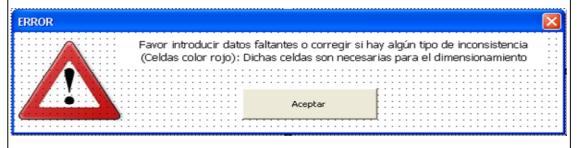
- 2.7 Salir de Excel: En caso de querer salir de la herramienta y guardar su trabajo.
- 2.8 Contacto:

3.Funciones de los botones

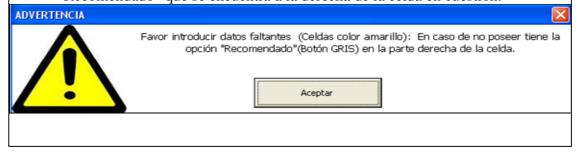
Tabla N°1 Funciones de los botones de la herramienta de separadores L-V

Tabla N°1 Functiones de los botones de la herramienta de separadores L-V					
Nombre	Ubicación	Función	Forma		
Iniciar/ Reiniciar	Lectura de	Inicia el dimensionamiento del	Iniciar Cálculo		
calculo	Datos	separador	Reiniciar Cálculo		
Recomendado	Lectura de Datos	Recomienda un valor por defecto en caso de no poseerlo para el nivel muy bajo	Recomendado		
MENÚ	Todas las hojas de cálculo.	Permite dar un paseo por todas las memorias de cálculo,	MENÚ		
Ventana de inicio	Lectura de Datos	Permite regresarse a la pantalla de inicio	Ventana de Inicio		
Limpiar Datos	Lectura de Datos	Permite borrar todos los datos introducidos	Limpiar Datos		
Tipo de separador	Lectura de Datos	Hace referencia a los tipos de boquillas disponibles	Horizontal con dos malla		
Tipo de deflector a la entrada	Lectura de Datos	Cambia el tipo de deflector a la entrada	Distribuidor en T con ra ▼		
VER ITERACIONE S	Dimensiones de separador	Permite observar iteraciones(solo aplica para horizontal)	VER ITERACIONES		
Datos	Menú	Activa la hoja correspondiente de lectura de datos	Datos		
MC(Dimensio nes del separador)	Menú	Activa la hoja correspondiente de dimensiones del separador	MC(Dimensiones del separar		
MC(Boquilla de entrada)	Menú	Activa la hoja correspondiente de la boquilla de entrada	MC(Boquilla de entrada)		

Nombre	Ubicación	Función	Forma
MC(Boquilla de salida)	Menú	Activa la hoja correspondiente de la boquilla de salida	MC(Boquilla de salida)
MC(Malla)	Menú	Activa la hoja correspondiente de especificación de malla	MC(Malla)
MC(Deflectores)	Menú	Activa la hoja correspondiente para especificación de deflector	Mc(Defletores)
Tablas y Gráficos	Menú	Activa la hoja correspondiente con las tablas con tamaños nominales y parametrizaciones de curvas	Tablas y Graficos
DATA SHEET (Portada)	Menú	Activa la hoja correspondiente de la portada de la Data Sheets	DATA SHEET(portada)
DATA SHEET	Menú	Activa la hoja correspondiente de de dimensionamiento del equipo	DATA SHEET
Diagrama de flujo	Menú	Activa la hoja correspondiente de la metodología de calculo y criterios de diseño	Diagrama de flujo
Manual de usuario	Menú	Activa la hoja correspondiente con este documento	Manual de usuario
Unidades	Lectura de datos	Permite cambiar unidades	mPa.s 🔻
Manual de usuario	Regresar	Activa la hoja correspondiente	Regresar


Hojas de cálculo

4.1 Lectura de datos:


Se muestran todos los valores introducidos en la parte 2.1 o 2.2, en dicha hoja se pueden modificar los valores directamente situando el Mouse sobre la celda ("Manera convencional").

- El color rojo significa que es un valor critico para el dimensionamiento, por ende tiene que introducir dicho valor (la herramienta no iniciara el calculo mientras alguna celda tenga dicho color).

- El color amarillo significa que es un valor necesario para el dimensionamiento, por ende tiene que introducir dicho valor (la herramienta no iniciara el calculo mientras alguna celda tenga dicho color). Para estos datos se tiene un valor recomendado o por defecto el cual se obtiene oprimiendo el botón "Recomendado" que se encuentra a la derecha de la celda en cuestión.

- El color verde significa que dicho valor hará falta en la Hoja de Especificaciones del separador, no obstante el programa podrá dimensionar así alguna celda tenga dicho color.
- Las celdas color blanco se llenan automáticamente por la herramienta, estas celdas se encuentran bloquiadas.
- El color rojo se presenta de igual modo si hay algún tipo de inconsistencia como la mostrada en la figura, por ende es necesario que la solvente para poder continuar con el calculo. Ejemplo cuando la suma de caudales de entrada se encuentra muy alejados de los de salida.(La herramienta no dimensionara).

Una vez que el calculo prosiga se mostrara la hoja de calculo con la Hoja de especificaciones correspondiente.

