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     INTRODUCTION 

 Human malaria, one of the most serious parasitic diseases 
of tropical ecosystems, is caused by parasites of the genus 
 Plasmodium  (Apicomplexa: Plasmodidae) and transmitted 
among human hosts by the bites of infected female  Anopheles  
mosquitoes (Diptera: Culicidae). In 2006, malaria was respon-
sible for 247 million clinical cases among 3.3 billion peo-
ple at risk, causing nearly a million deaths. 1  The dependence 
of malaria transmission on its spatial and ecological con-
text has long been recognized; hence, the need to study this 
disease within its explicit spatial context. 2–5  Transmission of 
mosquito-borne pathogens can be highly heterogeneous 
caused by a complex set of interactions among parasites, vec-
tors, and hosts occurring at specific locations (both natural and 
anthropogenic landscapes), and at specific times. 6–8  Efficient 
control of this disease and prediction of its emergence or 
spread to new geographic regions require an understanding 
of the effect of spatial heterogeneity on malaria transmission 
dynamics. 5,6  Ecoepidemiologic patterns can result from vari-
ous processes (extrinsic and intrinsic) simultaneously acting at 
different scales. 9  Thus, disentangling the spatial scales of these 
processes should be an aim in studies of the landscape epide-
miology of malaria. 

 Spatial heterogeneity can be caused by spatial-temporal 
structuring of the physical environment, which induces similar 
spatial aggregation of individuals and populations in the land-
scape by creating large-scale trends (e.g., > 100 km). 9  As an 
example, malaria is uncommon in high-elevation areas because 
the parasite, as well as the mosquito, requires warm tempera-
tures (e.g., > 21°C for  Plasmodium ), high humidity (> 80% for 
mosquito adults), and suitable wetlands or aquatic habitats for 
mosquito pre-adults to complete their life cycles and survive. 
Hence, the landscape directly influences the spatial pattern of 
transmission by creating nonrandom distributions of patho-

gens and vectors, and acts like a selective filter on the estab-
lishment of local mosquito–parasite and human interactions. 9  
At intermediate (e.g., < 100 km) and local scales (e.g., 100 m 
to 5 km), the risk for malaria is mainly determined by human 
and mosquito behavior and ecology, especially the distribution 
of blood-meal hosts and water. In this case, underlying envi-
ronmental conditions do not generate the spatial pattern of 
infection; rather the observed pattern is the result of intrinsic 
population-related processes, which increase local interactions 
at the expense of global connectedness. The degree of spatial 
dependency generated either by exogenous or endogenous 
processes, and the relevance of differentiating both spatial 
scales has been well recognized in ecology 10,11  and very recently 
in some infectious disease dynamics. 8,9,12  Paradoxically, though 
the results of malaria modeling are more often spatially pre-
sented (e.g., as a geographic information system [GIS]-derived 
map of the predicted disease distribution at global and/or local 
scale), spatial information is not usually accounted for in the 
model itself, except in some recent attempts. 13,14  However, pre-
dicting mosquito-borne pathogen transmission using global 
nonspatial predictive models is difficult to assess because of 
non-stationarity (the variation in modeled relationships over 
space), which is likely to be a very common property in eco-
logical systems. 10  

 We sought to determine and predict the spatial variation 
of  Plasmodium vivax  malaria infection in an epidemic-prone 
Neotropical area, in northeastern Venezuela. We emphasized 
the relevance of using local spatial analytical approaches such 
as local cluster detection (e.g., local Getis statistic) 15  and geo-
graphically weighted regression (spatially explicit model) 16  to 
identify and understand the major determinants of malaria 
risk and disease differences across space. Specifically, we 
described the spatial heterogeneity of malaria, identified the 
spatial extent or scale of the disease process, and showed that 
the relationship between malaria and the environmental fac-
tors varies across space. 

   MATERIAL AND METHODS 

  Study area.   The study area (332.5 km 2 ) is located in the 
southern lowland area of Sucre State (Cajigal Municipality), 
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in northeastern Venezuela (10°34′N, 62°49′W). This rural 
zone bordering the Caribbean Sea corresponds to the coastal 
ecoregion, 17  where malaria is endemic and  P. vivax  is trans-
mitted by  Anopheles  ( Nyssorhynchus )  aquasalis  Curry. 18  Spe-
cifically, more than 90% of the malaria cases of Sucre State 
in recent years have occurred in this municipality. 19  The area 
has an estimated population of 24,345 inhabitants and 3,587 
houses (2001 Venezuelan census) distributed in 29 villages 
interconnected by primary (paved) and secondary (dirt) roads, 
with a mountain range in the northern sector reaching up to 
600 m altitude. Vegetation is composed of sparse patches of 
deciduous forests, cleared lands for small crops and coconut 
groves, large zones of herbaceous and woody swamps, and 
large, relatively undisturbed coastal mangroves. 20  Annual 
mean temperature is 27–28°C and total annual rainfall is 
1,200–1,700 mm, with a rainy season from May to November 
and a dry season from December to April. 