4.2 Data sheet (contenido)

Es la hoja de especificaciones del equipo se muestran tanto los datos de operación y diseño como el resultado del dimensionamiento del separador. Es recomendable que en este punto revise la validez de los resultados

Debe introducir los comentarios, notas y observaciones correspondientes directamente sobre la celda (De manera convencional haciendo clic sobre la misma y escribir).

4.3 Dimensiones del separador (Horizontal):

Incluye:

- Velocidad critica
- Velocidad permisible
- Volumen de operación
- Volúmenes de emergencia
- Área requerida para el flujo del vapor
- Área disponible para el flujo del vapor
- Diámetro nominal
- Área de la superficie
- Área transversal
- Volumen/longitud
- Área de cada tapa elipsoidal
- Volumen de cada tapa elipsoidal
- Longitud efectiva
- Altura del fondo al nivel muy bajo
- Altura del fondo al nivel bajo
- Altura del fondo al nivel alto
- Altura del fondo al nivel alto
- Área del fondo al nivel muy bajo
- Área del fondo al nivel bajo
- Área del fondo al nivel alto
- Área del fondo al nivel alto
- Área del nivel bajo al nivel alto
- Área del nivel bajo al nivel alto

- Área del nivel muy bajo al nivel muy alto
- Longitud tangente-tangente

4.4 Iteraciones (Horizontal)

- Área requerida para el flujo del vapor
- Área disponible para el flujo del vapor
- Diámetro nominal
- Área del fondo al nivel muy bajo
- Área del nivel muy bajo al nivel muy alto
- Longitud efectiva
- Area del tambor

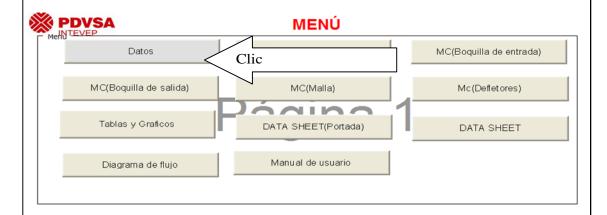
4.5 Dimensiones del separador (Vertical):

Incluye:

- Velocidad critica
- Velocidad permisible
- Volumen de operación
- Volúmenes de emergencia
- Área requerida para el flujo del vapor
- Área disponible para el flujo del vapor
- Diámetro nominal
- Área de la superficie
- Área transversal
- Volumen/longitud
- Área de cada tapa elipsoidal
- Volumen de cada tapa elipsoidal
- Longitud efectiva
- Altura del fondo al nivel muy bajo
- Altura del fondo al nivel bajo
- Altura del fondo al nivel alto
- Altura del fondo al nivel altoente.
- Longitud tangente-tangente

4.6 Boquilla de entrada

- Fracciones de liquido y gas
- Velocidad permisible
- Diámetro nominal
- Diámetro interno
- Velocidad real
- Deflectores


4.7 Boquilla de salida (líquido y gas) • Velocidad permisible • Diámetro nominal • Diámetro interno Velocidad real 4.8 Diseño de malla (Horizontal y vertical en caso que apliquen) Densidad Espesor Ancho Área • Largo Distancias 4.9 Deflectores • Especificación de rompe vórtice Especificación codo de 90 Especificación distribuidor en T con ranuras 4.10 Tablas Incluye: • Tamaños nominales de los separadores • Tamaños nominales de las boquillas • Tamaños de los codos de 90 • Longitudes de cuerda y areas de las secciones circulares vs alturas(Tabla y parametrizacion) Factor de disipación de chorros incidentes(Tabla y parametrizacion) 4.11 DATA SHEET(Portada) Incluye: Portada 4.12 Diagrama de flujo Incluye: Metodología de calculo y criterios

4.13 Manual de usuario

Incluye:

• Instrucciones y contenido del software

4 Verificación de resultados: Paseo por las memorias de calculo

6. Pasos para el dimensionamiento

- 6.1 Introducir datos (ver sección 2.1 o 2.2)
- 6.2 Verificación de datos (Ver sección 4.1)
- 6.3. Verificación de resultados (Ver sección 5)
- 6.4 Data Sheet (sección 4.2)
- 6.5 Añadir comentarios (Portada y contenido realizar de manera convencional)

7. Alertas

Msg "SE SUPERO CAPACIDAD MAXIMA"

Caso posible: Los tiempos de residencia son muy grandes.

Msg (" Se selecciono codo de 90 como deflector a la entrada ya que la Boquilla Simple excede los tamaños nominales disponibles ")

Consecuencia de: No se encontró tamaño nominal disponible para la boquilla simple

Msg (" Se selecciono distribuidor T con ranuras como defletor a la entrada ya que la Boquilla Simple excede los tamaños nominales disponibles ")

Consecuencia de: No se encontró tamaño nominal disponible para distribuidor en T con ranuras.

Msg ("No se encontró tamaño disponible para ningún deflector, el tamaño presentado es preliminar para ser considerado por el fabricante del tambor")

Consecuencia de: Se utiliza el criterio general para dimensionar la boquilla.

Msg ("No se encontró tamaño nominal disponible para la boquilla de entrada")

Consecuencia de: No se encontró tamaño para ningún deflector ni para el criterio general.