   Epidemiologic data.   Village-level case data of  P. vivax  malaria 
from 2001 to 2007 (positive blood smears) were obtained from 
the Malaria Control Program database, Venezuelan Ministry 
of Health, where symptomatic cases are detected by passive 
and active surveillance. The Division of Environmental Health 
compiles all notifications of malaria consultations on a weekly 
basis, and cases are reported using the patient’s address. We 
analyzed data from 22 of the 29 villages of the municipality 
because of a lack of accuracy about their population data of 
seven villages. We avoided the bias arising from  P. vivax  relapses 21  
by considering only one positive blood smear per individual 
per year (single malaria episode). No personal identifiers 
were used in this study, which was ethically approved by the 
Venezuelan Council for Scientific Research. To calculate the 
malaria incidence rates per 1,000 inhabitants by locality (annual 
parasite incidence [API] = no. of new cases × 1,000/population 
at risk per year), we assumed that the entire population of the 
villages was exposed to the risk of contracting malaria; i.e., 
each person contributed exactly 1 person-year of exposure. The 
95% confidence limits for the incidence data were computed 
by assuming an underlying Poisson distribution. 22  The  P. vivax  
infection persistence (IP) by locality by year was calculated 
as the maximum number of consecutive weeks a village had 
malaria cases. 3  ArcGIS 9.1 (ESRI Corporation, Redlands, 
CA) software was used to display the distribution of malaria 
incidence (API) per village by year. 

   Environmental predictors of malaria risk.   Specific landscape 
features, socioepidemiologic attributes, and ecologic variables 
were used to explain and predict the spatial variation of malaria 
incidence and persistence in the study area. These variables 
were terrain elevation, terrain slope, number of inhabitants 
per village, distance to the main road, number of immature 
 Anopheles aquasalis  habitats within a circular buffer zone of 
1 km centered on each village (here considered as the effective 
flight range of the mosquitoes), and distances to the nearest 
immature  An. aquasalis  habitat, or to the closest wetland 
or mangrove from each locality. In a previous study in the 
western part of this malaria focus, most of these variables were 
risk factors for  P. vivax  transmission. 3  Landscape variables 
were derived from a GIS or digitized from topographic maps 
(1:100.000; Ministry of Environment, 1999). Elevation and 
slope were calculated as averages for each community based 
on elevation maps with contour lines every 30 m. 

 From 2002 to 2005, we surveyed 87 aquatic habitats, which 
generated 55 sampling points (positive for  An. aquasalis ) that 

were incorporated into the GIS. Mosquito samples were taken 
with a standard dipper, and anopheline occurrence in aquatic 
habitats was confirmed (from 30 such samples) by visiting the 
area periodically (dry and rainy season per year) throughout 
that period. Our previous studies had found that this mosquito 
species was the most common, abundant, and widely distrib-
uted species in this region, showing its largest abundance in 
the mangrove swamps but also associated with herbaceous 
swamps (brackish and freshwater) and small freshwater bod-
ies such as ponds. 20,23  

   Data analysis.    Hot spot detection.   The nonspatial depen-
dency in the malaria distribution pattern would imply that 
an event of infection is equally likely to occur at any location 
within the study area, regardless of the locations of other events 
(i.e., a spatially constant risk). Consequently, the observed 
disease patterns would represent the normal variation in 
malaria incidence given the at-risk population distribution. 
To test that hypothesis, we used two local measures of spatial 
association, the Kulldorff scan statistic 24  and the local Getis 
statistic,  G  i   *(d). 15  

 The Kulldorff scan statistics allowed us to identify significant 
excesses cases (e.g., the most likely cluster) of  P. vivax  incidence 
in space and time. The scan statistic uses a circular (space) or 
cylindrical (space-time) scanning window that moves system-
atically across space (study area) and/or time. The scanning 
window is centered on each sample at a particular time and 
expanded to include neighboring locations and time intervals 
until it reaches a maximum size (e.g., never including > 50% 
of the population-at-risk size for the study period). The null 
hypothesis is evaluated with a maximum likelihood ratio test 
(by assuming a Poisson distribution). The scan statistic is the 
maximum likelihood ratio over all possible window sizes. A 
 P  value provides the probability for the most likely cluster and is 
obtained through multinomial Monte Carlo randomizations. 

 The local Getis statistic,  G  i   *(d), identified significant local 
clustering of high positive (hot spots) or low negative (cold 
spots) values of malaria cases (e.g., weighted malaria cases 
standardized by the population at risk in each village) sur-
rounding a particular village within a radius (circular win-
dow) of specified distance  d  from that location. The distance 
 d  defined the neighborhood search for a particular village, 
with nearby locations being expected to have similar values. 
The value obtained was compared (by using the Monte Carlo 
randomization procedure) with the statistic’s expected value 
to indicate if the degree of clustering of malaria cases in the 
vicinity of a particular village was greater or less than expected 
by chance. To correct for multiple comparisons when using 
 Gi *(d), significance levels were adjusted according to Getis 
and Ord’s criteria. 25  We calculated  Gi *(d) at different scales 
(5 distance categories) by using various window sizes (1 to 
5 km, 1 km each) for each year. The maximum  Gi *(d) distance 
corresponded to the scale at which  Gi *(d) maximum value 
was found; i.e., the scale of the spatial dependence of the pro-
cess under study. In addition, we used this analysis with yearly 
IP data to explore the spatial dynamics of malaria spread in 
this region. The analyses of  Gi *(d) and Kulldorff scan statistics 
were carried out using the ClusterSeer software (TerraSeer, 
Ann Arbor, MI). 

    Local spatial and global nonspatial regression modeling.   
 The use of ordinary least squares (OLS) regression modeling 
has been by far the most common analytical approach to explain 
and predict variation in infectious diseases. The OLS regression 
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assumes, however, that the data are normally distributed, the 
regression coefficients are “global” and apply equally to the 
entire study area, and residuals are spatially random, which is 
difficult to achieve given the spatial heterogeneity of the study 
area. When the data are spatially structured, OLS scores can 
be biased and their significance inflated. 11  A diagnostic statistic 
indicating problems in OLS regression with spatial data is the 
degree of spatial non-randomness of residuals; however, a 
common approach is to filter out or to treat the local spatial 
information as “noise.” 10  Recently, spatial regression has 
been used, 10,16,26  yet these methods assume spatially stationary 
correlation structures that apply equally across the data set. 

 Geographically weighted regression (GWR) has been devel-
oped as an extension of traditional regression to incorporate, 
detect, and account for spatial non-stationarity in variable 
relationships in the model. 16  This spatially localized model 
assumes that relationships between regression variables may 
vary over space; consequently, it generates a set of local lin-
ear regression models rather than a global model, with esti-
mates for every sample in space. A moving window approach 
allows the weights of each spatial unit to vary as a function of 
the spatial relationship between them. Namely, a local estima-
tion of model parameters is derived by using a subsample of 
data from nearby observations, which are weighted by using 
a decreasing function of distance. In this way, the impacts of 
neighboring samples are stronger than those farther away. 
A threshold, called the kernel bandwidth, is specified to indicate 
the distance beyond which neighbors no longer have influence 
on local estimates. The selection of the optimal bandwidth in 
the weighting function is reached by minimizing the corrected 
Akaike information criterion, AIC   c   . 

16  A geographic surface of 
models is derived with associated goodness-of-fit statistics and 
localized parameter estimates such as  R -square, standard error, 
and  t  values. These maps highlight possible data relationships, 
aid finding exceptions or local hot spots, and provide infor-
mation on the nature of the processes under study. We used 
the GWR coefficient values to explore the spatial variabil-
ity of relationships between malaria incidence or persistence 
and the selected geographic, environmental, and human pre-
dictors. To reach a more symmetric distribution, we log trans-
formed the API and the IP data. We examined the significance 
of the spatial variability of local parameter estimates (spatial 
non-stationarity) after fitting the GWR model to all data by 
conducting a Monte Carlo test. In addition, we tested for spa-
tial autocorrelation in the GWR residuals with the help of the 
Moran’s  I.  For the purpose of comparison, OLS models were 
also derived and compared with the GWR prediction surface 
using the AIC   c    and the global  R  2 . The GWR and OLS were 
conducted using the GWR software (version 3.0, Newcastle 
University, England, UK). 16  Finally, we collapsed the 7 years 
and 22 observations into 154 data points to validate the OLS 
and GWR models with a greater sample size in a time-series 
approach. The malaria incidence and malaria persistence were 
modeled as a function of fixed and random (clustering) effects 
by using generalized linear mixed-effects models (GLMMs). 
The fixed effects quantified the overall effect (across all years) 
of the selected geographic, environmental, and human vari-
ables used in the OLS and GWR models, whereas the random 
effect quantified the variation of the temporal blocks (years) 
of the fixed-effect parameters. 27  We selected Poisson distribu-
tion models with logarithmic link functions and the estimation 
of parameters was based on penalized quasi-likelihood (PQL). 