Msg ("No se encontró tamaño nominal disponible para la boquilla de salida del liquido")

Consecuencia de: No se encontró tamaño nominal disponible para la boquilla de salida de líquido ya que supera los tamaños nominales.

Msg "Relación de esbeltez menor que uno, modifique los tiempos de retención"

Caso posible: Los tiempos de retención son muy bajos o el liquido a contener por el separador es pequeño en comparación con el gas.

Msg " No se pudo especificar malla hace falta diámetro disponible"

Consecuencia de: La boquilla de gas no fue dimensionada por superar tamaños nominales disponibles.

Msg "No hay espacio suficiente para la malla separadora de gases, use recolector de gases"

Caso posible: La altura del tope de la malla al tope del separador no es suficiente.


Msg " No se especifico Rompe vórtice, ya que no se encontró diámetro nominal disponible"

Consecuencia de: La boquilla de salida de liquido no fue dimensionada por superar tamaños nominales disponibles.

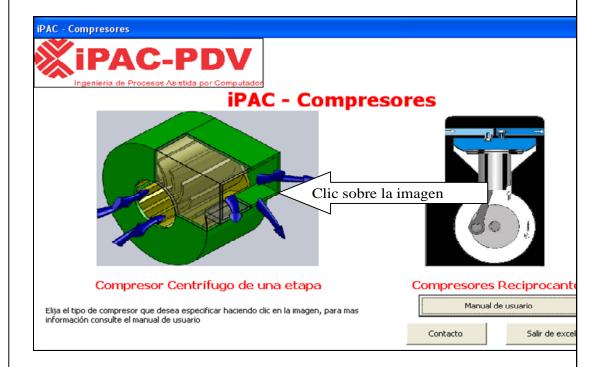
Msg (" La relación de esbeltez es la siguiente: " & c & " en caso de obtener una relación de esbeltez muy grande (pitillo) o cercana a uno, se le recomienda verificar los datos introducidos o elegir otra configuración u tipo de tambor para un diseño optimo")

Consecuencia de: Que el ingeniero de procesos revise relación de esbeltez para garantizar un tamaño óptimo del separador vertical.

APÉNDICE X. Manual de usuario para la herramienta de compresores

Tabla de contenido	
INTRODUCCIÓN	4
1. Bienvenida al software:	
1.1 Compresor centrifugo.	
1.1.1 introducir los datos manualmente.	
1.1.1.1 Datos relativos al proyecto	
1.1.1.2 Datos de operación	
1.1.1.3 Temperatura de salida máxima	
1.1.2 Ver datos introducidos.	
1.1.3 Diagrama de flujo.	
1.1.4 Salir de Excel	
1.1.5 Atrás	8
1.2 Compresor reciprocante	8
1.2.1 introducir los datos manualmente.	
1.2.1.1 Datos relativos al proyecto	9
1.2.1.2 Datos de operación	
1.2.1.3 Temperatura de salida máxima	10
1.2.1.4 Temperatura en cada etapa	
1.2.1.5 Caída de presión interetapas	
1.2.2 Ver datos introducidos.	
1.2.3 Diagrama de flujo.	
1.2.4 Salir de Excel	
1.2.5 Atrás	11
1.3 Manual de usuario	11
1.4 Salir de Excel.	12
2. Funciones de los botones:	13
3. Hojas de cálculo	16
3.1 Lectura de datos	
3.1.1 Sección de datos del proyecto, operación y diseño	16
3.1.2 Sección de compuestos	
3.2 Temperatura de salida (Centrifugo)	17
3.3 Potencia (Centrifugo)	
3.4 Numero de etapas (Reciprocante)	18
3.5 temperatura real de salida de cada etapa de compresión	19
3.6 Especificación de cada compresor (Reciprocante)	20
3.7 Tablas y graficos1 y Tablas y graficos2	20
3.8 DATA SHEET portada	20
3.9 Data sheet (contenido)	21
3.10 Diagrama de flujo	
3.11 Manual de usuario	21
4. Verificación de resultados: Paseo por las memorias de cálculo	21
5. Pasos para el dimensionamiento	22
5.1 Centrifugo	
5.1.1 Introducir datos de proyecto, operación y diseño (ver sección 1.1.1)	
5.1.2 Verificación de datos (Ver sección 3.1.1)	
5.1.3 Introducir compuestos (Ver sección 3.1.2)	
5.1.4. Verificación de resultados (Ver sección 4.1)	
5.1.5 Data Sheet (sección 3.10)	22
5.1.6 Imprimir DATA SHEETS (Portada y contenido realizar de manera	
convencional)	22

5.2 Reciprocante	22
5.2.1 Introducir datos de proyecto, operación y diseño (ver sección 1.2.1)	
5.2.2 Verificación de datos (Ver sección 3.1.1)	
5.2.3 Introducir compuestos (Ver sección 3.1.2)	
5.2.4. Verificación de resultados (Ver sección 4.2)	
5.2.5 Data Sheet (sección 3.10)	
5.2.6 Añadir comentarios (Portada y contenido realizar de manera convencior	
6. Alertas	


INTRODUCCIÓN

El presente manual de usuario, tiene como finalidad dar a conocer de una manera detallada y sencilla, el uso y manejo de la herramienta para la especificación compresores reciprocantes y centrífugos, capturando las distintas pantallas y botones que se puedan presentar, añadiéndole su respectiva función y características.