We used the glmmPQL function available in the library MASS 
of the R statistical package 28  for fitting the GLMMs. 

    RESULTS 

  Spatial clustering of malaria.   The total number of cases of 
malaria in the area during the study period was 8,360, with 
overall malaria incidence rates (cases per 1,000 person-year) 
ranging from 10 to 44 during 2001–2007 ( Table 1       ). The highest 
value corresponded to the malaria epidemic of 2002, and over 
the 7-year period, the relative risk (RR) for  P. vivax  infections 
differed dramatically across the study site ( Table 1 ). 

 Maps of malaria incidence for the whole region ( Figure 1   ) 
show that most of the cases were spatially located toward the 
central and eastern area of the municipality where local clus-
tering of  P. vivax  cases were detected with the scan statistic 
in every year (epidemic and nonepidemic years) around 7–11 
villages ( Figure 1A  and B). Average malaria incidence within 
the cluster area was 1.9–2.7 times larger than malaria outside 
the cluster, indicating an increased risk of malaria for persons 
residing in those villages compared with those residing in the 
western or northern side of the municipality ( Table 2       ). 

 A similar clustering pattern of high malaria incidence was 
observed with the local Getis statistic ( Gi *[d] > 2.79,  P  < 0.05) 
at distances from 1 ( Figure 1C  and D) to 5 km (not all maps 
shown) around 3 to 10 central and eastern villages during all 
the analyzed years. During 2002, 3 cold spots ( Gi *[d] < −2.79, 
 P  < 0.05) were detected with the local Getis statistic in the 
northwestern side of the region ( Figure 1C ). When space-time 
clustering was examined, the first 13 weeks of 2002 corre-
sponding to the dry season met the Kulldorff scan criteria for 
a significant epidemic period when compared with records of 
weekly infection from other years (RR = 5.37, log-likelihood 
ratio = 2634.7,  P  < 0.001). Interestingly, malaria cases clustered 
in time around the same villages selected as hot spots in the 
spatial clustering (maps not shown). 

 There was a significant and positive correlation between 
malaria incidence and persistence (maximum consecutive 
weeks with malaria) by village ( r  s  = 0.89,  N  = 203,  P  < 0.01). 
The spatial analysis (local Getis statistic) of malaria per-
sistence revealed significant clusters of 1 km ( Gi *[d] > 2.79, 
 P  < 0.05) around four villages that were previously classified 
as hot spots and located in the central and eastern part of the 
region (maps not shown). These hot spots displayed up to 
1 year of sustained malaria incidence. 

   Predicting malaria incidence.   Local spatial GWR models 
explained a larger portion of the variance (47–86%) than OLS 
regressions (18–57%) for each year of the study ( Table 3            ). 
Although AIC   c    values for GWR models did not decrease, as 

  Table  1 
  Villages with the highest and lowest annual parasite incidence (API:  cases 

× 1,000/year-person) during 2001–2007 in northeastern Venezuela*  

Year API (95% CI)
Village with 
highest API

Village with 
lowest API

Relative risk 
(highest/lowest) (95% CI)

2001 45 (33–60) 174.3 2.5 69.7 (55–88)
2002 164 (140–192) 545.5 65.1 8.4 (4–16)
2003 44 (32–59) 154.8 2.9 53.4 (40–70)
2004 32 (22–45) 131.0 10.9 12.0 (6–21)
2005 29 (19–42) 100.0 4.7 21.3 (13–32)
2006 19 (11–30) 60.7 3.0 20.2 (12–31)
2007 10 (5–18) 35.7 1.0 35.7 (25–50)

  *   CI = confidence interval.  
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is usually expected with improved model fitting, it is also true 
that with more parameters AIC   c    is penalized with increased 
values because of model overfitting. Local GWR’s  R  2  values 
per village were mapped to show the variation in the accuracy 
with which the model explained the variation in malaria 
incidence across the study area in 2002 and 2007; years with 
contrasting overall incidence ( Figure 2   ). The maps indicate 
that local  R  2  statistics were high for all the villages and studied 
periods, explaining from 61% to 98% of the variation in 
malaria incidence per village. 

 Ordinary least squares regression models for each of the 
years of the study revealed that malaria incidence was posi-
tively associated with the number of  An. aquasalis  aquatic 
habitats that were located up to 1 km from villages (e.g., OLS 
model [2007]: β estimate ± SE [0.07 ± 0.03],  t  = 2.50,  P  < 0.05). 
Other variables included in the model did not show signifi-
cant relationships with the variation of malaria incidence in 
the study area, and OLS model residuals exhibited significant 
spatial autocorrelation at the third lag (e.g., 2002: Moran’s 
 I  = 0.39,  Z -score = 2.11,  P  < 0.05; 2007: Moran’s  I  = 0.33, 
 Z -score = 2.11,  P  < 0.05). A more complex pattern with finer 
spatial variability in terms of the significance of the relation-
ships between the explanatory variables and malaria incidence 

was depicted by the local GWR models. Although GWR gen-
eral results supported those observed in the global nonspatial 
(OLS) regression model that linked malaria incidence with 
the number of mosquito aquatic habitats within a 1 km radius 
of each village, this variable was not significant everywhere, 
indicating the non-stationarity of the relationship of this eco-
logical factor with malaria ( Figure 3A   ). The number of  An. 
aquasalis  pre-adult habitats was a predictive variable ( t  val-
ues > 1.71,  P  < 0.05) across all regions except in some locali-
ties on the eastern side of the municipality. Certainly, malaria 
incidence in four eastern villages was not significantly associ-
ated with the number of aquatic habitats but with two other 
variables acting at different spatial scales, such as terrain ele-
vation (broader scale,  Figure 3B ) and distance to the nearest 
mosquito pre-adult habitat (finer scale,  Figure 3C ). The iden-
tification of elevation as an independent variable significantly 
related to malaria incidence in most of the villages was missed 
by the global regression models. The GWR residuals did not 
show spatial autocorrelations, and any significant spatial sta-

  Table  2 
  Kulldorff’s scan statistic results for the first most likely cluster of 

malaria incidence (API) in northeastern Venezuela  

Year (no. of localities 
inside the cluster)*

Expected average 
disease frequency 

API (×1,000)

Observed average 
disease frequency† 

API (×1,000)
Relative 

risk†
Log-likelihood 

ratio

2001 (7) 44.3 118.5 2.7 65.5‡
2002 (11) 159.8 315.5 1.9 773.1‡
2003 (7) 43.7 111.4 2.5 194.1‡
2004 (10) 31.1 63.1 2.0 167.9‡
2005 (10) 31.1 58.8 1.9 175.2‡
2006 (10) 18.4 38.1 2.1 133.6‡
2007 (10) 9.4 19.3 2.0 64.7‡

  *   Maximum spatial population radius analyzed (50% of total population).  
  †   Observed incidence in cluster/expected incidence outside the cluster.  
  ‡    P  < 0.01 ( P  values based on 999 simulations under the constant risk hypothesis).  

  Table  3 
  Model validation and main results of the ordinary least squares (OLS) 

regression and geographically weighted regression (GWR) models 
of malaria incidence (API) in northeastern Venezuela  

Model (year) AIC   c    R  2 ANOVA

 OLS† | GWR† OLS | GWR  F -value
2001 59.8 7  | 70.3 11 0.18 | 0.47 3.72*
2002 66.7 7  | 71.6 13 0.37 | 0.53 3.89*
2003 60.4 7  | 62.9 13 0.28 | 0.51 4.28*
2004 51.01 7  | 56.79 13 0.33 | 0.47 2.94
2005 54.6 7  | 64.0 11 0.16 | 0.49 3.85*
2006 43.9 7  | 43.5 13 0.57 | 0.74 5.70*
2007 46.9 7  | 72.5 8 0.41 | 0.86 9.29**

  Analysis of variance (ANOVA) tests the null hypothesis that the GWR model represents 
no improvement over the global OLS model. A Monte Carlo test compares the difference in 
the residual sums of squares of the OLS model with the residual sum of squares of the GWR 
model.  R  2  represents the adjusted coefficient of determination, and AIC   c    is the corrected 
Akaike information criteria. Model variables were population density, terrain elevation, ter-
rain slope, number of aquatic habitats, distance to the nearest breeding site, and distance to 
the main road.  

  *    P  < 0.05; **  P  < 0.01.  
  †    DF  of OLS and GWR residuals, respectively.  

  Figure  1.    Annual parasite incidence (API: cases × 1,000/year-person) per village during 2002 ( A ,  C ) and 2007 ( B ,  D ) in Cajigal Municipality, 
northeastern Venezuela. Encircled areas in ( A ) and ( B ) denote significant clusters of diseases as detected by the Kulldorff scan statistic ( P  < 0.001). 
Encircled localities in ( C ) and ( D ) show the result of  Gi *(d) analyses at a distance of 1 km, with significant ( Gi *[d] > 2.79,  P  < 0.05) clusters of 
malaria infection in bold solid lines (hot spots,  C ,  D ) and broken lines (cold spots,  C ). Note the scale difference between API 2002 ( A ,  C ) and API 
2007 ( B ,  D ). This figure appears in color at  www.ajtmh.org .    
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tionarity remained in the parameters estimated from fitting 
the GWR model to all data (data not shown). In predicting 
malaria incidence across years, the GLMM results were simi-
lar to those derived using the OSL and GWR models (data 
not shown). 