Con el uso de esta aplicación, se busca establecer un ambiente basado en información confiable y real del cumplimiento con las metodologías y criterios expuestos en los manuales de diseño de PDVSA. El manual cumple el propósito de familiarizar al usuario y disminuir las horas labor en diseño de compresores desde el punto de vista de ingeniería en proceso.

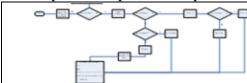
CONTENIDO

- **1. Bienvenida al software:** Es la ventana de inicio de la herramienta. Se dispone de las siguientes opciones:
 - Compresor centrifugo
 - Compresor reciprocante
 - Manual de usuario
 - Salir de Excel
 - Contacto

1.1 Compresor centrifugo: Se selecciona (clic sobre la imagen del compresor) el compresor centrifugo de una etapa.

Incluye:

- Introducir los datos manualmente
- Ver datos
- Diagrama de flujo
- Salir de Excel
- Atrás


1.1.1 introducir los datos manualmente: Se deben introducir todos los datos necesarios para el dimensionamiento y elaboración de la Hoja de Especificaciones correspondiente a la especificación del compresor centrifugo.

1.1.1.1 Datos relativos al proyecto

- Fecha de elaboración:
- Nombre del proyecto
- Numero del proyecto
- Numero del documento
- Revisión
- Etapa de la ingeniería
- Preparado por
- Nombre de la unidad
- Tag
- Descripción de la unidad
- Cliente
- Área
- Servicio
- Numero de unidades

 Datos del pr 	rovecto					
Fecha de e	elaboración			Nombre de la Unidad		
Nombre de	l Proyecto			Tag		
Numero de	el Proyecto			Descripcion de la unidad		
Numero de	documento			Cliente		
Revisión				Área		
Etapa de la	a ingeniería			Servicio		
Preparado	por			Numero de unidades		
est		o y contir	núe con los de ón	<u>más ítems.</u>	no tener algún dato de	e el
		•	Temperatura			
		•	Presión de er			
		•	Presión de sa			
		•	Flujo másico)		
─ Datos de op	peracion					
Temperatura	a de Entrada			K Presión de Salida	, I	kPa
Presión o	de Entrada			kPa Flujo Másico		kg/h
<u>col</u>	<u>lor rojo es</u> 2 Temper	necesaria atura de or depend	a para el dime e salida máx i diendo del serv	nsionamiento. ima: Temperatura vicio.	a información requerida a limite superior de sa	
	— Temperatu	ura máxima d	Gases con ba Aire o nitróg Otro(Criterio	ocesos limpios= 44 ajo ensuciamiento= geno sin sellos de a o del ingeniero de p	=393,15 ceito=478,15	
		ura máxima d	Gases con ba Aire o nitróg Otro(Criterio	ajo ensuciamiento= geno sin sellos de a	=393,15 ceito=478,15	
	Otro		Gases con ba Aire o nitróg Otro(Criterio	ajo ensuciamiento= geno sin sellos de a	=393,15 ceito=478,15	
N. A. Y	Otro Gases	de proce	Gases con ba Aire o nitróg Otro(Criterio de salida esos limpios	ajo ensuciamiento= geno sin sellos de a o del ingeniero de p	=393,15 ceito=478,15 procesos)	
	Otro Gases	de proce	Gases con ba Aire o nitróg Otro(Criterio de salida esos limpios s solo pueden	ajo ensuciamiento= geno sin sellos de a o del ingeniero de p	=393,15 ceito=478,15 procesos)	a en

- **1.1.2 Ver datos introducidos**: Muestra la hoja principal de la herramienta con los datos introducidos.
- **1.1.3 Diagrama de flujo**: Con la metodología de calculo y todos los criterios utilizados para el dimensionamiento del compresor reciprocante requerido.

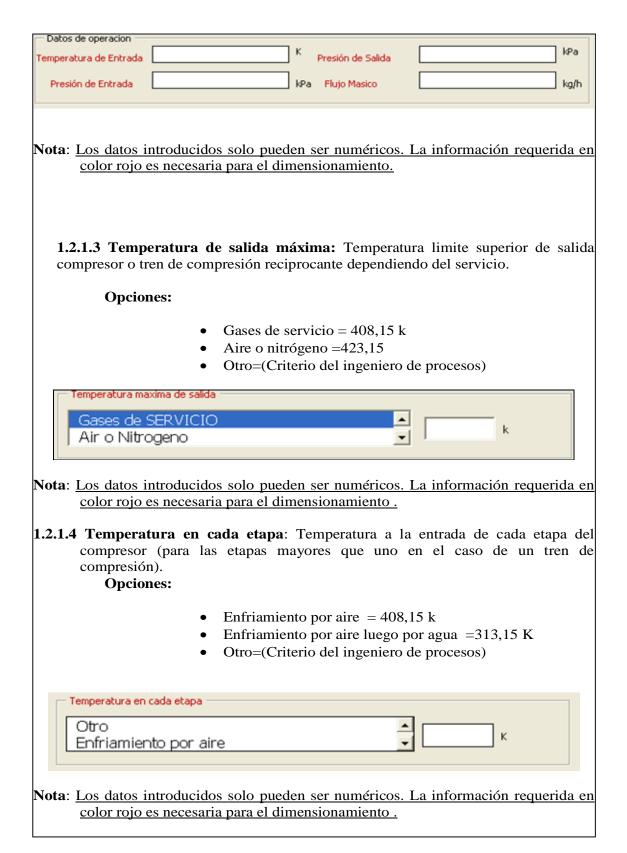
- **1.1.4** Salir de Excel: En caso de querer salir de la herramienta
- **1.1.5** Atrás: Permite regresar a la pantalla de bienvenida
 - **1.2 Compresor reciprocante:** Se selecciona (clic sobre la imagen del compresor) el compresor reciprocante