   Predicting malaria persistence.   The GWR on malaria 
persistence resulted in adjusted  R  2  ranging from 0.54 (2007) 
to 0.83 (2002), whereas global regression accounted for 33% 
(2006) to 83% (2002;  Table 4  ). Local spatial GWR models did 
not show a significant improvement in explaining variation in 
malaria persistence for every year over the performance of 
corresponding global OLS regressions ( Table 4 ). Local GWR 
 R  2  estimates ( Figure 4A   ) varied from 81% to 92%. On average, 
OLS models showed that increased human population density 
(e.g., OLS model [2002]: β estimate ± SE [6 × 10 −6  ± 2 × 10 −5 ], 
 t  = 2.40,  P  < 0.05), lower elevations (e.g., OLS model [2002]: 
β estimate ± SE [0.001 ± 4 × 10 −4 ],  t  = −3.34,  P  < 0.05), and 
proximity to mosquito aquatic habitats (e.g., OLS model [2002]: 
β estimate ± SE [9 × 10 −5  ± 3 × 10 −5 ],  t  = −2.90,  P  < 0.05) were 
significantly and independently associated with the number of 
consecutive weeks with malaria during the year. However, GWR 
models showed considerable heterogeneity in the contribution 
of these variables to the geography of malaria persistence 
( Figure 4B–D ). In particular, distance to the nearest aquatic 
habitat of  An. aquasalis  was not significant everywhere ( Figure 
4D ), only in the hot spots. In predicting malaria persistence 
across years, the GLMM results converged to those derived 
using the OSL and GWR models (data not shown). 

    DISCUSSION 

  Spatially explicit local analyses.   In this study, local spatial 
statistics were used to test the spatial dependency in the patterns 
of malaria transmission, detect pockets of disease ( Figure 1 , 
 Table 2 ), and identify the relevant spatial scale at which local 
epidemiology of malaria occurs. Furthermore, although this 
study relied on a small number of observations, local spatially 
explicit models (GWR) enabled us to explain variations in 
hot spots based on environmental variables ( Figures 3  and  4 ) 

and greatly improved predictions of malaria risk ( Table 3 , 
 Figure 2 ) compared with OLS models. Additionally, local 
spatial predictive models gave more accurate representation 
of the local variation in  P. vivax  incidence than the global 
OLS models by incorporating, detecting, and accounting for 
spatial non-stationarity ( Table 3 ). Indeed, our results showed 

  Figure  2.    Spatial variation of local  R  2  values or percentage 
of malaria incidence explained by each local GWR model during 
( A ) 2002 and ( B ) 2007 in northeastern Venezuela.    

  Figure  3.    The t-values of regression coefficients for number of 
breeding sites -NBS- (A), elevation -ELEV- (B), and distance to the 
nearest breeding site -DNBS- (C), in the local GWR models of 2007.    

  Table  4 
  Model validation and main results of the ordinary least squares regres-

sion (OLS) and geographically weighted regression (GWR) models 
of malaria persistence (IP) in northeastern Venezuela  

Model (year) AIC   c    R  2 ANOVA

 OLS† | GWR† OLS | GWR  F -value
2001 10.4 5  | 10.8 16 0.56 | 0.60 3.06
2002 4.1 5  | 9.1 15 0.83 | 0.83 1.19
2003 13.2 5  | 29.8 12 0.65 | 0.76 2.59
2004 26.4 5  | 72.6 8 0.37 | 0.76 4.65*
2005 9.1 5  | 11.7 15 0.62 | 0.69 2.91
2006 16.9 5  | 17.3 14 0.33 | 0.58 4.50*
2007 39.9 5  | 37.9 15 0.41 | 0.54 3.22

  Model variables were population density, terrain elevation, number of aquatic habitats, and 
distance to the nearest breeding site.  

  *    P  < 0.05.  
  †    DF  of OLS and GWR residuals, respectively.  
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that there is significant spatial variation in the relationship 
between malaria incidence and environmental variables. 

   Hot spots of malaria.   Malaria risk was highly focal and more 
prevalent in the central and eastern part of the municipality, 
where up to 11 malaria hot spots (out of 29 villages) were 
identified ( Tables 1  and  2 ;  Figure 1 ). Local transmission in 
these disease pockets accounted for most malaria transmission 
(73–86%) in the region ( Figure 1 ), suggesting that even at this 
small spatial scale (~300 km 2 ), the risk of malaria varied widely 
( Tables 1  and  2 ). The analysis of retrospective data allowed 
us to discern that clusters of cases were not transient across 
space but consistent during all the years, indicating that the 
area running from the center to the east of the municipality 
has been a long-standing source of  P. vivax  transmission in 
the region. Our results coincided with earlier findings in a 
small coastal area of northeastern Venezuela where only 
40% of human settings accounted for most of the prevalence, 
incidence, and persistence of  P. vivax  in the region. 3  

   Factors influencing malaria incidence.   Overall, local and global 
spatial analyses identified some landscape features influencing 
the local intensity of malaria in hot spots. The number of  An. 
aquasalis  pre-adult habitats within 1 km radius, a proxy for adult 
female mosquito occurrence and density, was highly predictive 
of malaria risk in the region. If it is assumed that adult females 
tend to aggregate around places where they oviposit, then 

people living near a cluster of water bodies where mosquitoes 
oviposit would be at higher risk of getting infective  Anopheles  
bites compared with people living in villages further away. At 
a finer extent, however, the predictive strength of this variable 
varied across space, as detected by the local spatial models 
( Figure 3A ), where the variable was a poor predictor of malaria 
incidence in the eastern hot spots. The differences observed in 
the predictive strength of this variable at different spatial scales 
(homogeneous at global scale and heterogeneous at finer level) 
show the ability of the local model to adequately identify the 
non-stationarity of the process under study. A lower density 
of mosquito breeding sites was observed in eastern hot spots 
compared with those areas near the other hot spots ( Figure 1 ). 
Therefore, although mosquito production site aggregation 
close to human settlements accounted for “pockets” of disease 
transmission within this region, other factors operating at local 
(proximity to aquatic habitats) or greater scale (elevation) 
explained malaria incidence in the eastern hot spots. Moreover, 
proximity to water where mosquitoes oviposit, whether these 
aquatic habitats were less than 1 km, increased the risk of 
malaria in those eastern hot spots when distance was assessed 
locally but not globally, where this relevant relationship was 
missed. Most of the clusters of  An. aquasalis  habitats next to the 
central hot spots were small bodies of freshwater (e.g., ponds, 
springs, and water channels); by contrast, large areas of coastal 

  Figure  4.    ( A ) Spatial variation of local  R  2  values or percentage of malaria persistence explained by local GWR models during 2002. ( B ) The  t  
values of regression coefficients for population (POP), ( C ) elevation (ELEV), and ( D ) distance to the nearest breeding site (DNBS) in the local 
models.    
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mangrove swamp forests, freshwater herbaceous swamps or 
clear-cut marsh forests were located between 1 and 3 km from 
the eastern hot spots. Thus, people living up to ~3 km of those 
water bodies are also more exposed to the bites of infected 
 An. aquasalis  than those living far away. Our results agreed 
with previous findings that proximity to mosquito aquatic 
habitat is a risk factor for malaria. 3,29–32  Proximity to  Anopheles  
production sites has been previously associated with increased 
adult mosquito density and malaria prevalence. 33,34  The het-
erogeneous distribution of larval habitats produces large vari-
ations in vector-host contact over relatively short distances, 30  
whereas the abundance of the biting mosquito population away 
from those breeding sites reflects dispersal and survival of 
mosquitoes. Formally, in malaria epidemiology, the vector-host 
contact is expressed as the annual entomologic inoculation rate 
(EIR), or the expected number of infectious bites per person 
per day or per year. Hence, it would be interesting to test if the 
EIR is higher in the central and eastern hot spots compared 
with the other villages located at low-lying western elevations, 
where malaria incidence was always relatively low. 

 Surprisingly, terrain elevation, which is a variable operat-
ing at a large scale in the landscape, was a poor predictor of 
malaria according to the global analyses, although high malaria 
incidence existed in those settlements located at low altitudes 
and on gentle slopes ( Figure 1 ). Nevertheless, when this topo-
graphic factor was locally assessed, it showed a high degree of 
correlation with  P. vivax  infections in the region ( Figure 3B ). 
The local model, again, adequately identified the local hetero-
geneity of the process under study. Although  P. vivax  infec-
tions were not found above 130 m altitude, it was also true that 
not all the villages localized below that elevation always had 
high malaria incidence. That heterogeneity could explain the 
lack of significance of elevation in global models. Lower inci-
dence of malaria is expected at higher elevations because the 
completion of the mosquito life-cycle critically depends on the 
availability of aquatic habitats, with flat areas providing more 
aquatic habitats than steep ones. Additionally, elevation has a 
limiting effect on the dispersal of  Anopheles . Lower elevation 
in altitudinal geographic gradients has been identified as a risk 
factor for malaria in previous studies. 31,34  