Incluye:

- Introducir los datos manualmente
- Ver datos
- Diagrama de flujo
- Salir de Excel
- Atrás

1.2.1 introducir los datos manualmente: Se deben introducir todos los datos necesarios para el dimensionamiento y elaboración de la DATA SHEET correspondiente a la especificación del compresor reciprocante.

1.2.1.1 Datos relativos al proyecto


- Fecha de elaboración:
- Nombre del proyecto
- Numero del proyecto
- Numero del documento
- Revisión
- Etapa de la ingeniería
- Preparado por
- Nombre de la unidad
- Tag
- Descripción de la unidad
- Cliente
- Área
- Servicio
- Numero de unidades

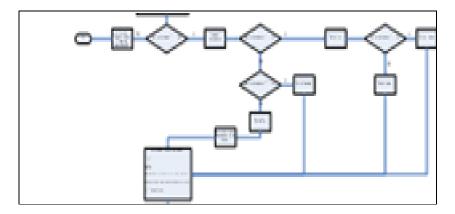
Datos del proyecto Fecha de elaboración Mes-Año	Nombre de la Unidad	
Nombre del Proyecto	Tag	
Numero del Proyecto	Descripcion de la unidad	
Numero del documento	Cliente	
Revision	Area	
Etapa de la ingenieria	Servicio	
Preparado por	Numero de unidades	

Nota: Los caracteres pueden se alfanuméricos. En caso tal de no tener algún dato deje el espacio vacío y continúe con los demás ítems.

1.2.1.2 Datos de operación

- Temperatura de entrada
- Presión de entrada
- Presión de salida(No menor a 1,3*presión entrada)
- Flujo másico

1.2.1.5 Caída de presión interetapas: Caída de presión debida a los intercambiadores de presión, red de tuberías y separadores entre cada compresor(Aplica para trenes de compresión).


Opciones:

- Recomendación general =59,16 KPa
- Otro=(Criterio del ingeniero de procesos)

Nota: Los datos introducidos solo pueden ser numéricos. La información requerida en color rojo es necesaria para el dimensionamiento. En caso de no tener alguno de los otros datos, deje el espacio vacío y continúe con los demás ítems. (Ver sección 3.1 para mayor información)

- 1.2.2 Ver datos introducidos: Muestra la hoja principal de la herramienta con los datos introducidos.
- **1.2.3 Diagrama de flujo**: Con la metodología de calculo y todos los criterios utilizados para el dimensionamiento del compresor reciprocante requerido.

- **1.2.4 Salir de Excel**: En caso de querer salir de la herramienta y guardar su trabajo.
- **1.2.5** Atrás: Permite regresar a la pantalla de bienvenida
- **1.3 Manual de usuario**: Aparecerá esté documento destinado a orientar acerca del uso del software, para su desplazamiento uso las barras inferior(para moverse de izquierda a derecha) y la lateral (para moverse de arriba hacia abajo).

1.4 Salir de Excel: En caso de querer salir de la herramienta.

1.5 contacto

2.Funciones de los botones:

Tabla N°1: Función de los botones en la hoja de lectura de datos

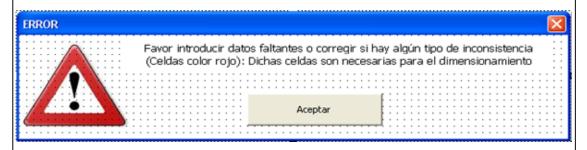
Tabla N°1: Función de los botones en la hoja de lectura de datos					
Nombre	Ubicación	Función	Forma		
Inicia/Reinicia calculo	Lectura de Datos	Inicia la especificación del compresor	Iniciar Cálculo Reiniciar Cálculo		
Recomendado	Lectura de Datos	Recomienda un valor por defecto en caso de no poseerlo	Recomendado **		
MENÚ	Todas las hojas de cálculo.	Permite dar un paseo por todas las memorias de cálculo.	MENÚ		
Ventana de inicio	Lectura de Datos	Permite regresarse a la pantalla de inicio del compresor	Ventana de Inicio		
Limpiar Datos	Lectura de Datos	Permite borrar todos los datos introducidos	Limpiar Datos		
Borrar todos	Lectura de Datos	Borra todos los compuestos seleccionados	Borrar todos		
Hoja de compuestos	Lectura de Datos	Permite visualizar todos los compuestos que se encuentran disponibles y sus propiedades	Hoja de compuestos		
Seleccione una sustancia	Lectura de Datos	Seleccionar la mezcla de sustancias a comprimir -Búsqueda (Añadiendo la primera letra del compuesto o utilizando las flechas de arriba y abajo)	Seleccione una sustanc		

^{**} La tolerancia se refiere a la convergencia de la temperatura de salida real de cada compresor, el valor por defecto es de 0,01K

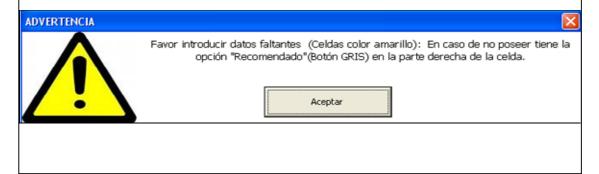
^{**}La caída de presión entre las etapas (59,16 kPa) solo aplica para los compresores reciprocantes

Tabla N°2 Botones para compresor centrifugo				
Nombre	Ubicación	Función	Forma	
Datos	Menú	Activa la hoja correspondiente de lectura de datos	Datos	
Mc(Temperatura de salida)	Menú	Activa la hoja correspondiente de calculo de T2	Mc(Temperatura de salida)	
Mc(Potencia)	Menú	Activa la hoja correspondiente de la potencia	Mc(Potencia)	
Data sheets proceso(Portada)	Menú	Activa la hoja correspondiente a la portada de la Data sheets	Data Sheets de procesos(P	
Data sheets proceso(contenid o)	Menú	Activa la hoja correspondiente a la Data sheets	Data Sheets de procesos(conte	
Tablas y graficos l	Menú	Activa la hoja correspondiente a la lista de compuestos	Tablas y graficos1	
Tablas y graficos2	Menú	Activa la hoja correspondiente parametrizaciones realizadadas	Tablas y gráficos2	
Diagrama de flujo	Menú	Activa la hoja correspondiente a la metodología de calculo	Diagrama de flujo	
Manual de usuario	Menú	Activa la hoja correspondiente Al manual de usuario	Manual de ususario	

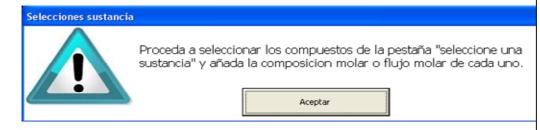
Tabla N°3 Botones para compresores Reciprocantes					
Nombre	Ubicación	Función	Forma		
Datos	Menú	Activa la hoja correspondiente de lectura de datos	Datos		
Mc(Numero de etapas)	Menú	Activa la hoja correspondiente de calculo del numero de etapas	MC(Numero de etapas)		
Mc(Teperatura por etapa)	Menú	Activa la hoja correspondiente al calculo de T2 y T1C/compresor	Mc(Temperatura por etapa)		
Mc(Potencia)	Menú	Activa la hoja correspondiente de la potencia	Mc(Potencia)		
DATA SHEET PROCESO(Porta da)	Menú	Activa la hoja correspondiente a la portada de la Data sheets	DATA SHEET(Portada)		
DATA SHEET (contenido)	Menú	Activa la hoja correspondiente a la Data sheets	DATA SHEET		
Tablas y graficos1	Menú	Activa la hoja correspondiente a la lista de compuestos	Tablas y graficos1		
Tablas y graficos2	Menú	Activa la hoja correspondiente parametrizaciones realizadadas	Tablas y gráficos2		
Diagrama de flujo	Menú	Activa la hoja correspondiente a la metodología de calculo	Diagrama de flujo		
Manual de usuario	Menú	Activa la hoja correspondiente Al manual de usuario	Manual de ususario		

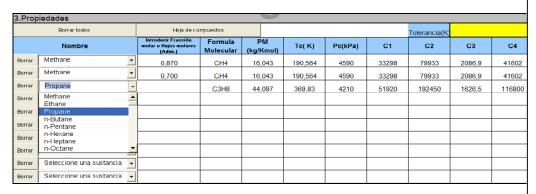

3. Hojas de cálculo

3.1 Lectura de datos: Se mostraran todos los valores introducidos en la parte 1.1, en dicha hoja se pueden modificar los valores directamente situando el Mouse sobre la celda ("Manera convencional").


3.1.1 Sección de datos del proyecto, operación y diseño

Valor	Unidades	
	K	
	K	
	kPa(abs)	
_	kPa(abs)	
_	kg/h	
	(Adim.)	Recon
	(Adim.)	
	a 4	K K kPa(abs) kPa(abs) kg/h (Adim.)


- El color rojo significa que es un valor critico para el dimensionamiento, por ende tiene que introducir dicho valor (la herramienta no iniciara el calculo mientras alguna celda tenga dicho color).