 Vector dispersal is another critical aspect in the local spa-
tial epidemiology of malaria. 30  The actual adult flight range 
of  An. aquasalis  is unknown, but the potential flight range 
of  Anopheles  females in the Neotropics may range from 500 
to 5,000 m (effective and potential range). 35  Adult mosqui-
toes ( Anopheles ) may fly up to 5 km, but half of the flights 
are within a 1 km radius. 36  The flight range of  An. gambiae  s.l., 
the main vector of malaria in Africa, has been characterized as 
ranging from 350 m 37  to 1.5 km. 38  Indeed, malaria transmission 
risk decreases over distances between 0.5 and 4 km in differ-
ent suburban and rural settings. 3,34,39  Interestingly, our results 
on the distance at which the largest value of disease clustering 
was found and the entomologic risk factor identified here sug-
gest that an underlying spatial process of malaria transmission 
is acting at distances between 1 and 5 km, and this could be the 
result of the flight range (effective and potential) of  An. aqua-
salis  in the study area. Regarding mosquito survival, it would 
be interesting to test if proximity to tall, dense vegetation such 
as mangrove forests promotes higher adult survival of  An. 
aquasalis  (providing more resting sites to the flying adults) 
around the eastern hot spots compared with mosquitoes from 
central hot spots, where the vegetation is scarce. 

   Factors influencing malaria persistence.   Significant variabil-
ity in malaria persistence was accounted for in the hot spots 
where malaria transmission occurred most of the year. At 
local and global levels, malaria persistence was associated with 
higher human population density and lower elevations, but at a 
local scale ( Figure 4 ), malaria persistence was mainly associated 
with proximity to aquatic habitats. Consequently, although 
high local levels of transmission are likely in each hot spot, 
because of the presence of suitable conditions, sustained and 
persistent malaria cases were observed only in some localities 
with specific human population levels. 

 Additionally, we found that malaria cases clustered in time 
during the first 13 weeks of the years (dry season) in most 
of the hot spots, followed by deep troughs in incidence dur-
ing which the seasonal extinction or fadeout of the parasite 
occurred in all but the four villages mentioned. In those vil-
lages, malaria persistence was almost constant (e.g., one local-
ity in the east side) or continuous (e.g., another locality in the 
central area) throughout the year. As we found previously, 3  
malaria in this endemic-disease area of Venezuela is seasonal, 
with the dry season explaining both the high incidence and 
spread of the disease in the region. Theoretically, there must 
be a threshold host density below which microparasite trans-
mission cannot persist. 40  This value in our study area seemed 
to be < 200 inhabitants, although we found smaller figures 
(< 50 inhabitants) for malaria persistence in other study regions 
of this area of northeastern Venezuela. 3  In our study, villages 
along the main road had significantly more malaria than vil-
lages along secondary roads, although the variable main road 
by itself was not a good predictor of malaria in the models. It 
would be interesting to evaluate by using metapopulation mod-
els 41  whether  P. vivax  persists regionally in this area because of 
the physical (landscape features such as the main road) and 
functional (human dispersal) connectivity of infected hosts. 

   Implications for malaria control.   In this study, we showed 
that local transmission of malaria is highly heterogeneous at 
a small scale, with disease foci made of localities with cases 
where there may not be autochthonous transmission (cold 
spots), foci with high or persistent transmission (hot spots), 
and foci with moderate-to-low local transmission (cool spots) 
where the infection would disappear by itself if the locality 
were isolated. 2  Recent studies suggest that a large reduction 
in malaria transmission is feasible using targeted control 
when the heterogeneity and spatial scale of malaria are 
correctly identified. 4,5,42,43  Hence, we hypothesize that causing a 
simultaneous and drastic reduction of malaria transmission in 
the hot spots during the dry seasons will prompt a subsequent 
fadeout of malaria in the cool spots, and will eliminate cases 
in cold spots. 3,40  Therefore, mapping the risk of malaria based 
on fine-grained maps of villages and local  An. aquasalis  larval 
habitats (up to 3 km) would be a practical idea for planning 
interventions in northeastern Venezuela. The heterogeneity and 
spatial variation in the relationship between malaria incidence 
and the  An. aquasalis  aquatic habitats reported here as risk 
factors would enable the use of various control methodologies 
to manage the immature mosquito populations. 
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