- El color amarillo significa que es un valor necesario para el dimensionamiento, por ende tiene que introducir dicho valor (la no herramienta iniciara el calculo mientras alguna celda tenga dicho color). Para estos datos se tiene un valor recomendado o por defecto el cual se obtiene oprimiendo el botón "default" que se encuentra a la derecha de la celda en cuestión.

- El color verde significa que dicho valor hará falta en la DATA SHEET del compresor, no obstante el programa podrá dimensionar así alguna celda tenga dicho color.
- **3.1.2 Sección de compuestos**: Una vez introducidos los datos relativos al proyecto, operación y diseño,

Se procede a elegir los compuestos de la mezcla a comprimir y añadir su composición molar o flujos molares

Ver Tabla Nº1 sección 2 para mas información

3.2 Temperatura de salida (Centrifugo)

Incluye:

Propiedades de la mezcla y eficiencia politrópica

- Peso Molecular de la mezcla
- Temperatura Pseudocritica
- Presion Pseudocritica
- Eficiencia politropica

Propiedades a la entrada

- Temperatura de Entrada
- Capacidad Calorífica
- Temperatura pseudoreducida
- Presión pseudoreducida
- Factor de compresibilidad

- Volumen especifico
- Flujo Volumétrico
- rz
- RTr*(∂Z/∂Tr)pr
- ΔCP
- ΔCP
- Exponente politropico

Propiedades a la salida

- Temperatura de salida
- Capacidad Calorífica
- Temperatura pseudoreducida
- Presion pseudoreducida
- Factor de compresibilidad
- Volumen especifico
- Flujo Volumetrico
- rz
- RTr*(∂Z/∂Tr)pr
- ΔCP
- ΔCP
- Exponente politropico
- F. de compresibilidad promedio
- Exponente politropico promedio
- Tolerancia

3.3 Potencia (Centrifugo)

Incluye:

- Exponente del cabezal
- Cabezal Politropico
- Potencia del gas
- Perdidas mecánicas
- Potencia al freno

3.4 Numero de etapas (Reciprocante)

Incluye:

Propiedades de la mezcla y número de etapas necesarias

- Peso Molecular de la mezcla
- Temperatura Pseudocritica
- Presión Pseudocritica
- Numero de etapas

Propiedades aprox. A la entrada de cada etapa

- Temperatura de Entrada
- Presión de entrada
- Capacidad Calorífica
- Temperatura pseudoreducida
- Presion pseudoreducida
- ΔCP
- Cp-Cv Relacion calores especificos

Propiedades aprox. A la salida de cada etapa

- Presión de salida
- Capacidad Calorífica
- Temperatura pseudoreducida
- Presion pseudoreducida
- ΔCP
- Cp-Cv Relacion calores especificos
- Relación calores específicos
- Relación calores específicos promedio
- Relación de compresión
- Eficiencia isoentropica
- Temperatura de salida

3.5 temperatura real de salida de cada etapa de compresión

Propiedades reales a la entrada de cada etapa

- Temperatura de Entrada
- Presión de entrada
- Capacidad Calorífica
- Temperatura pseudoreducida
- Presión pseudoreducida
- ΔCP
- Cp-Cv Relación calores específicos

Propiedades reales a la salida de cada etapa

- Presión de salida
- Capacidad Calorífica
- Temperatura pseudoreducida
- Presión pseudoreducida
- ΔCP
- Cp-Cv Relación calores específicos
- Relación calores específicos
- Relación calores específicos promedio
- Relación de compresión
- Eficiencia isoentropica
- Temperatura de salida real de cada compresor

3.6 Especificación de cada compresor (Reciprocante) Propiedades a la entrada Temperatura a la entrada Presión a la entrada • Factor de compresibilidad • Volumen especifico Flujo Volumétrico Propiedades a la salida Temperatura de salida Presión de salida Factor de compresibilidad Volumen especifico • Flujo Volumétrico F. de compresibilidad promedio Potencia total Cabezal isoentropico Potencia del gas Perdidas mecánicas Potencia al freno 3.7 Tablas y graficos1 y Tablas y graficos2 Incluye: Lista de compuestos Parametrizaciones de las propiedades termodinámicas para servicios de compresión y de expansion Parametrizacion de la grafica de eficiencia isoentropica de compresores reciprocantes 3.8 DATA SHEET portada Incluye: Portada

3.9 Data sheet (contenido)

Es la hoja de especificaciones del equipo se muestran tanto los datos de operación y diseño como el resultado de la especificación del compresor. Es recomendable que en este punto revise la valides de los resultados (ver sección 5: Paseo por las memorias de cálculo).

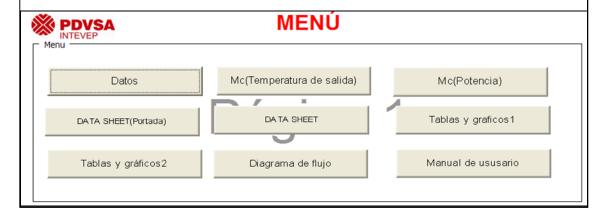
Debe introducir los comentarios, notas y observaciones correspondientes directamente sobre la celda (De manera convencional).

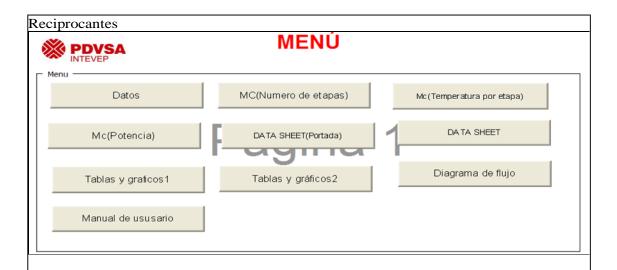
3.10 Diagrama de flujo

Incluye:

Metodología de calculo y criterios

3.11 Manual de usuario


Incluye:


Instrucciones y contenido del software

4. Verificación de resultados: Paseo por las memorias de cálculo

Por medio del botón "Menú" Podrá acceder a la siguiente pantalla con las memorias de calculo para l especificación del compresor.

Centrífugo

5. Pasos para el dimensionamiento

5.1 Centrifugo

- 5.1.1 Introducir datos de proyecto, operación y diseño (ver sección 1.1.1)
- 5.1.2 Verificación de datos (Ver sección 3.1.1)
- 5.1.3 Introducir compuestos (Ver sección 3.1.2)
- 5.1.4. Verificación de resultados (Ver sección 4.1)
- 5.1.5 Data Sheet (sección 3.10)
- 5.1.6 Añadir comentarios (Portada y contenido realizar de manera convencional)

5.2 Reciprocante

- 5.2.1 Introducir datos de proyecto, operación y diseño (ver sección 1.2.1)
- 5.2.2 Verificación de datos (Ver sección 3.1.1)
- 5.2.3 Introducir compuestos (Ver sección 3.1.2)
- 5.2.4. Verificación de resultados (Ver sección 4.2)
- 5.2.5 Data Sheet (sección 3.10)
- 5.2.6 Imprimir DATA SHEETS (Portada y contenido realizar de manera convencional)

6. Alertas

Msg "La base de datos es insuficiente para determinar propiedades termodinámicas" Caso posible: La presión pseudo reducida o la temperatura pseudo reducida de entrada o salida supera los valores de la tabla para determinar las propiedades termodinámicas para servicios de expansión y compresión del manual de PDVSA

Msg "Se supero el máximo numero de iteraciones. Favor verificar datos introducidos" Caso posible: La tolerancia deseada es muy pequeña o los datos suministrados no han sido auditados.

Msg " La presión de salida requerida tiene que ser al menos 30 porciento mayor que la presion de entrada"

Consecuencia de: La presión de salida para compresores reciprocantes tiene que cumplir con esta limitante.

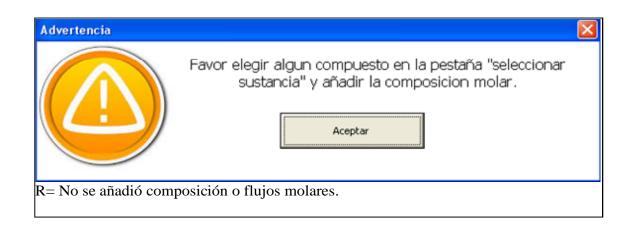
Msg ("El peso molecular es mayor a 30Kg/Kmol, este tipo de compresores es ineficientes para mezclas o compuestos puros cuyo peso molecular sea mayor a este valor, favor utilizar otro tipo de compresor")

Consecuencia de : El peso molecular de la mezcla o sustancia pura tiene que ser menor a 30 Kg/Kmol para que los compresores reciprocantes sean eficientes.

Msg "El numero de etapas es mayor a 9, favor verifcar los datos introducidos" Caso posible: La presión de salida es estrepitosamente mayor a la de entrada

Msg "Solo Ingrese números"

Consecuencia de : Se intenta introducir letras en vez de números para datos de operación o diseño


Msg "Verifique datos suministrados (Temperatura)"

Caso posible: La temperatura no esta en unidades absolutas

Msg " Oprima aceptar y espere mientras se realiza el dimensionamiento Tiempo aproximado: 5 Segundos"

Consecuencia de: Al momento de comenzar el dimensionamiento.

APÉNDICE Y. Capacidades de $34\,m^3$ a $16432\,m^3$ (API Standar 650, 2001).

			AI	TURA (n	n)		
DIAMETRO. (m)	4,80	7,20	9,60	12,00	14,40	16,80	19,20
3	34	54	68				
4,5	76	115	153	191			
6	136	204	272	339	407		
7,5	212	318	424	530	636	742	848
9	305	458	610	763	916	1069	1221
10,5	416	623	831	1039	1247	1455	1663
12	543	814	1085	1357	1629	1900	2171
13,5	687	1031	1373	1718	2061	2405	2748
15	848	1272	1696	2121	2545	2969	3393
18	1221	1832	2442	3054	3664	4275	4358
21	1663	2494	3323	4156	4988	4763	D=17
24	2171	3257	4341	5429	5474	D=19	
27	2748	4122	5494	6871	D=22		
30	3393	5089	6782	D=27			
36	4886	7329	8712				
42	6650	9975	D=34				
48	8686	11966					
55	10993	D=46					
60	13572						
66	16422						